|
|
@@ -0,0 +1,1146 @@
|
|
|
+// Copyright © 2003-2004, Luc Maisonobe
|
|
|
+// 2015 - Alexey Rozanov <[email protected]> - Adaptations for Perspex and oval center computations
|
|
|
+// All rights reserved.
|
|
|
+//
|
|
|
+// Redistribution and use in source and binary forms, with
|
|
|
+// or without modification, are permitted provided that
|
|
|
+// the following conditions are met:
|
|
|
+//
|
|
|
+// Redistributions of source code must retain the
|
|
|
+// above copyright notice, this list of conditions and
|
|
|
+// the following disclaimer.
|
|
|
+// Redistributions in binary form must reproduce the
|
|
|
+// above copyright notice, this list of conditions and
|
|
|
+// the following disclaimer in the documentation
|
|
|
+// and/or other materials provided with the
|
|
|
+// distribution.
|
|
|
+// Neither the names of spaceroots.org, spaceroots.com
|
|
|
+// nor the names of their contributors may be used to
|
|
|
+// endorse or promote products derived from this
|
|
|
+// software without specific prior written permission.
|
|
|
+//
|
|
|
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
|
+// CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
|
+// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
|
+// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
|
+// THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
|
|
|
+// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
|
+// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
+// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
|
+// IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
|
+// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
+// POSSIBILITY OF SUCH DAMAGE.
|
|
|
+
|
|
|
+// C#/WPF/Perspex adaptation by Alexey Rozanov <[email protected]>, 2015.
|
|
|
+// I do not mind if anyone would find this adaptation useful, but
|
|
|
+// please retain the above disclaimer made by the original class
|
|
|
+// author Luc Maisonobe. He worked really hard on this subject, so
|
|
|
+// please respect him by at least keeping the above disclaimer intact
|
|
|
+// if you use his code.
|
|
|
+//
|
|
|
+// Commented out some unused values calculations.
|
|
|
+// These are not supposed to be removed from the source code,
|
|
|
+// as these may be helpful for debugging.
|
|
|
+
|
|
|
+using System;
|
|
|
+using System.Media;
|
|
|
+using Perspex.Media;
|
|
|
+using Perspex.Platform;
|
|
|
+
|
|
|
+namespace Perspex.RenderHelpers
|
|
|
+{
|
|
|
+ static class ArcToHelper
|
|
|
+ {
|
|
|
+ /// <summary>
|
|
|
+ /// This class represents an elliptical arc on a 2D plane.
|
|
|
+ ///
|
|
|
+ /// This class is adapted for use with WPF StreamGeometryContext, and needs to be created explicitly
|
|
|
+ /// for each particular arc.
|
|
|
+ ///
|
|
|
+ /// Some helpers
|
|
|
+ ///
|
|
|
+ /// It can handle ellipses which are not aligned with the x and y reference axes of the plane,
|
|
|
+ /// as well as their parts.
|
|
|
+ ///
|
|
|
+ /// Another improvement is that this class can handle degenerated cases like for example very
|
|
|
+ /// flat ellipses(semi-minor axis much smaller than semi-major axis) and drawing of very small
|
|
|
+ /// parts of such ellipses at very high magnification scales.This imply monitoring the drawing
|
|
|
+ /// approximation error for extremely small values.Such cases occur for example while drawing
|
|
|
+ /// orbits of comets near the perihelion.
|
|
|
+ ///
|
|
|
+ /// When the arc does not cover the complete ellipse, the lines joining the center of the
|
|
|
+ /// ellipse to the endpoints can optionally be included or not in the outline, hence allowing
|
|
|
+ /// to use it for pie-charts rendering. If these lines are not included, the curve is not
|
|
|
+ /// naturally closed.
|
|
|
+ /// </summary>
|
|
|
+ public sealed class EllipticalArc
|
|
|
+ {
|
|
|
+
|
|
|
+ private const double TwoPi = 2 * Math.PI;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Coefficients for error estimation while using quadratic Bezier curves for approximation,
|
|
|
+ /// 0 ≤ b/a ≤ 0.25
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[][][] Coeffs2Low = {
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {3.92478, -13.5822, -0.233377, 0.0128206},
|
|
|
+ new[] {-1.08814, 0.859987, 3.62265E-4, 2.29036E-4},
|
|
|
+ new[] {-0.942512, 0.390456, 0.0080909, 0.00723895},
|
|
|
+ new[] {-0.736228, 0.20998, 0.0129867, 0.0103456}
|
|
|
+ },
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {-0.395018, 6.82464, 0.0995293, 0.0122198},
|
|
|
+ new[] {-0.545608, 0.0774863, 0.0267327, 0.0132482},
|
|
|
+ new[] {0.0534754, -0.0884167, 0.012595, 0.0343396},
|
|
|
+ new[] {0.209052, -0.0599987, -0.00723897, 0.00789976}
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Coefficients for error estimation while using quadratic Bezier curves for approximation,
|
|
|
+ /// 0.25 ≤ b/a ≤ 1
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[][][] Coeffs2High = {
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {0.0863805, -11.5595, -2.68765, 0.181224},
|
|
|
+ new[] {0.242856, -1.81073, 1.56876, 1.68544},
|
|
|
+ new[] {0.233337, -0.455621, 0.222856, 0.403469},
|
|
|
+ new[] {0.0612978, -0.104879, 0.0446799, 0.00867312}
|
|
|
+ },
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {0.028973, 6.68407, 0.171472, 0.0211706},
|
|
|
+ new[] {0.0307674, -0.0517815, 0.0216803, -0.0749348},
|
|
|
+ new[] {-0.0471179, 0.1288, -0.0781702, 2.0},
|
|
|
+ new[] {-0.0309683, 0.0531557, -0.0227191, 0.0434511}
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Safety factor to convert the "best" error approximation into a "max bound" error
