// Copyright (c) Six Labors.
// Licensed under the Apache License, Version 2.0.
// Ported from: https://github.com/SixLabors/Fonts/
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Threading;
using Avalonia.Utilities;
namespace Avalonia.Media.TextFormatting.Unicode
{
///
/// Implementation of Unicode bidirectional algorithm (UAX #9)
/// https://unicode.org/reports/tr9/
///
///
///
/// The Bidi algorithm uses a number of memory arrays for resolved
/// types, level information, bracket types, x9 removal maps and
/// more...
///
///
/// This implementation of the BiDi algorithm has been designed
/// to reduce memory pressure on the GC by re-using the same
/// work buffers, so instances of this class should be re-used
/// as much as possible.
///
///
internal sealed class BidiAlgorithm
{
///
/// The original BiDiClass classes as provided by the caller
///
private ArraySlice _originalClasses;
///
/// Paired bracket types as provided by caller
///
private ArraySlice _pairedBracketTypes;
///
/// Paired bracket values as provided by caller
///
private ArraySlice _pairedBracketValues;
///
/// Try if the incoming data is known to contain brackets
///
private bool _hasBrackets;
///
/// True if the incoming data is known to contain embedding runs
///
private bool _hasEmbeddings;
///
/// True if the incoming data is known to contain isolating runs
///
private bool _hasIsolates;
///
/// Two directional mapping of isolate start/end pairs
///
///
/// The forward mapping maps the start index to the end index.
/// The reverse mapping maps the end index to the start index.
///
private readonly BidiDictionary _isolatePairs = new BidiDictionary();
///
/// The working BiDi classes
///
private ArraySlice _workingClasses;
///
/// The working classes buffer
///
private ArrayBuilder _workingClassesBuffer;
///
/// A slice of the resolved levels
///
private ArraySlice _resolvedLevels;
///
/// The buffer underlying resolvedLevels
///
private ArrayBuilder _resolvedLevelsBuffer;
///
/// The resolve paragraph embedding level
///
private sbyte _paragraphEmbeddingLevel;
///
/// The status stack used during resolution of explicit
/// embedding and isolating runs
///
private readonly Stack _statusStack = new Stack();
///
/// Mapping used to virtually remove characters for rule X9
///
private ArrayBuilder _x9Map;
///
/// Re-usable list of level runs
///
private readonly List _levelRuns = new List();
///
/// Mapping for the current isolating sequence, built
/// by joining level runs from the x9 map.
///
private ArrayBuilder _isolatedRunMapping;
///
/// A stack of pending isolate openings used by FindIsolatePairs()
///
private readonly Stack _pendingIsolateOpenings = new Stack();
///
/// The level of the isolating run currently being processed
///
private int _runLevel;
///
/// The direction of the isolating run currently being processed
///
private BidiClass _runDirection;
///
/// The length of the isolating run currently being processed
///
private int _runLength;
///
/// A mapped slice of the resolved types for the isolating run currently
/// being processed
///
private MappedArraySlice _runResolvedClasses;
///
/// A mapped slice of the original types for the isolating run currently
/// being processed
///
private MappedArraySlice _runOriginalClasses;
///
/// A mapped slice of the run levels for the isolating run currently
/// being processed
///
private MappedArraySlice _runLevels;
///
/// A mapped slice of the paired bracket types of the isolating
/// run currently being processed
///
private MappedArraySlice _runBiDiPairedBracketTypes;
///
/// A mapped slice of the paired bracket values of the isolating
/// run currently being processed
///
private MappedArraySlice _runPairedBracketValues;
///
/// Maximum pairing depth for paired brackets
///
private const int MaxPairedBracketDepth = 63;
///
/// Reusable list of pending opening brackets used by the
/// LocatePairedBrackets method
///
private readonly List _pendingOpeningBrackets = new List();
///
/// Resolved list of paired brackets
///
private readonly List _pairedBrackets = new List();
///
/// Initializes a new instance of the class.
///
internal BidiAlgorithm()
{
}
///
/// Gets the resolved levels.
///
public ArraySlice ResolvedLevels => _resolvedLevels;
///
/// Gets the resolved paragraph embedding level
///
public int ResolvedParagraphEmbeddingLevel => _paragraphEmbeddingLevel;
///
/// Process data from a BiDiData instance
///
/// The BiDi Unicode data.
