| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- # Example environment variables for Cognio
- # Copy this to .env and customize as needed
- # Database
- DB_PATH=./data/memory.db
- # Embeddings
- # Recommended models (from fastest/lightest to most accurate):
- # - all-MiniLM-L6-v2 (384-dim, FAST - good for small/medium datasets)
- # - paraphrase-MiniLM-L6-v2 (384-dim, better paraphrase detection)
- # - paraphrase-multilingual-MiniLM-L12-v2 (384-dim, multilingual)
- # - paraphrase-multilingual-mpnet-base-v2 (768-dim, multilingual, higher quality but slower)
- EMBED_MODEL=all-MiniLM-L6-v2
- EMBED_DEVICE=cpu
- EMBEDDING_CACHE_PATH=./data/embedding_cache.pkl
- # API Server
- API_HOST=0.0.0.0
- API_PORT=8080
- # API_KEY=your-secret-key-here # Uncomment to enable API key authentication
- # Search
- DEFAULT_SEARCH_LIMIT=5
- SIMILARITY_THRESHOLD=0.4
- HYBRID_ENABLED=true
- HYBRID_ALPHA=0.6
- HYBRID_MODE=rerank
- HYBRID_RERANK_TOPK=100
- # Performance
- MAX_TEXT_LENGTH=10000
- BATCH_SIZE=32
- SUMMARIZE_THRESHOLD=50
- # Logging
- LOG_LEVEL=info
- # Auto-tagging with LLM
- AUTOTAG_ENABLED=true
- LLM_PROVIDER=groq
- # Groq Settings (RECOMMENDED - Free tier: 14,400 requests/day)
- # Get your API key from: https://console.groq.com/keys
- GROQ_API_KEY=your-groq-api-key-here
- # Recommended models (from cheapest to most powerful):
- # - llama-3.1-8b-instant ($0.05/$0.08 per 1M tokens - FASTEST, cheapest)
- # - gemma2-9b-it ($0.2/$0.2 per 1M tokens - balanced)
- # - llama-4-scout-17b-16e-instruct ($0.11/$0.34 per 1M tokens - vision support)
- # - openai/gpt-oss-20b ($0.1/$0.5 per 1M tokens - reasoning, prompt caching 50%)
- # - openai/gpt-oss-120b ($0.15/$0.75 per 1M tokens - BEST quality, reasoning, caching 50%)
- GROQ_MODEL=openai/gpt-oss-120b
- # OpenAI Settings (alternative - more expensive but widely available)
- # Get your API key from: https://platform.openai.com/api-keys
- # OPENAI_API_KEY=your-openai-api-key-here
- # OPENAI_MODEL=gpt-4o-mini
- # Summarization
- SUMMARIZATION_ENABLED=true
- # Methods: extractive (clustering-based, no API calls) or abstractive (LLM-based, uses API)
- SUMMARIZATION_METHOD=abstractive
- SUMMARIZATION_EMBED_MODEL=all-MiniLM-L6-v2
|