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[] Safety2 = { 0.02, 2.83, 0.125, 0.01 };
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Coefficients for error estimation while using cubic Bezier curves for approximation,
|
|
|
+ /// 0.25 ≤ b/a ≤ 1
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[][][] Coeffs3Low = {
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {3.85268, -21.229, -0.330434, 0.0127842},
|
|
|
+ new[] {-1.61486, 0.706564, 0.225945, 0.263682},
|
|
|
+ new[] {-0.910164, 0.388383, 0.00551445, 0.00671814},
|
|
|
+ new[] {-0.630184, 0.192402, 0.0098871, 0.0102527}
|
|
|
+ },
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {-0.162211, 9.94329, 0.13723, 0.0124084},
|
|
|
+ new[] {-0.253135, 0.00187735, 0.0230286, 0.01264},
|
|
|
+ new[] {-0.0695069, -0.0437594, 0.0120636, 0.0163087},
|
|
|
+ new[] {-0.0328856, -0.00926032, -0.00173573, 0.00527385}
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Coefficients for error estimation while using cubic Bezier curves for approximation,
|
|
|
+ /// 0.25 ≤ b/a ≤ 1
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[][][] Coeffs3High = {
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {0.0899116, -19.2349, -4.11711, 0.183362},
|
|
|
+ new[] {0.138148, -1.45804, 1.32044, 1.38474},
|
|
|
+ new[] {0.230903, -0.450262, 0.219963, 0.414038},
|
|
|
+ new[] {0.0590565, -0.101062, 0.0430592, 0.0204699}
|
|
|
+ },
|
|
|
+ new[]
|
|
|
+ {
|
|
|
+ new[] {0.0164649, 9.89394, 0.0919496, 0.00760802},
|
|
|
+ new[] {0.0191603, -0.0322058, 0.0134667, -0.0825018},
|
|
|
+ new[] {0.0156192, -0.017535, 0.00326508, -0.228157},
|
|
|
+ new[] {-0.0236752, 0.0405821, -0.0173086, 0.176187}
|
|
|
+ }
|
|
|
+ };
|
|
|
+ /// <summary>
|
|
|
+ /// Safety factor to convert the "best" error approximation into a "max bound" error
|
|
|
+ /// </summary>
|
|
|
+ private static readonly double[] Safety3 = { 0.0010, 4.98, 0.207, 0.0067 };
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the center of the ellipse
|
|
|
+ /// </summary>
|
|
|
+ internal double Cx;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the center of the ellipse
|
|
|
+ /// </summary>
|
|
|
+ internal double Cy;
|
|
|
+ /// <summary>
|
|
|
+ /// Semi-major axis
|
|
|
+ /// </summary>
|
|
|
+ internal double A;
|
|
|
+ /// <summary>
|
|
|
+ /// Semi-minor axis
|
|
|
+ /// </summary>
|
|
|
+ internal double B;
|
|
|
+ /// <summary>
|
|
|
+ /// Orientation of the major axis with respect to the x axis
|
|
|
+ /// </summary>
|
|
|
+ internal double Theta;
|
|
|
+ /// <summary>
|
|
|
+ /// Pre-calculated cosine value for the major-axis-to-X orientation (Theta)
|
|
|
+ /// </summary>
|
|
|
+ private readonly double _cosTheta;
|
|
|
+ /// <summary>
|
|
|
+ /// Pre-calculated sine value for the major-axis-to-X orientation (Theta)
|
|
|
+ /// </summary>
|
|
|
+ private readonly double _sinTheta;
|
|
|
+ /// <summary>
|
|
|
+ /// Start angle of the arc
|
|
|
+ /// </summary>
|
|
|
+ internal double Eta1;
|
|
|
+ /// <summary>
|
|
|
+ /// End angle of the arc
|
|
|
+ /// </summary>
|
|
|
+ internal double Eta2;
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the start point
|
|
|
+ /// </summary>
|
|
|
+ internal double X1;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the start point
|
|
|
+ /// </summary>
|
|
|
+ internal double Y1;
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the end point
|
|
|
+ /// </summary>
|
|
|
+ internal double X2;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the end point
|
|
|
+ /// </summary>
|
|
|
+ internal double Y2;
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the first focus
|
|
|
+ /// </summary>
|
|
|
+ internal double FirstFocusX;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the first focus
|
|
|
+ /// </summary>
|
|
|
+ internal double FirstFocusY;
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the second focus
|
|
|
+ /// </summary>
|
|
|
+ internal double SecondFocusX;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the second focus
|
|
|
+ /// </summary>
|
|
|
+ internal double SecondFocusY;
|
|
|
+ /// <summary>
|
|
|
+ /// Abscissa of the leftmost point of the arc
|
|
|
+ /// </summary>
|
|
|
+ private double _xLeft;
|
|
|
+ /// <summary>
|
|
|
+ /// Ordinate of the highest point of the arc
|
|
|
+ /// </summary>
|
|
|
+ private double _yUp;
|
|
|
+ /// <summary>
|
|
|
+ /// Horizontal width of the arc
|
|
|
+ /// </summary>
|
|
|
+ private double _width;
|
|
|
+ /// <summary>
|
|
|
+ /// Vertical height of the arc
|
|
|
+ /// </summary>
|
|
|
+ private double _height;
|
|
|
+ /// <summary>
|
|
|
+ /// Indicator for center to endpoints line inclusion
|
|
|
+ /// </summary>
|
|
|
+ internal bool IsPieSlice;
|
|
|
+ /// <summary>
|
|
|
+ /// Maximal degree for Bezier curve approximation
|
|
|
+ /// </summary>
|
|
|
+ private int _maxDegree;
|
|
|
+ /// <summary>
|
|
|
+ /// Default flatness for Bezier curve approximation
|
|
|
+ /// </summary>
|
|
|
+ private double _defaultFlatness;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Indicator for semi-major axis significance (compared to semi-minor one).
|
|
|
+ /// Computed by dividing the (A-B) difference by the value of A.
|
|
|
+ /// This indicator is used for an early escape in intersection test
|
|
|
+ /// </summary>
|
|
|
+ internal double F;
|
|
|
+ /// <summary>
|
|
|
+ /// Indicator used for an early escape in intersection test
|
|
|
+ /// </summary>
|
|
|
+ internal double E2;
|
|
|
+ /// <summary>
|
|
|
+ /// Indicator used for an early escape in intersection test