public void Process(BidiData data)
=> Process(
data.Classes,
data.PairedBracketTypes,
data.PairedBracketValues,
data.ParagraphEmbeddingLevel,
data.HasBrackets,
data.HasEmbeddings,
data.HasIsolates,
null);
///
/// Processes Bidi Data
///
public void Process(
ArraySlice types,
ArraySlice pairedBracketTypes,
ArraySlice pairedBracketValues,
sbyte paragraphEmbeddingLevel,
bool? hasBrackets,
bool? hasEmbeddings,
bool? hasIsolates,
ArraySlice? outLevels)
{
// Reset state
_isolatePairs.Clear();
_workingClassesBuffer.Clear();
_levelRuns.Clear();
_resolvedLevelsBuffer.Clear();
if (types.IsEmpty)
{
return;
}
// Setup original types and working types
_originalClasses = types;
_workingClasses = _workingClassesBuffer.Add(types);
// Capture paired bracket values and types
_pairedBracketTypes = pairedBracketTypes;
_pairedBracketValues = pairedBracketValues;
// Store things we know
_hasBrackets = hasBrackets ?? _pairedBracketTypes.Length == _originalClasses.Length;
_hasEmbeddings = hasEmbeddings ?? true;
_hasIsolates = hasIsolates ?? true;
// Find all isolate pairs
FindIsolatePairs();
// Resolve the paragraph embedding level
if (paragraphEmbeddingLevel == 2)
{
_paragraphEmbeddingLevel = ResolveEmbeddingLevel(_originalClasses);
}
else
{
_paragraphEmbeddingLevel = paragraphEmbeddingLevel;
}
// Create resolved levels buffer
if (outLevels.HasValue)
{
if (outLevels.Value.Length != _originalClasses.Length)
{
throw new ArgumentException("Out levels must be the same length as the input data");
}
_resolvedLevels = outLevels.Value;
}
else
{
_resolvedLevels = _resolvedLevelsBuffer.Add(_originalClasses.Length);
_resolvedLevels.Fill(_paragraphEmbeddingLevel);
}
// Resolve explicit embedding levels (Rules X1-X8)
ResolveExplicitEmbeddingLevels();
// Build the rule X9 map
BuildX9RemovalMap();
// Process all isolated run sequences
ProcessIsolatedRunSequences();
// Reset whitespace levels
ResetWhitespaceLevels();
// Clean up
AssignLevelsToCodePointsRemovedByX9();
}
///
/// Resolve the paragraph embedding level if not explicitly passed
/// by the caller. Also used by rule X5c for FSI isolating sequences.
///
/// The data to be evaluated
/// The resolved embedding level
public sbyte ResolveEmbeddingLevel(ArraySlice data)
{
// P2
for (var i = 0; i < data.Length; ++i)
{
switch (data[i])
{
case BidiClass.LeftToRight:
// P3
return 0;
case BidiClass.ArabicLetter:
case BidiClass.RightToLeft:
// P3
return 1;
case BidiClass.FirstStrongIsolate:
case BidiClass.LeftToRightIsolate:
case BidiClass.RightToLeftIsolate:
// Skip isolate pairs
// (Because we're working with a slice, we need to adjust the indices
// we're using for the isolatePairs map)
if (_isolatePairs.TryGetValue(data.Start + i, out i))
{
i -= data.Start;
}
else
{
i = data.Length;
}
break;
}
}
// P3
return 0;
}
///
/// Build a list of matching isolates for a directionality slice
/// Implements BD9
///
private void FindIsolatePairs()
{
// Redundant?
if (!_hasIsolates)
{
return;
}
// Lets double check this as we go and clear the flag
// if there actually aren't any isolate pairs as this might
// mean we can skip some later steps
_hasIsolates = false;
// BD9...
_pendingIsolateOpenings.Clear();
for (var i = 0; i < _originalClasses.Length; i++)
{
var t = _originalClasses[i];
switch (t)
{
case BidiClass.LeftToRightIsolate:
case BidiClass.RightToLeftIsolate:
case BidiClass.FirstStrongIsolate:
{
_pendingIsolateOpenings.Push(i);
_hasIsolates = true;
break;
}
case BidiClass.PopDirectionalIsolate:
{
if (_pendingIsolateOpenings.Count > 0)
{
_isolatePairs.Add(_pendingIsolateOpenings.Pop(), i);
}
_hasIsolates = true;
break;
}
}
}
}
///
/// Resolve the explicit embedding levels from the original
/// data. Implements rules X1 to X8.
///
private void ResolveExplicitEmbeddingLevels()
{
// Redundant?
