| 12345678910111213141516171819202122232425262728293031323334353637 |
- import os
- from llama_index.core.base.embeddings.base import BaseEmbedding
- from pydantic import Field
- from zhipuai import ZhipuAI
- class GLMEmbeddings(BaseEmbedding):
- client = Field(description="embedding model client")
- embedding_size: float = Field(description="embedding size")
- def __init__(self):
- super().__init__(model_name='GLM', embed_batch_size=64)
- self.client = ZhipuAI(api_key=os.getenv("Zhipu_API_KEY"))
- self.embedding_size = 1024
- def _get_query_embedding(self, query: str) -> list[float]:
- return self._get_text_embeddings([query])[0]
- def _get_text_embedding(self, text: str) -> list[float]:
- return self._get_text_embeddings([text])[0]
- def _get_text_embeddings(self, texts: list[str]) -> list[list[float]]:
- return self._get_len_safe_embeddings(texts)
- async def _aget_query_embedding(self, query: str) -> list[float]:
- return self._get_query_embedding(query)
- def _get_len_safe_embeddings(self, texts: list[str]) -> list[list[float]]:
- try:
- # 获取embedding响应
- response = self.client.embeddings.create(model="embedding-2", input=texts)
- data = [item.embedding for item in response.data]
- return data
- except Exception as e:
- print(f"Fail to get embeddings, caused by {e}")
- return []
|