|
|
|
+ /// </summary>
|
|
|
+ internal double G;
|
|
|
+ /// <summary>
|
|
|
+ /// Indicator used for an early escape in intersection test
|
|
|
+ /// </summary>
|
|
|
+ internal double G2;
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Builds an elliptical arc composed of the full unit circle around (0,0)
|
|
|
+ /// </summary>
|
|
|
+ public EllipticalArc()
|
|
|
+ {
|
|
|
+ Cx = 0;
|
|
|
+ Cy = 0;
|
|
|
+ A = 1;
|
|
|
+ B = 1;
|
|
|
+ Theta = 0;
|
|
|
+ Eta1 = 0;
|
|
|
+ Eta2 = TwoPi;
|
|
|
+ _cosTheta = 1;
|
|
|
+ _sinTheta = 0;
|
|
|
+ IsPieSlice = false;
|
|
|
+ _maxDegree = 3;
|
|
|
+ _defaultFlatness = 0.5;
|
|
|
+ ComputeFocii();
|
|
|
+ ComputeEndPoints();
|
|
|
+ ComputeBounds();
|
|
|
+ ComputeDerivedFlatnessParameters();
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Builds an elliptical arc from its canonical geometrical elements
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="center">Center of the ellipse</param>
|
|
|
+ /// <param name="a">Semi-major axis</param>
|
|
|
+ /// <param name="b">Semi-minor axis</param>
|
|
|
+ /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
|
|
|
+ /// <param name="lambda1">Start angle of the arc</param>
|
|
|
+ /// <param name="lambda2">End angle of the arc</param>
|
|
|
+ /// <param name="isPieSlice">If true, the lines between the center of the ellipse
|
|
|
+ /// and the endpoints are part of the shape (it is pie slice like)</param>
|
|
|
+ public EllipticalArc(Point center, double a, double b, double theta, double lambda1, double lambda2,
|
|
|
+ bool isPieSlice) : this(center.X, center.Y, a, b, theta, lambda1,
|
|
|
+ lambda2, isPieSlice)
|
|
|
+ {
|
|
|
+ }
|
|
|
+ /// <summary>
|
|
|
+ /// Builds an elliptical arc from its canonical geometrical elements
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="cx">Abscissa of the center of the ellipse</param>
|
|
|
+ /// <param name="cy">Ordinate of the center of the ellipse</param>
|
|
|
+ /// <param name="a">Semi-major axis</param>
|
|
|
+ /// <param name="b">Semi-minor axis</param>
|
|
|
+ /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
|
|
|
+ /// <param name="lambda1">Start angle of the arc</param>
|
|
|
+ /// <param name="lambda2">End angle of the arc</param>
|
|
|
+ /// <param name="isPieSlice">If true, the lines between the center of the ellipse
|
|
|
+ /// and the endpoints are part of the shape (it is pie slice like)</param>
|
|
|
+ public EllipticalArc(double cx, double cy, double a, double b, double theta, double lambda1, double lambda2,
|
|
|
+ bool isPieSlice)
|
|
|
+ {
|
|
|
+ Cx = cx;
|
|
|
+ Cy = cy;
|
|
|
+ A = a;
|
|
|
+ B = b;
|
|
|
+ Theta = theta;
|
|
|
+ IsPieSlice = isPieSlice;
|
|
|
+ Eta1 = Math.Atan2(Math.Sin(lambda1) / b, Math.Cos(lambda1) / a);
|
|
|
+ Eta2 = Math.Atan2(Math.Sin(lambda2) / b, Math.Cos(lambda2) / a);
|
|
|
+ _cosTheta = Math.Cos(theta);
|
|
|
+ _sinTheta = Math.Sin(theta);
|
|
|
+ _maxDegree = 3;
|
|
|
+ _defaultFlatness = 0.5; // half a pixel
|
|
|
+ Eta2 -= TwoPi * Math.Floor((Eta2 - Eta1) / TwoPi); //make sure we have eta1 <= eta2 <= eta1 + 2 PI
|
|
|
+ // the preceding correction fails if we have exactly eta2-eta1 == 2*PI
|
|
|
+ // it reduces the interval to zero length
|
|
|
+ if (lambda2 - lambda1 > Math.PI && Eta2 - Eta1 < Math.PI)
|
|
|
+ {
|
|
|
+ Eta2 += TwoPi;
|
|
|
+ }
|
|
|
+ ComputeFocii();
|
|
|
+ ComputeEndPoints();
|
|
|
+ ComputeBounds();
|
|
|
+ ComputeDerivedFlatnessParameters();
|
|
|
+ }
|
|
|
+ /// <summary>
|
|
|
+ /// Build a full ellipse from its canonical geometrical elements
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="center">Center of the ellipse</param>
|
|
|
+ /// <param name="a">Semi-major axis</param>
|
|
|
+ /// <param name="b">Semi-minor axis</param>
|
|
|
+ /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
|
|
|
+ public EllipticalArc(Point center, double a, double b, double theta) : this(center.X, center.Y, a, b, theta)
|
|
|
+ {
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Build a full ellipse from its canonical geometrical elements
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="cx">Abscissa of the center of the ellipse</param>
|
|
|
+ /// <param name="cy">Ordinate of the center of the ellipse</param>
|
|
|
+ /// <param name="a">Semi-major axis</param>
|
|
|
+ /// <param name="b">Semi-minor axis</param>
|
|
|
+ /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
|
|
|
+ public EllipticalArc(double cx, double cy, double a, double b, double theta)
|
|
|
+ {
|
|
|
+ Cx = cx;
|
|
|
+ Cy = cy;
|
|
|
+ A = a;
|
|
|
+ B = b;
|
|
|
+ Theta = theta;
|
|
|
+ IsPieSlice = false;
|
|
|
+ Eta1 = 0;
|
|
|
+ Eta2 = TwoPi;
|
|
|
+ _cosTheta = Math.Cos(theta);
|
|
|
+ _sinTheta = Math.Sin(theta);
|
|
|
+ _maxDegree = 3;
|
|
|
+ _defaultFlatness = 0.5; //half a pixel
|
|
|
+ ComputeFocii();
|
|
|
+ ComputeEndPoints();
|
|
|
+ ComputeBounds();
|
|
|
+ ComputeDerivedFlatnessParameters();
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Sets the maximal degree allowed for Bezier curve approximation.
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="maxDegree">Maximal allowed degree (must be between 1 and 3)</param>
|
|
|
+ /// <exception cref="ArgumentException">Thrown if maxDegree is not between 1 and 3</exception>
|
|
|
+ public void SetMaxDegree(int maxDegree)
|
|
|
+ {
|
|
|
+ if (maxDegree < 1 || maxDegree > 3)
|
|
|
+ {
|
|
|
+ throw new ArgumentException(@"maxDegree must be between 1 and 3", nameof(maxDegree));
|
|
|
+ }
|
|
|