if (!_hasIsolates && !_hasEmbeddings)
{
return;
}
// Work variables
_statusStack.Clear();
var overflowIsolateCount = 0;
var overflowEmbeddingCount = 0;
var validIsolateCount = 0;
// Constants
const int maxStackDepth = 125;
// Rule X1 - setup initial state
_statusStack.Clear();
// Neutral
_statusStack.Push(new Status(_paragraphEmbeddingLevel, BidiClass.OtherNeutral, false));
// Process all characters
for (var i = 0; i < _originalClasses.Length; i++)
{
switch (_originalClasses[i])
{
case BidiClass.RightToLeftEmbedding:
{
// Rule X2
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 1) | 1);
if (newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0)
{
_statusStack.Push(new Status(newLevel, BidiClass.OtherNeutral, false));
_resolvedLevels[i] = newLevel;
}
else if (overflowIsolateCount == 0)
{
overflowEmbeddingCount++;
}
break;
}
case BidiClass.LeftToRightEmbedding:
{
// Rule X3
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 2) & ~1);
if (newLevel < maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0)
{
_statusStack.Push(new Status(newLevel, BidiClass.OtherNeutral, false));
_resolvedLevels[i] = newLevel;
}
else if (overflowIsolateCount == 0)
{
overflowEmbeddingCount++;
}
break;
}
case BidiClass.RightToLeftOverride:
{
// Rule X4
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 1) | 1);
if (newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0)
{
_statusStack.Push(new Status(newLevel, BidiClass.RightToLeft, false));
_resolvedLevels[i] = newLevel;
}
else if (overflowIsolateCount == 0)
{
overflowEmbeddingCount++;
}
break;
}
case BidiClass.LeftToRightOverride:
{
// Rule X5
var newLevel = (sbyte)((_statusStack.Peek().EmbeddingLevel + 2) & ~1);
if (newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0)
{
_statusStack.Push(new Status(newLevel, BidiClass.LeftToRight, false));
_resolvedLevels[i] = newLevel;
}
else if (overflowIsolateCount == 0)
{
overflowEmbeddingCount++;
}
break;
}
case BidiClass.RightToLeftIsolate:
case BidiClass.LeftToRightIsolate:
case BidiClass.FirstStrongIsolate:
{
// Rule X5a, X5b and X5c
var resolvedIsolate = _originalClasses[i];
if (resolvedIsolate == BidiClass.FirstStrongIsolate)
{
if (!_isolatePairs.TryGetValue(i, out var endOfIsolate))
{
endOfIsolate = _originalClasses.Length;
}
// Rule X5c
if (ResolveEmbeddingLevel(_originalClasses.Slice(i + 1,endOfIsolate - (i + 1))) == 1)
{
resolvedIsolate = BidiClass.RightToLeftIsolate;
}
else
{
resolvedIsolate = BidiClass.LeftToRightIsolate;
}
}
// Replace RLI's level with current embedding level
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
// Apply override
if (tos.OverrideStatus != BidiClass.OtherNeutral)
{
_workingClasses[i] = tos.OverrideStatus;
}
// Work out new level
sbyte newLevel;
if (resolvedIsolate == BidiClass.RightToLeftIsolate)
{
newLevel = (sbyte)((tos.EmbeddingLevel + 1) | 1);
}
else
{
newLevel = (sbyte)((tos.EmbeddingLevel + 2) & ~1);
}
// Valid?
if (newLevel <= maxStackDepth && overflowIsolateCount == 0 && overflowEmbeddingCount == 0)
{
validIsolateCount++;
_statusStack.Push(new Status(newLevel, BidiClass.OtherNeutral, true));
}
else
{
overflowIsolateCount++;
}
break;
}
case BidiClass.BoundaryNeutral:
{
// Mentioned in rule X6 - "for all types besides ..., BN, ..."
// no-op
break;
}
default:
{
// Rule X6
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
if (tos.OverrideStatus != BidiClass.OtherNeutral)
{
_workingClasses[i] = tos.OverrideStatus;
}
break;
}
case BidiClass.PopDirectionalIsolate:
{
// Rule X6a
if (overflowIsolateCount > 0)
{
overflowIsolateCount--;
}
else if (validIsolateCount != 0)
{
overflowEmbeddingCount = 0;
while (!_statusStack.Peek().IsolateStatus)
{
_statusStack.Pop();
}
_statusStack.Pop();
validIsolateCount--;
}
var tos = _statusStack.Peek();
_resolvedLevels[i] = tos.EmbeddingLevel;
if (tos.OverrideStatus != BidiClass.OtherNeutral)
{
_workingClasses[i] = tos.OverrideStatus;
}
break;
}
case BidiClass.PopDirectionalFormat:
{
// Rule X7
if (overflowIsolateCount == 0)
{
if (overflowEmbeddingCount > 0)
{
overflowEmbeddingCount--;
}
else if (!_statusStack.Peek().IsolateStatus && _statusStack.Count >= 2)
{
_statusStack.Pop();
}
}
break;
}
case BidiClass.ParagraphSeparator:
{
// Rule X8
_resolvedLevels[i] = _paragraphEmbeddingLevel;
break;
}
}
}
}
///
/// Build a map to the original data positions that excludes all
/// the types defined by rule X9
///
private void BuildX9RemovalMap()
{
// Reserve room for the x9 map
_x9Map.Length = _originalClasses.Length;
if (_hasEmbeddings || _hasIsolates)
{
// Build a map the removes all x9 characters
var j = 0;
for (var i = 0; i < _originalClasses.Length; i++)
{
if (!IsRemovedByX9(_originalClasses[i]))
