Stanislas0 9e364eec5d Initial commit 1 år sedan
..
models 9e364eec5d Initial commit 1 år sedan
resources 9e364eec5d Initial commit 1 år sedan
utils 9e364eec5d Initial commit 1 år sedan
README.md 9e364eec5d Initial commit 1 år sedan
README_zh.md 9e364eec5d Initial commit 1 år sedan
chat.py 9e364eec5d Initial commit 1 år sedan
requirements.txt 9e364eec5d Initial commit 1 år sedan
vectorize.py 9e364eec5d Initial commit 1 år sedan

README.md

English | 中文

RAG Functionality

CodeGeeX4 supports RAG functionality and is compatible with the Langchain framework to achieve project-level retrieval Q&A.

Tutorial

1. Install Dependencies

Navigate to the langchain_demo directory and install the required packages.

cd langchain_demo
pip install -r requirements.txt

2. Configure Embedding API Key

This project uses the Embedding API from the Zhipu Open Platform for vectorization. Please register and obtain an API Key first. Then, configure the API Key in models/embedding.py. For more details, refer to https://open.bigmodel.cn/dev/api#text_embedding.

3. Generate Vector Data

python vectorize.py --workspace . --output_path vectors
>>> File vectorization completed, saved to vectors

4. Run the Q&A Script

python chat.py --vector_path vectors
>>> Running on local URL:  http://127.0.0.1:8080

Demo