+ _maxDegree = maxDegree;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Sets the default flatness for Bezier curve approximation
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="defaultFlatness">default flatness (must be greater than 1e-10)</param>
|
|
|
+ /// <exception cref="ArgumentException">Thrown if defaultFlatness is lower than 1e-10</exception>
|
|
|
+ public void SetDefaultFlatness(double defaultFlatness)
|
|
|
+ {
|
|
|
+ if (defaultFlatness < 1.0E-10)
|
|
|
+ {
|
|
|
+ throw new ArgumentException(@"defaultFlatness must be greater than 1.0e-10", nameof(defaultFlatness));
|
|
|
+ }
|
|
|
+ _defaultFlatness = defaultFlatness;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Computes the locations of the focii
|
|
|
+ /// </summary>
|
|
|
+ private void ComputeFocii()
|
|
|
+ {
|
|
|
+ double d = Math.Sqrt(A * A - B * B);
|
|
|
+ double dx = d * _cosTheta;
|
|
|
+ double dy = d * _sinTheta;
|
|
|
+ FirstFocusX = Cx - dx;
|
|
|
+ FirstFocusY = Cy - dy;
|
|
|
+ SecondFocusX = Cx + dx;
|
|
|
+ SecondFocusY = Cy + dy;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Computes the locations of the endpoints
|
|
|
+ /// </summary>
|
|
|
+ private void ComputeEndPoints()
|
|
|
+ {
|
|
|
+ double aCosEta1 = A * Math.Cos(Eta1);
|
|
|
+ double bSinEta1 = B * Math.Sin(Eta1);
|
|
|
+ X1 = Cx + aCosEta1 * _cosTheta - bSinEta1 * _sinTheta;
|
|
|
+ Y1 = Cy + aCosEta1 * _sinTheta + bSinEta1 * _cosTheta;
|
|
|
+ double aCosEta2 = A * Math.Cos(Eta2);
|
|
|
+ double bSinEta2 = B * Math.Sin(Eta2);
|
|
|
+ X2 = Cx + aCosEta2 * _cosTheta - bSinEta2 * _sinTheta;
|
|
|
+ Y2 = Cy + aCosEta2 * _sinTheta + bSinEta2 * _cosTheta;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Computes the bounding box
|
|
|
+ /// </summary>
|
|
|
+ private void ComputeBounds()
|
|
|
+ {
|
|
|
+ double bOnA = B / A;
|
|
|
+ double etaXMin;
|
|
|
+ double etaXMax;
|
|
|
+ double etaYMin;
|
|
|
+ double etaYMax;
|
|
|
+ if (Math.Abs(_sinTheta) < 0.1)
|
|
|
+ {
|
|
|
+ double tanTheta = _sinTheta / _cosTheta;
|
|
|
+ if (_cosTheta < 0)
|
|
|
+ {
|
|
|
+ etaXMin = -Math.Atan(tanTheta * bOnA);
|
|
|
+ etaXMax = etaXMin + Math.PI;
|
|
|
+ etaYMin = 0.5 * Math.PI - Math.Atan(tanTheta / bOnA);
|
|
|
+ etaYMax = etaYMin + Math.PI;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ etaXMax = -Math.Atan(tanTheta * bOnA);
|
|
|
+ etaXMin = etaXMax - Math.PI;
|
|
|
+ etaYMax = 0.5 * Math.PI - Math.Atan(tanTheta / bOnA);
|
|
|
+ etaYMin = etaYMax - Math.PI;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ double invTanTheta = _cosTheta / _sinTheta;
|
|
|
+ if (_sinTheta < 0)
|
|
|
+ {
|
|
|
+ etaXMax = 0.5 * Math.PI + Math.Atan(invTanTheta / bOnA);
|
|
|
+ etaXMin = etaXMax - Math.PI;
|
|
|
+ etaYMin = Math.Atan(invTanTheta * bOnA);
|
|
|
+ etaYMax = etaYMin + Math.PI;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ etaXMin = 0.5 * Math.PI + Math.Atan(invTanTheta / bOnA);
|
|
|
+ etaXMax = etaXMin + Math.PI;
|
|
|
+ etaYMax = Math.Atan(invTanTheta * bOnA);
|
|
|
+ etaYMin = etaYMax - Math.PI;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ etaXMin -= TwoPi * Math.Floor((etaXMin - Eta1) / TwoPi);
|
|
|
+ etaYMin -= TwoPi * Math.Floor((etaYMin - Eta1) / TwoPi);
|
|
|
+ etaXMax -= TwoPi * Math.Floor((etaXMax - Eta1) / TwoPi);
|
|
|
+ etaYMax -= TwoPi * Math.Floor((etaYMax - Eta1) / TwoPi);
|
|
|
+ _xLeft = etaXMin <= Eta2
|
|
|
+ ? Cx + A * Math.Cos(etaXMin) * _cosTheta - B * Math.Sin(etaXMin) * _sinTheta
|
|
|
+ : Math.Min(X1, X2);
|
|
|
+ _yUp = etaYMin <= Eta2 ? Cy + A * Math.Cos(etaYMin) * _sinTheta + B * Math.Sin(etaYMin) * _cosTheta : Math.Min(Y1, Y2);
|
|
|
+ _width = (etaXMax <= Eta2
|
|
|
+ ? Cx + A * Math.Cos(etaXMax) * _cosTheta - B * Math.Sin(etaXMax) * _sinTheta
|
|
|
+ : Math.Max(X1, X2)) - _xLeft;
|
|
|
+ _height = (etaYMax <= Eta2
|
|
|
+ ? Cy + A * Math.Cos(etaYMax) * _sinTheta + B * Math.Sin(etaYMax) * _cosTheta
|
|
|
+ : Math.Max(Y1, Y2)) - _yUp;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Computes the flatness parameters used in intersection tests
|
|
|
+ /// </summary>
|
|
|
+ private void ComputeDerivedFlatnessParameters()
|
|
|
+ {
|
|
|
+ F = (A - B) / A;
|
|
|
+ E2 = F * (2.0 - F);
|
|
|
+ G = 1.0 - F;
|
|
|
+ G2 = G * G;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Computes the value of a rational function.
|
|
|
+ /// This method handles rational functions where the numerator is quadratic
|
|
|
+ /// and the denominator is linear
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="x">Abscissa for which the value should be computed</param>
|
|
|
+ /// <param name="c">Coefficients array of the rational function</param>
|
|
|
+ /// <returns></returns>
|
|
|
+ private static double RationalFunction(double x, double[] c)
|
|
|
+ {
|
|
|
+ return (x * (x * c[0] + c[1]) + c[2]) / (x + c[3]);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Estimate the approximation error for a sub-arc of the instance
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="degree">Degree of the Bezier curve to use (1, 2 or 3)</param>
|
|
|
+ /// <param name="etaA">Start angle of the sub-arc</param>
|
|
|
+ /// <param name="etaB">End angle of the sub-arc</param>
|
|
|
+ /// <returns>Upper bound of the approximation error between the Bezier curve and the real ellipse</returns>
|
|
|
+ public double EstimateError(int degree, double etaA, double etaB)
|
|
|
+ {
|
|
|
+ if (degree < 1 || degree > _maxDegree)
|
|
|
+ throw new ArgumentException($"degree should be between {1} and {_maxDegree}", nameof(degree));
|
|
|
+ double eta = 0.5 * (etaA + etaB);
|
|
|
+ if (degree < 2)
|
|
|
+ {
|
|
|
+ //start point
|
|
|