{
_x9Map[j++] = i;
}
}
// Set the final length
_x9Map.Length = j;
}
else
{
for (int i = 0, count = _originalClasses.Length; i < count; i++)
{
_x9Map[i] = i;
}
}
}
///
/// Find the original character index for an entry in the X9 map
///
/// Index in the x9 removal map
/// Index to the original data
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private int MapX9(int index) => _x9Map[index];
///
/// Add a new level run
///
///
/// This method resolves the sos and eos values for the run
/// and adds the run to the list
/// ///
/// The index of the start of the run (in x9 removed units)
/// The length of the run (in x9 removed units)
/// The level of the run
private void AddLevelRun(int start, int length, int level)
{
// Get original indices to first and last character in this run
var firstCharIndex = MapX9(start);
var lastCharIndex = MapX9(start + length - 1);
// Work out sos
var i = firstCharIndex - 1;
while (i >= 0 && IsRemovedByX9(_originalClasses[i]))
{
i--;
}
var prevLevel = i < 0 ? _paragraphEmbeddingLevel : _resolvedLevels[i];
var sos = DirectionFromLevel(Math.Max(prevLevel, level));
// Work out eos
var lastType = _workingClasses[lastCharIndex];
int nextLevel;
switch (lastType)
{
case BidiClass.LeftToRightIsolate:
case BidiClass.RightToLeftIsolate:
case BidiClass.FirstStrongIsolate:
{
nextLevel = _paragraphEmbeddingLevel;
break;
}
default:
{
i = lastCharIndex + 1;
while (i < _originalClasses.Length && IsRemovedByX9(_originalClasses[i]))
{
i++;
}
nextLevel = i >= _originalClasses.Length ? _paragraphEmbeddingLevel : _resolvedLevels[i];
break;
}
}
var eos = DirectionFromLevel(Math.Max(nextLevel, level));
// Add the run
_levelRuns.Add(new LevelRun(start, length, level, sos, eos));
}
///
/// Find all runs of the same level, populating the _levelRuns
/// collection
///
private void FindLevelRuns()
{
var currentLevel = -1;
var runStart = 0;
for (var i = 0; i < _x9Map.Length; ++i)
{
int level = _resolvedLevels[MapX9(i)];
if (level == currentLevel)
{
continue;
}
if (currentLevel != -1)
{
AddLevelRun(runStart, i - runStart, currentLevel);
}
currentLevel = level;
runStart = i;
}
// Don't forget the final level run
if (currentLevel != -1)
{
AddLevelRun(runStart, _x9Map.Length - runStart, currentLevel);
}
}
///
/// Given a character index, find the level run that starts at that position
///
/// The index into the original (unmapped) data
/// The index of the run that starts at that index
private int FindRunForIndex(int index)
{
for (var i = 0; i < _levelRuns.Count; i++)
{
// Passed index is for the original non-x9 filtered data, however
// the level run ranges are for the x9 filtered data. Convert before
// comparing
if (MapX9(_levelRuns[i].Start) == index)
{
return i;
}
}
throw new InvalidOperationException("Internal error");
}
///
/// Determine and the process all isolated run sequences
///
private void ProcessIsolatedRunSequences()
{
// Find all runs with the same level
FindLevelRuns();
// Process them one at a time by first building
// a mapping using slices from the x9 map for each
// run section that needs to be joined together to
// form an complete run. That full run mapping
// will be placed in _isolatedRunMapping and then
// processed by ProcessIsolatedRunSequence().
while (_levelRuns.Count > 0)
{
// Clear the mapping
_isolatedRunMapping.Clear();
// Combine mappings from this run and all runs that continue on from it
var runIndex = 0;
BidiClass eos;
var sos = _levelRuns[0].Sos;
var level = _levelRuns[0].Level;
while (true)
{
// Get the run
var r = _levelRuns[runIndex];
// The eos of the isolating run is the eos of the
// last level run that comprises it.
eos = r.Eos;
// Remove this run as we've now processed it
_levelRuns.RemoveAt(runIndex);
// Add the x9 map indices for the run range to the mapping
// for this isolated run
_isolatedRunMapping.Add(_x9Map.AsSlice(r.Start, r.Length));
// Get the last character and see if it's an isolating run with a matching
// PDI and concatenate that run to this one
var lastCharacterIndex = _isolatedRunMapping[_isolatedRunMapping.Length - 1];
var lastType = _originalClasses[lastCharacterIndex];
if ((lastType == BidiClass.LeftToRightIsolate || lastType == BidiClass.RightToLeftIsolate || lastType == BidiClass.FirstStrongIsolate) &&
_isolatePairs.TryGetValue(lastCharacterIndex, out var nextRunIndex))
{
// Find the continuing run index
runIndex = FindRunForIndex(nextRunIndex);
}
else
{
break;
}
}
// Process this isolated run
ProcessIsolatedRunSequence(sos, eos, level);
}
}
///
/// Process a single isolated run sequence, where the character sequence
/// mapping is currently held in _isolatedRunMapping.
///
private void ProcessIsolatedRunSequence(BidiClass sos, BidiClass eos, int runLevel)
{
// Create mappings onto the underlying data
_runResolvedClasses = new MappedArraySlice(_workingClasses, _isolatedRunMapping.AsSlice());
_runOriginalClasses = new MappedArraySlice(_originalClasses, _isolatedRunMapping.AsSlice());
_runLevels = new MappedArraySlice(_resolvedLevels, _isolatedRunMapping.AsSlice());
if (_hasBrackets)
{
_runBiDiPairedBracketTypes = new MappedArraySlice(_pairedBracketTypes, _isolatedRunMapping.AsSlice());
_runPairedBracketValues = new MappedArraySlice(_pairedBracketValues, _isolatedRunMapping.AsSlice());
}
_runLevel = runLevel;
_runDirection = DirectionFromLevel(runLevel);
_runLength = _runResolvedClasses.Length;
// By tracking the types of characters known to be in the current run, we can
// skip some of the rules that we know won't apply. The flags will be
// initialized while we're processing rule W1 below.
var hasEN = false;
var hasAL = false;
var hasES = false;
var hasCS = false;
var hasAN = false;
var hasET = false;
// Rule W1
// Also, set hasXX flags
int i;
var previousClass = sos;
for (i = 0; i < _runLength; i++)
{
var resolvedClass = _runResolvedClasses[i];
switch (resolvedClass)
{
case BidiClass.NonspacingMark:
_runResolvedClasses[i] = previousClass;
break;
case BidiClass.LeftToRightIsolate:
case BidiClass.RightToLeftIsolate:
case BidiClass.FirstStrongIsolate:
case BidiClass.PopDirectionalIsolate:
previousClass = BidiClass.OtherNeutral;
break;
case BidiClass.EuropeanNumber:
hasEN = true;
previousClass = resolvedClass;
break;
case BidiClass.ArabicLetter:
hasAL = true;
previousClass = resolvedClass;
break;
case BidiClass.EuropeanSeparator:
hasES = true;
previousClass = resolvedClass;
break;
case BidiClass.CommonSeparator:
hasCS = true;
previousClass = resolvedClass;
break;
case BidiClass.ArabicNumber:
hasAN = true;
previousClass = resolvedClass;
break;
case BidiClass.EuropeanTerminator:
hasET = true;
previousClass = resolvedClass;
break;
default:
previousClass = resolvedClass;
break;
}
}
// Rule W2
if (hasEN)
{
for (i = 0; i < _runLength; i++)
{
if (_runResolvedClasses[i] != BidiClass.EuropeanNumber)
{
continue;
}
for (var j = i - 1; j >= 0; j--)
{
var resolvedClass = _runResolvedClasses[j];
switch (resolvedClass)
{
case BidiClass.LeftToRight:
case BidiClass.RightToLeft:
case BidiClass.ArabicLetter:
{
if (resolvedClass == BidiClass.ArabicLetter)
{
_runResolvedClasses[i] = BidiClass.ArabicNumber;
hasAN = true;
}
j = -1;
break;
}
}
}
}
}
// Rule W3
if (hasAL)
{
for (i = 0; i < _runLength; i++)
{
if (_runResolvedClasses[i] == BidiClass.ArabicLetter)
{
_runResolvedClasses[i] = BidiClass.RightToLeft;
}
}
}
// Rule W4
if ((hasES || hasCS) && (hasEN || hasAN))
{
for (i = 1; i < _runLength - 1; ++i)
{
ref var resolvedClass = ref _runResolvedClasses[i];
if (resolvedClass == BidiClass.EuropeanSeparator)
{
var previousSeparatorClass = _runResolvedClasses[i - 1];
var nextSeparatorClass = _runResolvedClasses[i + 1];
if (previousSeparatorClass == BidiClass.EuropeanNumber && nextSeparatorClass == BidiClass.EuropeanNumber)
{
// ES between EN and EN
resolvedClass = BidiClass.EuropeanNumber;
}
}
else if (resolvedClass == BidiClass.CommonSeparator)
{
var previousSeparatorClass = _runResolvedClasses[i - 1];
var nextSeparatorClass = _runResolvedClasses[i + 1];
if ((previousSeparatorClass == BidiClass.ArabicNumber && nextSeparatorClass == BidiClass.ArabicNumber) ||
(previousSeparatorClass == BidiClass.EuropeanNumber && nextSeparatorClass == BidiClass.EuropeanNumber))
{
// CS between (AN and AN) or (EN and EN)
resolvedClass = previousSeparatorClass;
}
}
}
}
// Rule W5
if (hasET && hasEN)
{
for (i = 0; i < _runLength; ++i)
{
if (_runResolvedClasses[i] != BidiClass.EuropeanTerminator)
{
continue;
}
// Locate end of sequence
var sequenceStart = i;
var sequenceEnd = i;
while (sequenceEnd < _runLength && _runResolvedClasses[sequenceEnd] == BidiClass.EuropeanTerminator)
{
sequenceEnd++;
}
// Preceded by, or followed by EN?