+ double aCosEtaA = A * Math.Cos(etaA);
|
|
|
+ double bSinEtaA = B * Math.Sin(etaA);
|
|
|
+ double xA = Cx + aCosEtaA * _cosTheta - bSinEtaA * _sinTheta;
|
|
|
+ double yA = Cy + aCosEtaA * _sinTheta + bSinEtaA * _cosTheta;
|
|
|
+
|
|
|
+ //end point
|
|
|
+ double aCosEtaB = A * Math.Cos(etaB);
|
|
|
+ double bSinEtaB = B * Math.Sin(etaB);
|
|
|
+ double xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
|
|
|
+ double yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
|
|
|
+
|
|
|
+ //maximal error point
|
|
|
+ double aCosEta = A * Math.Cos(eta);
|
|
|
+ double bSinEta = B * Math.Sin(eta);
|
|
|
+ double x = Cx + aCosEta * _cosTheta - bSinEta * _sinTheta;
|
|
|
+ double y = Cy + aCosEta * _sinTheta + bSinEta * _cosTheta;
|
|
|
+
|
|
|
+ double dx = xB - xA;
|
|
|
+ double dy = yB - yA;
|
|
|
+
|
|
|
+ return Math.Abs(x * dy - y * dx + xB * yA - xA * yB) / Math.Sqrt(dx * dx + dy * dy);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ double x = B / A;
|
|
|
+ double dEta = etaB - etaA;
|
|
|
+ double cos2 = Math.Cos(2 * eta);
|
|
|
+ double cos4 = Math.Cos(4 * eta);
|
|
|
+ double cos6 = Math.Cos(6 * eta);
|
|
|
+
|
|
|
+ // select the right coeficients set according to degree and b/a
|
|
|
+ double[][][] coeffs;
|
|
|
+ double[] safety;
|
|
|
+ if (degree == 2)
|
|
|
+ {
|
|
|
+ coeffs = x < 0.25 ? Coeffs2Low : Coeffs2High;
|
|
|
+ safety = Safety2;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ coeffs = x < 0.25 ? Coeffs3Low : Coeffs3High;
|
|
|
+ safety = Safety3;
|
|
|
+ }
|
|
|
+ double c0 = RationalFunction(x, coeffs[0][0]) + cos2 * RationalFunction(x, coeffs[0][1]) +
|
|
|
+ cos4 * RationalFunction(x, coeffs[0][2]) + cos6 * RationalFunction(x,
|
|
|
+ coeffs[0][3]);
|
|
|
+ double c1 = RationalFunction(x, coeffs[1][0]) + cos2 * RationalFunction(x, coeffs[1][1]) +
|
|
|
+ cos4 * RationalFunction(x, coeffs[1][2]) + cos6 * RationalFunction(x,
|
|
|
+ coeffs[1][3]);
|
|
|
+ return RationalFunction(x, safety) * A * Math.Exp(c0 + c1 * dEta);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Get the elliptical arc point for a given angular parameter
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="lambda">Angular parameter for which point is desired</param>
|
|
|
+ /// <returns>The desired elliptical arc point location</returns>
|
|
|
+ public Point PointAt(double lambda)
|
|
|
+ {
|
|
|
+ double eta = Math.Atan2(Math.Sin(lambda) / B, Math.Cos(lambda) / A);
|
|
|
+ double aCosEta = A * Math.Cos(eta);
|
|
|
+ double bSinEta = B * Math.Sin(eta);
|
|
|
+ Point p = new Point(Cx + aCosEta * _cosTheta - bSinEta * _sinTheta, Cy + aCosEta * _sinTheta + bSinEta * _cosTheta);
|
|
|
+ return p;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if the specified coordinates are inside the closed shape formed by this arc.
|
|
|
+ /// If this is not a pie, then a shape derived by adding a closing chord is considered.
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="x">Abscissa of the test point</param>
|
|
|
+ /// <param name="y">Ordinate of the test point</param>
|
|
|
+ /// <returns>True if the specified coordinates are inside the closed shape of this arc</returns>
|
|
|
+ public bool Contains(double x, double y)
|
|
|
+ {
|
|
|
+ // position relative to the focii
|
|
|
+ double dx1 = x - FirstFocusX;
|
|
|
+ double dy1 = y - FirstFocusY;
|
|
|
+ double dx2 = x - SecondFocusX;
|
|
|
+ double dy2 = y - SecondFocusY;
|
|
|
+ if (dx1 * dx1 + dy1 * dy1 + dx2 * dx2 + dy2 * dy2 > 4 * A * A)
|
|
|
+ {
|
|
|
+ // the point is outside of the ellipse
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (IsPieSlice)
|
|
|
+ {
|
|
|
+ // check the location of the test point with respect to the
|
|
|
+ // angular sector counted from the centre of the ellipse
|
|
|
+ double dxC = x - Cx;
|
|
|
+ double dyC = y - Cy;
|
|
|
+ double u = dxC * _cosTheta + dyC * _sinTheta;
|
|
|
+ double v = dyC * _cosTheta - dxC * _sinTheta;
|
|
|
+ double eta = Math.Atan2(v / B, u / A);
|
|
|
+ eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
|
|
|
+ return eta <= Eta2;
|
|
|
+ }
|
|
|
+ // check the location of the test point with respect to the
|
|
|
+ // chord joining the start and end points
|
|
|
+ double dx = X2 - X1;
|
|
|
+ double dy = Y2 - Y1;
|
|
|
+ return x * dy - y * dx + X2 * Y1 - X1 * Y2 >= 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if a line segment intersects the arc
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="xA">abscissa of the first point of the line segment</param>
|
|
|
+ /// <param name="yA">ordinate of the first point of the line segment</param>
|
|
|
+ /// <param name="xB">abscissa of the second point of the line segment</param>
|
|
|
+ /// <param name="yB">ordinate of the second point of the line segment</param>
|
|
|
+ /// <returns>true if the two line segments intersect</returns>
|
|
|
+ private bool IntersectArc(double xA, double yA, double xB, double yB)
|
|
|
+ {
|
|
|
+ double dx = xA - xB;
|
|
|
+ double dy = yA - yB;
|
|
|
+ double l = Math.Sqrt(dx * dx + dy * dy);
|
|
|
+ if (l < 1.0E-10 * A)
|
|
|
+ {
|
|
|
+ // too small line segment, we consider it doesn't intersect anything
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ double cz = (dx * _cosTheta + dy * _sinTheta) / l;
|
|
|
+ double sz = (dy * _cosTheta - dx * _sinTheta) / l;
|
|
|
+
|
|
|
+ // express position of the first point in canonical frame
|
|
|
+ dx = xA - Cx;
|
|
|
+ dy = yA - Cy;
|
|
|
+ double u = dx * _cosTheta + dy * _sinTheta;
|
|
|
+ double v = dy * _cosTheta - dx * _sinTheta;
|
|
|
+ double u2 = u * u;
|
|
|
+ double v2 = v * v;
|
|
|