if ((sequenceStart == 0 ? sos : _runResolvedClasses[sequenceStart - 1]) == BidiClass.EuropeanNumber
|| (sequenceEnd == _runLength ? eos : _runResolvedClasses[sequenceEnd]) == BidiClass.EuropeanNumber)
{
// Change the entire range
for (var j = sequenceStart; i < sequenceEnd; ++i)
{
_runResolvedClasses[i] = BidiClass.EuropeanNumber;
}
}
// continue at end of sequence
i = sequenceEnd;
}
}
// Rule W6
if (hasES || hasET || hasCS)
{
for (i = 0; i < _runLength; ++i)
{
ref var resolvedClass = ref _runResolvedClasses[i];
switch (resolvedClass)
{
case BidiClass.EuropeanSeparator:
case BidiClass.EuropeanTerminator:
case BidiClass.CommonSeparator:
{
resolvedClass = BidiClass.OtherNeutral;
break;
}
}
}
}
// Rule W7.
if (hasEN)
{
var previousStrongClass = sos;
for (i = 0; i < _runLength; ++i)
{
ref var resolvedClass = ref _runResolvedClasses[i];
switch (resolvedClass)
{
case BidiClass.EuropeanNumber:
{
// If prev strong type was an L change this to L too
if (previousStrongClass == BidiClass.LeftToRight)
{
_runResolvedClasses[i] = BidiClass.LeftToRight;
}
break;
}
case BidiClass.LeftToRight:
case BidiClass.RightToLeft:
{
// Remember previous strong type (NB: AL should already be changed to R)
previousStrongClass = resolvedClass;
break;
}
}
}
}
// Rule N0 - process bracket pairs
if (_hasBrackets)
{
int count;
var pairedBrackets = LocatePairedBrackets();
for (i = 0, count = pairedBrackets.Count; i < count; i++)
{
var pairedBracket = pairedBrackets[i];
var strongDirection = InspectPairedBracket(pairedBracket);
// Case "d" - no strong types in the brackets, ignore
if (strongDirection == BidiClass.OtherNeutral)
{
continue;
}
// Case "b" - strong type found that matches the embedding direction
if ((strongDirection == BidiClass.LeftToRight || strongDirection == BidiClass.RightToLeft) && strongDirection == _runDirection)
{
SetPairedBracketDirection(pairedBracket, strongDirection);
continue;
}
// Case "c" - found opposite strong type found, look before to establish context
strongDirection = InspectBeforePairedBracket(pairedBracket, sos);
if (strongDirection == _runDirection || strongDirection == BidiClass.OtherNeutral)
{
strongDirection = _runDirection;
}
SetPairedBracketDirection(pairedBracket, strongDirection);
}
}
// Rules N1 and N2 - resolve neutral types
for (i = 0; i < _runLength; ++i)
{
var resolvedClass = _runResolvedClasses[i];
if (IsNeutralClass(resolvedClass))
{
// Locate end of sequence
var seqStart = i;
var seqEnd = i;
while (seqEnd < _runLength && IsNeutralClass(_runResolvedClasses[seqEnd]))
{
seqEnd++;
}
// Work out the preceding class
BidiClass classBefore;
if (seqStart == 0)
{
classBefore = sos;
}
else
{
classBefore = _runResolvedClasses[seqStart - 1];
switch (classBefore)
{
case BidiClass.ArabicNumber:
case BidiClass.EuropeanNumber:
{
classBefore = BidiClass.RightToLeft;
break;
}
}
}
// Work out the following class
BidiClass classAfter;
if (seqEnd == _runLength)
{
classAfter = eos;
}
else
{
classAfter = _runResolvedClasses[seqEnd];
switch (classAfter)
{
case BidiClass.ArabicNumber:
case BidiClass.EuropeanNumber:
{
classAfter = BidiClass.RightToLeft;
break;
}
}
}
// Work out the final resolved type
BidiClass finalResolveClass;
if (classBefore == classAfter)
{
// Rule N1
finalResolveClass = classBefore;
}
else
{
// Rule N2
finalResolveClass = _runDirection;
}
// Apply changes
for (var j = seqStart; j < seqEnd; j++)
{
_runResolvedClasses[j] = finalResolveClass;
}
// continue after this run
i = seqEnd;
}
}
// Rules I1 and I2 - resolve implicit types
if ((_runLevel & 0x01) == 0)
{
// Rule I1 - even
for (i = 0; i < _runLength; i++)
{
var resolvedClass = _runResolvedClasses[i];
ref var currentRunLevel = ref _runLevels[i];
switch (resolvedClass)
{
case BidiClass.RightToLeft:
{
currentRunLevel++;
break;
}
case BidiClass.ArabicNumber:
case BidiClass.EuropeanNumber:
{
currentRunLevel += 2;
break;
}
}
}
}
else
{
// Rule I2 - odd
for (i = 0; i < _runLength; i++)
{
var resolvedClass = _runResolvedClasses[i];
ref var currentRunLevel = ref _runLevels[i];
if (resolvedClass != BidiClass.RightToLeft)
{
currentRunLevel++;
}
}
}
}
///
/// Locate all pair brackets in the current isolating run
///
/// A sorted list of BracketPairs
private List LocatePairedBrackets()
{
// Clear work collections
_pendingOpeningBrackets.Clear();
_pairedBrackets.Clear();
// Since List.Sort is expensive on memory if called often (it internally
// allocates an ArraySorted object) and since we will rarely have many
// items in this list (most paragraphs will only have a handful of bracket
// pairs - if that), we use a simple linear lookup and insert most of the
// time. If there are more that `sortLimit` paired brackets we abort th
// linear searching/inserting and using List.Sort at the end.
const int sortLimit = 8;
// Process all characters in the run, looking for paired brackets
for (int i = 0, length = _runLength; i < length; i++)
{
// Ignore non-neutral characters
if (_runResolvedClasses[i] != BidiClass.OtherNeutral)
{
continue;
}
switch (_runBiDiPairedBracketTypes[i])
{
case BidiPairedBracketType.Open:
if (_pendingOpeningBrackets.Count == MaxPairedBracketDepth)
{
goto exit;
}
_pendingOpeningBrackets.Insert(0, i);
break;
case BidiPairedBracketType.Close:
// see if there is a match
for (var j = 0; j < _pendingOpeningBrackets.Count; j++)
{
if (_runPairedBracketValues[i] != _runPairedBracketValues[_pendingOpeningBrackets[j]])
{
continue;
}
// Add this paired bracket set
var opener = _pendingOpeningBrackets[j];
if (_pairedBrackets.Count < sortLimit)
{
var ppi = 0;
while (ppi < _pairedBrackets.Count && _pairedBrackets[ppi].OpeningIndex < opener)
{
ppi++;
}
_pairedBrackets.Insert(ppi, new BracketPair(opener, i));
}
else
{
_pairedBrackets.Add(new BracketPair(opener, i));
}
// remove up to and including matched opener
_pendingOpeningBrackets.RemoveRange(0, j + 1);
break;
}
break;
}
}
exit:
// Is a sort pending?
if (_pairedBrackets.Count > sortLimit)
{
_pairedBrackets.Sort();
}
return _pairedBrackets;
}
///
/// Inspect a paired bracket set and determine its strong direction
///
/// The paired bracket to be inspected
/// The direction of the bracket set content
private BidiClass InspectPairedBracket(in BracketPair bracketPair)
{
var directionFromLevel = DirectionFromLevel(_runLevel);
var directionOpposite = BidiClass.OtherNeutral;
for (var i = bracketPair.OpeningIndex + 1; i < bracketPair.ClosingIndex; i++)
{
var dir = GetStrongClassN0(_runResolvedClasses[i]);
if (dir == BidiClass.OtherNeutral)
{
continue;
}
if (dir == directionFromLevel)
{
return dir;
}
directionOpposite = dir;
}
return directionOpposite;
}
///
/// Look for a strong type before a paired bracket
///
/// The paired bracket set to be inspected
/// The sos in case nothing found before the bracket
/// The strong direction before the brackets
private BidiClass InspectBeforePairedBracket(in BracketPair bracketPair, BidiClass sos)
{
for (var i = bracketPair.OpeningIndex - 1; i >= 0; --i)
{
var direction = GetStrongClassN0(_runResolvedClasses[i]);
if (direction != BidiClass.OtherNeutral)
{
return direction;
}
}
return sos;
}
///
/// Sets the direction of a bracket pair, including setting the direction of
/// NSM's inside the brackets and following.
///
/// The paired brackets
/// The resolved direction for the bracket pair
private void SetPairedBracketDirection(in BracketPair pairedBracket, BidiClass direction)
{
// Set the direction of the brackets
_runResolvedClasses[pairedBracket.OpeningIndex] = direction;
_runResolvedClasses[pairedBracket.ClosingIndex] = direction;
// Set the directionality of NSM's inside the brackets
// BN characters (such as ZWJ or ZWSP) that appear between the base bracket character
// and the nonspacing mark should be ignored.
for (int i = pairedBracket.OpeningIndex + 1; i < pairedBracket.ClosingIndex; i++)
{
if (_runOriginalClasses[i] == BidiClass.NonspacingMark)
{
_runOriginalClasses[i] = direction;
}
else if (_runOriginalClasses[i] != BidiClass.BoundaryNeutral)
{
break;
}
}
// Set the directionality of NSM's following the brackets
for (int i = pairedBracket.ClosingIndex + 1; i < _runLength; i++)
{
if (_runOriginalClasses[i] == BidiClass.NonspacingMark)
{
_runOriginalClasses[i] = direction;
}
else if (_runOriginalClasses[i] != BidiClass.BoundaryNeutral)
{
break;
}
}
}
///
/// Resets whitespace levels. Implements rule L1
///
private void ResetWhitespaceLevels()
{
for (var i = 0; i < _resolvedLevels.Length; i++)
{
var originalClass = _originalClasses[i];
switch (originalClass)
{
case BidiClass.ParagraphSeparator:
case BidiClass.SegmentSeparator:
{
// Rule L1, clauses one and two.