+ double g2U2Ma2 = G2 * (u2 - A * A);
|
|
|
+ //double g2U2Ma2Mv2 = g2U2Ma2 - v2;
|
|
|
+ double g2U2Ma2Pv2 = g2U2Ma2 + v2;
|
|
|
+
|
|
|
+ // compute intersections with the ellipse along the line
|
|
|
+ // as the roots of a 2nd degree polynom : c0 k^2 - 2 c1 k + c2 = 0
|
|
|
+ double c0 = 1.0 - E2 * cz * cz;
|
|
|
+ double c1 = G2 * u * cz + v * sz;
|
|
|
+ double c2 = g2U2Ma2Pv2;
|
|
|
+ double c12 = c1 * c1;
|
|
|
+ double c0C2 = c0 * c2;
|
|
|
+ if (c12 < c0C2)
|
|
|
+ {
|
|
|
+ // the line does not intersect the ellipse at all
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ double k = c1 >= 0 ? (c1 + Math.Sqrt(c12 - c0C2)) / c0 : c2 / (c1 - Math.Sqrt(c12 - c0C2));
|
|
|
+ if (k >= 0 && k <= l)
|
|
|
+ {
|
|
|
+ double uIntersect = u - k * cz;
|
|
|
+ double vIntersect = v - k * sz;
|
|
|
+ double eta = Math.Atan2(vIntersect / B, uIntersect / A);
|
|
|
+ eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
|
|
|
+ if (eta <= Eta2)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ k = c2 / (k * c0);
|
|
|
+ if (k >= 0 && k <= l)
|
|
|
+ {
|
|
|
+ double uIntersect = u - k * cz;
|
|
|
+ double vIntersect = v - k * sz;
|
|
|
+ double eta = Math.Atan2(vIntersect / B, uIntersect / A);
|
|
|
+ eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
|
|
|
+ if (eta <= Eta2)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if two line segments intersect
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="x1">Abscissa of the first point of the first line segment</param>
|
|
|
+ /// <param name="y1">Ordinate of the first point of the first line segment</param>
|
|
|
+ /// <param name="x2">Abscissa of the second point of the first line segment</param>
|
|
|
+ /// <param name="y2">Ordinate of the second point of the first line segment</param>
|
|
|
+ /// <param name="xA">Abscissa of the first point of the second line segment</param>
|
|
|
+ /// <param name="yA">Ordinate of the first point of the second line segment</param>
|
|
|
+ /// <param name="xB">Abscissa of the second point of the second line segment</param>
|
|
|
+ /// <param name="yB">Ordinate of the second point of the second line segment</param>
|
|
|
+ /// <returns>true if the two line segments intersect</returns>
|
|
|
+ private static bool Intersect(double x1, double y1, double x2, double y2, double xA, double yA, double xB,
|
|
|
+ double yB)
|
|
|
+ {
|
|
|
+ // elements of the equation of the (1, 2) line segment
|
|
|
+ double dx12 = x2 - x1;
|
|
|
+ double dy12 = y2 - y1;
|
|
|
+ double k12 = x2 * y1 - x1 * y2;
|
|
|
+ // elements of the equation of the (A, B) line segment
|
|
|
+ double dxAb = xB - xA;
|
|
|
+ double dyAb = yB - yA;
|
|
|
+ double kAb = xB * yA - xA * yB;
|
|
|
+ // compute relative positions of endpoints versus line segments
|
|
|
+ double pAvs12 = xA * dy12 - yA * dx12 + k12;
|
|
|
+ double pBvs12 = xB * dy12 - yB * dx12 + k12;
|
|
|
+ double p1VsAb = x1 * dyAb - y1 * dxAb + kAb;
|
|
|
+ double p2VsAb = x2 * dyAb - y2 * dxAb + kAb;
|
|
|
+
|
|
|
+ return pAvs12 * pBvs12 <= 0 && p1VsAb * p2VsAb <= 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if a line segment intersects the outline
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="xA">Abscissa of the first point of the line segment</param>
|
|
|
+ /// <param name="yA">Ordinate of the first point of the line segment</param>
|
|
|
+ /// <param name="xB">Abscissa of the second point of the line segment</param>
|
|
|
+ /// <param name="yB">Ordinate of the second point of the line segment</param>
|
|
|
+ /// <returns>true if the two line segments intersect</returns>
|
|
|
+ private bool IntersectOutline(double xA, double yA, double xB, double yB)
|
|
|
+ {
|
|
|
+ if (IntersectArc(xA, yA, xB, yB))
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ if (IsPieSlice)
|
|
|
+ {
|
|
|
+ return Intersect(Cx, Cy, X1, Y1, xA, yA, xB, yB) || Intersect(Cx, Cy, X2, Y2, xA, yA, xB, yB);
|
|
|
+ }
|
|
|
+ return Intersect(X1, Y1, X2, Y2, xA, yA, xB, yB);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if the interior of a closed path derived from this arc entirely contains the specified rectangular area.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="x">Abscissa of the upper-left corner of the test rectangle</param>
|
|
|
+ /// <param name="y">Ordinate of the upper-left corner of the test rectangle</param>
|
|
|
+ /// <param name="w">Width of the test rectangle</param>
|
|
|
+ /// <param name="h">Height of the test rectangle</param>
|
|
|
+ /// <returns>true if the interior of a closed path derived from this arc entirely contains the specified rectangular area; false otherwise</returns>
|
|
|
+ public bool Contains(double x, double y, double w, double h)
|
|
|
+ {
|
|
|
+ double xPlusW = x + w;
|
|
|
+ double yPlusH = y + h;
|
|
|
+ return Contains(x, y) && Contains(xPlusW, y) && Contains(x, yPlusH) && Contains(xPlusW, yPlusH) &&
|
|
|
+ !IntersectOutline(x, y, xPlusW, y) && !IntersectOutline(xPlusW,
|
|
|
+ y, xPlusW, yPlusH) && !IntersectOutline(xPlusW, yPlusH, x, yPlusH) &&
|
|
|
+ !IntersectOutline(x, yPlusH, x, y);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if a specified Point2D is inside the boundary of a closed path derived from this arc.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="p">Test point</param>
|
|
|
+ /// <returns>true if the specified point is inside a closed path derived from this arc</returns>
|
|
|
+ public bool Contains(Point p)
|
|
|
+ {
|
|
|
+ return Contains(p.X, p.Y);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if the interior of a closed path derived from this arc entirely contains the specified Rectangle2D.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="r">Test rectangle</param>
|
|
|
+ /// <returns>True if the interior of a closed path derived from this arc entirely contains the specified Rectangle2D; false otherwise</returns>
|
|
|
+ public bool Contains(Rect r)
|
|
|
+ {
|
|
|
+ return Contains(r.X, r.Y, r.Width, r.Height);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Returns an integer Rectangle that completely encloses the closed path derived from this arc.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ public Rect GetBounds()
|
|
|
+ {
|
|
|
+ return new Rect(_xLeft, _yUp, _width, _height);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Builds the arc outline using given StreamGeometryContext and default (max) Bezier curve degree and acceptable error of half a pixel (0.5)
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="path">A StreamGeometryContext to output the path commands to</param>
|
|
|
+ public void BuildArc(IStreamGeometryContextImpl path)
|
|
|
+ {
|
|
|
+ BuildArc(path, _maxDegree, _defaultFlatness, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Builds the arc outline using given StreamGeometryContext
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="path">A StreamGeometryContext to output the path commands to</param>
|
|
|
+ /// <param name="degree">degree of the Bezier curve to use</param>
|
|
|
+ /// <param name="threshold">acceptable error</param>
|
|
|
+ /// <param name="openNewFigure">if true, a new figure will be started in the specified StreamGeometryContext</param>
|
|
|
+ public void BuildArc(IStreamGeometryContextImpl path, int degree, double threshold, bool openNewFigure)
|
|
|
+ {
|
|
|
+ if (degree < 1 || degree > _maxDegree)
|
|
|
+ throw new ArgumentException($"degree should be between {1} and {_maxDegree}", nameof(degree));
|
|
|
+
|
|
|
+ // find the number of Bezier curves needed
|
|
|
+ bool found = false;
|
|
|
+ int n = 1;
|
|
|
+ double dEta;
|
|
|
+ double etaB;
|
|
|
+ while (!found && n < 1024)
|
|
|
+ {
|
|
|
+ dEta = (Eta2 - Eta1) / n;
|
|
|
+ if (dEta <= 0.5 * Math.PI)
|
|
|
+ {
|
|
|
+ etaB = Eta1;
|
|
|
+ found = true;
|
|
|
+ for (int i = 0; found && i < n; ++i)
|
|
|
+ {
|
|
|
+ double etaA = etaB;
|
|
|
+ etaB += dEta;
|
|
|
+ found = EstimateError(degree, etaA, etaB) <= threshold;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ n = n << 1;
|
|
|
+ }
|
|
|
+ dEta = (Eta2 - Eta1) / n;
|
|
|
+ etaB = Eta1;
|
|
|
+ double cosEtaB = Math.Cos(etaB);
|
|
|
+ double sinEtaB = Math.Sin(etaB);
|
|
|
+ double aCosEtaB = A * cosEtaB;
|
|
|
+ double bSinEtaB = B * sinEtaB;
|
|
|
+ double aSinEtaB = A * sinEtaB;
|
|
|
+ double bCosEtaB = B * cosEtaB;
|
|
|
+ double xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
|
|
|
+ double yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
|
|
|
+ double xBDot = -aSinEtaB * _cosTheta - bCosEtaB * _sinTheta;
|
|
|
+ double yBDot = -aSinEtaB * _sinTheta + bCosEtaB * _cosTheta;
|
|
|
+
|
|
|
+ /*
|
|
|
+ This controls the drawing in case of pies
|
|
|
+ if (openNewFigure)
|
|
|
+ {
|
|
|
+ if (IsPieSlice)
|
|
|
+ {
|
|
|
+ path.BeginFigure(new Point(Cx, Cy), false, false);
|
|
|
+ path.LineTo(new Point(xB, yB), true, true);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ path.BeginFigure(new Point(xB, yB), false, false);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ //path.LineTo(new Point(xB, yB), true, true);
|
|
|
+ }
|
|
|
+ */
|
|
|
+
|
|
|
+ //otherwise we're supposed to be already at the (xB,yB)
|
|
|
+
|
|
|
+ double t = Math.Tan(0.5 * dEta);
|
|
|
+ double alpha = Math.Sin(dEta) * (Math.Sqrt(4 + 3 * t * t) - 1) / 3;
|
|
|
+ for (int i = 0; i < n; ++i)
|
|
|
+ {
|
|
|
+ //double etaA = etaB;
|
|
|
+ double xA = xB;
|
|
|
+ double yA = yB;
|
|
|
+ double xADot = xBDot;
|
|
|
+ double yADot = yBDot;
|
|
|
+ etaB += dEta;
|
|
|
+ cosEtaB = Math.Cos(etaB);
|
|
|
+ sinEtaB = Math.Sin(etaB);
|
|
|
+ aCosEtaB = A * cosEtaB;
|
|
|
+ bSinEtaB = B * sinEtaB;
|
|
|
+ aSinEtaB = A * sinEtaB;
|
|
|
+ bCosEtaB = B * cosEtaB;
|
|
|
+ xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
|
|
|
+ yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
|
|
|
+ xBDot = -aSinEtaB * _cosTheta - bCosEtaB * _sinTheta;
|
|
|
+ yBDot = -aSinEtaB * _sinTheta + bCosEtaB * _cosTheta;
|
|
|
+ if (degree == 1)
|
|
|
+ {
|
|
|
+ path.LineTo(new Point(xB, yB));
|
|
|
+ }
|
|
|
+ else if (degree == 2)
|
|
|
+ {
|
|
|
+ double k = (yBDot * (xB - xA) - xBDot * (yB - yA)) / (xADot * yBDot - yADot * xBDot);
|
|
|
+ path.QuadTo(new Point(xA + k * xADot, yA + k * yADot), new Point(xB, yB));
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ path.BezierTo(
|
|
|
+ new Point(xA + alpha * xADot, yA + alpha * yADot),
|
|
|
+ new Point(xB - alpha * xBDot, yB - alpha * yBDot),
|
|
|
+ new Point(xB, yB)
|
|
|
+ );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (IsPieSlice)
|
|
|
+ {
|
|
|
+ path.LineTo(new Point(Cx, Cy));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Calculates the angle between two vectors
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="v1">Vector V1</param>
|
|
|
+ /// <param name="v2">Vector V2</param>
|
|
|
+ /// <returns>The signed angle between v2 and v1</returns>
|
|
|
+ static double GetAngle(Vector v1, Vector v2)
|
|
|
+ {
|
|
|
+ var scalar = v1 * v2;
|
|
|
+ var angleSign = Math.Sign(v1.X * v2.Y - v1.Y * v2.X);
|
|
|
+ return angleSign * Math.Acos(scalar / (v1.Length * v2.Length));
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Simple matrix used for rotate transforms.
|
|
|
+ /// At some point I did not trust the WPF Matrix struct, and wrote my own simple one -_-
|
|
|
+ /// This is supposed to be replaced with proper WPF Matrices everywhere
|
|
|
+ /// </summary>
|
|
|
+ private struct SimpleMatrix
|
|
|
+ {
|
|
|
+ private readonly double _a, _b, _c, _d;
|
|
|
+
|
|
|
+ public SimpleMatrix(double a, double b, double c, double d)
|
|
|
+ {
|
|
|
+ _a = a;
|
|
|
+ _b = b;
|
|
|
+ _c = c;
|
|
|
+ _d = d;
|
|
|
+ }
|
|
|
+
|
|
|
+ public static Point operator *(SimpleMatrix m, Point p)
|
|
|
+ {
|
|
|
+ return new Point(m._a * p.X + m._b * p.Y, m._c * p.X + m._d * p.Y);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// ArcTo Helper for StreamGeometryContext
|
|
|
+ /// </summary>
|
|
|
+ /// <param name="path">Target path</param>
|
|
|
+ /// <param name="p1">Start point</param>
|
|
|
+ /// <param name="p2">End point</param>
|
|
|
+ /// <param name="size">Ellipse radii</param>
|
|
|
+ /// <param name="theta">Ellipse theta (angle measured from the abscissa)</param>
|
|
|
+ /// <param name="isLargeArc">Large Arc Indicator</param>
|
|
|
+ /// <param name="clockwise">Clockwise direction flag</param>
|
|
|
+ public static void BuildArc(IStreamGeometryContextImpl path, Point p1, Point p2, Size size, double theta, bool isLargeArc, bool clockwise)
|
|
|
+ {
|
|
|
+
|
|
|
+ // var orthogonalizer = new RotateTransform(-theta);
|
|
|
+ var orth = new SimpleMatrix(Math.Cos(theta), Math.Sin(theta), -Math.Sin(theta), Math.Cos(theta));
|
|
|
+ var rest = new SimpleMatrix(Math.Cos(theta), -Math.Sin(theta), Math.Sin(theta), Math.Cos(theta));
|
|
|
+
|
|
|
+ // var restorer = orthogonalizer.Inverse;
|
|
|
+ // if(restorer == null) throw new InvalidOperationException("Can't get a restorer!");
|
|
|
+
|
|
|
+ Point p1S = orth * (new Point((p1.X - p2.X) / 2, (p1.Y - p2.Y) / 2));
|
|
|
+
|
|
|
+ double rx = size.Width;
|
|
|
+ double ry = size.Height;
|
|
|
+ double rx2 = rx * rx;
|
|
|
+ double ry2 = ry * ry;
|
|
|
+ double y1S2 = p1S.Y * p1S.Y;
|
|
|
+ double x1S2 = p1S.X * p1S.X;
|
|
|
+
|
|
|
+ double nominator = rx2*ry2 - rx2*y1S2 - ry2*x1S2;
|
|
|
+ double denominator = rx2*y1S2 + ry2*x1S2;
|
|
|
+
|
|
|
+ if (Math.Abs(denominator) < 1e-8)
|
|
|
+ {
|
|
|
+ path.LineTo(p2);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if ((nominator / denominator) < 0)
|
|
|
+ {
|
|
|
+ double lambda = x1S2/rx2 + y1S2/ry2;
|
|
|
+ double lambdaSqrt = Math.Sqrt(lambda);
|
|
|
+ if (lambda > 1)
|
|
|
+ {
|
|
|
+ rx *= lambdaSqrt;
|
|
|
+ ry *= lambdaSqrt;
|
|
|
+ rx2 = rx*rx;
|
|
|
+ ry2 = ry*ry;
|
|
|
+ nominator = rx2 * ry2 - rx2 * y1S2 - ry2 * x1S2;
|
|
|
+ if (nominator < 0)
|
|
|
+ nominator = 0;
|
|
|
+
|
|
|
+ denominator = rx2 * y1S2 + ry2 * x1S2;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ double multiplier = Math.Sqrt(nominator / denominator);
|
|
|
+ Point mulVec = new Point(rx * p1S.Y / ry, -ry * p1S.X / rx);
|
|
|
+
|
|
|
+ int sign = (clockwise != isLargeArc) ? 1 : -1;
|
|
|
+
|
|
|
+ Point cs = new Point(mulVec.X * multiplier * sign, mulVec.Y * multiplier * sign);
|
|
|
+
|
|
|
+ Vector translation = new Vector((p1.X + p2.X) / 2, (p1.Y + p2.Y) / 2);
|
|
|
+
|
|
|
+ Point c = rest * (cs) + translation;
|
|
|
+
|
|
|
+ // See "http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter" to understand
|
|
|
+ // how the ellipse center is calculated
|
|
|
+
|
|
|
+
|
|
|
+ // from here, W3C recommendations from the above link make less sense than Darth Vader pouring
|
|
|
+ // some sea water in a water filter while standing in the water confused
|
|
|
+
|
|
|
+ // Therefore, we are on our own with our task of finding out lambda1 and lambda2
|
|
|
+ // matching our points p1 and p2.
|
|
|
+
|
|
|
+ // Fortunately it is not so difficult now, when we already know the ellipse centre.
|
|
|
+
|
|
|
+ // We eliminate the offset, making our ellipse zero-centered, then we eliminate the theta,
|
|
|
+ // making its Y and X axes the same as global axes. Then we can easily get our angles using
|
|
|
+ // good old school formula for angles between vectors.
|
|
|
+
|
|
|
+ // We should remember that this class expects true angles, and not the t-values for ellipse equation.
|
|
|
+ // To understand how t-values are obtained, one should see Etas calculation in the constructor code.
|
|
|
+
|
|
|
+ var p1NoOffset = orth * (p1-c);
|
|
|
+ var p2NoOffset = orth * (p2-c);
|
|
|
+
|
|
|
+ // if the arc is drawn clockwise, we swap start and end points
|
|
|
+ var revisedP1 = clockwise ? p1NoOffset : p2NoOffset;
|
|
|
+ var revisedP2 = clockwise ? p2NoOffset : p1NoOffset;
|
|
|
+
|
|
|
+
|
|
|
+ var thetaStart = GetAngle(new Vector(1, 0), revisedP1);
|
|
|
+ var thetaEnd = GetAngle(new Vector(1, 0), revisedP2);
|
|
|
+
|
|
|
+
|
|
|
+ // Uncomment this to draw a pie
|
|
|
+ // path.LineTo(c, true, true);
|
|
|
+ // path.LineTo(clockwise ? p1 : p2, true,true);
|
|
|
+
|
|
|
+ path.LineTo(clockwise ? p1 : p2);
|
|
|
+ var arc = new EllipticalArc(c.X, c.Y, rx, ry, theta, thetaStart, thetaEnd, false);
|
|
|
+ arc.BuildArc(path, arc._maxDegree, arc._defaultFlatness, false);
|
|
|
+
|
|
|
+ //uncomment this to draw a pie
|
|
|
+ //path.LineTo(c, true, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if the interior of the closed path derived from this arc intersects the interior of a specified rectangular area.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ public bool Intersects(double x, double y, double w, double h)
|
|
|
+ {
|
|
|
+ double xPlusW = x + w;
|
|
|
+ double yPlusH = y + h;
|
|
|
+ return Contains(x, y) || Contains(xPlusW, y) || Contains(x, yPlusH) || Contains(xPlusW, yPlusH) ||
|
|
|
+ IntersectOutline(x, y, xPlusW, y) || IntersectOutline(xPlusW,
|
|
|
+ y, xPlusW, yPlusH) || IntersectOutline(xPlusW, yPlusH, x, yPlusH) ||
|
|
|
+ IntersectOutline(x, yPlusH, x, y);
|
|
|
+ }
|
|
|
+
|
|
|
+ /// <summary>
|
|
|
+ /// Tests if the interior of the closed path derived from this arc intersects the interior of a specified rectangular area.
|
|
|
+ /// The closed path is derived with respect to the IsPieSlice value.
|
|
|
+ /// </summary>
|
|
|
+ public bool Intersects(Rect r)
|
|
|
+ {
|
|
|
+ return Intersects(r.X, r.Y, r.Width, r.Height);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ public static void ArcTo(IStreamGeometryContextImpl streamGeometryContextImpl, Point currentPoint, Point point, Size size, double rotationAngle, bool isLargeArc, SweepDirection sweepDirection)
|
|
|
+ {
|
|
|
+ EllipticalArc.BuildArc(streamGeometryContextImpl, currentPoint, point, size, rotationAngle*Math.PI/180,
|
|
|
+ isLargeArc,
|
|
|
+ sweepDirection == SweepDirection.Clockwise);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|