_resolvedLevels[i] = _paragraphEmbeddingLevel;
// Rule L1, clause three.
for (var j = i - 1; j >= 0; --j)
{
if (IsWhitespace(_originalClasses[j]))
{
// including format codes
_resolvedLevels[j] = _paragraphEmbeddingLevel;
}
else
{
break;
}
}
break;
}
}
}
// Rule L1, clause four.
for (var j = _resolvedLevels.Length - 1; j >= 0; j--)
{
if (IsWhitespace(_originalClasses[j]))
{ // including format codes
_resolvedLevels[j] = _paragraphEmbeddingLevel;
}
else
{
break;
}
}
}
///
/// Assign levels to any characters that would be have been
/// removed by rule X9. The idea is to keep level runs together
/// that would otherwise be broken by an interfering isolate/embedding
/// control character.
///
private void AssignLevelsToCodePointsRemovedByX9()
{
// Redundant?
if (!_hasIsolates && !_hasEmbeddings)
{
return;
}
// No-op?
if (_workingClasses.Length == 0)
{
return;
}
// Fix up first character
if (_resolvedLevels[0] < 0)
{
_resolvedLevels[0] = _paragraphEmbeddingLevel;
}
if (IsRemovedByX9(_originalClasses[0]))
{
_workingClasses[0] = _originalClasses[0];
}
for (int i = 1, length = _workingClasses.Length; i < length; i++)
{
var originalClass = _originalClasses[i];
if (IsRemovedByX9(originalClass))
{
_workingClasses[i] = originalClass;
_resolvedLevels[i] = _resolvedLevels[i - 1];
}
}
}
///
/// Check if a directionality type represents whitespace
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool IsWhitespace(BidiClass biDiClass)
{
switch (biDiClass)
{
case BidiClass.LeftToRightEmbedding:
case BidiClass.RightToLeftEmbedding:
case BidiClass.LeftToRightOverride:
case BidiClass.RightToLeftOverride:
case BidiClass.PopDirectionalFormat:
case BidiClass.LeftToRightIsolate:
case BidiClass.RightToLeftIsolate:
case BidiClass.FirstStrongIsolate:
case BidiClass.PopDirectionalIsolate:
case BidiClass.BoundaryNeutral:
case BidiClass.WhiteSpace:
return true;
default:
return false;
}
}
///
/// Convert a level to a direction where odd is RTL and
/// even is LTR
///
/// The level to convert
/// A directionality
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static BidiClass DirectionFromLevel(int level)
=> ((level & 0x1) == 0) ? BidiClass.LeftToRight : BidiClass.RightToLeft;
///
/// Helper to check if a directionality is removed by rule X9
///
/// The bidi type to check
/// True if rule X9 would remove this character; otherwise false
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool IsRemovedByX9(BidiClass biDiClass)
{
switch (biDiClass)
{
case BidiClass.LeftToRightEmbedding:
case BidiClass.RightToLeftEmbedding:
case BidiClass.LeftToRightOverride:
case BidiClass.RightToLeftOverride:
case BidiClass.PopDirectionalFormat:
case BidiClass.BoundaryNeutral:
return true;
default:
return false;
}
}
///
/// Check if a a directionality is neutral for rules N1 and N2
///
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static bool IsNeutralClass(BidiClass direction)
{
switch (direction)
{
case BidiClass.ParagraphSeparator:
case BidiClass.SegmentSeparator:
case BidiClass.WhiteSpace:
case BidiClass.OtherNeutral:
case BidiClass.RightToLeftIsolate:
case BidiClass.LeftToRightIsolate:
case BidiClass.FirstStrongIsolate:
case BidiClass.PopDirectionalIsolate:
return true;
default:
return false;
}
}
///
/// Maps a direction to a strong class for rule N0
///
/// The direction to map
/// A strong direction - R, L or ON
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static BidiClass GetStrongClassN0(BidiClass direction)
{
switch (direction)
{
case BidiClass.EuropeanNumber:
case BidiClass.ArabicNumber:
case BidiClass.ArabicLetter:
case BidiClass.RightToLeft:
return BidiClass.RightToLeft;
case BidiClass.LeftToRight:
return BidiClass.LeftToRight;
default:
return BidiClass.OtherNeutral;
}
}
///
/// Hold the start and end index of a pair of brackets
///
private readonly struct BracketPair : IComparable
{
///
/// Initializes a new instance of the struct.
///
/// Index of the opening bracket
/// Index of the closing bracket
public BracketPair(int openingIndex, int closingIndex)
{
OpeningIndex = openingIndex;
ClosingIndex = closingIndex;
}
///
/// Gets the index of the opening bracket
///
public int OpeningIndex { get; }
///
/// Gets the index of the closing bracket
///
public int ClosingIndex { get; }
public int CompareTo(BracketPair other)
=> OpeningIndex.CompareTo(other.OpeningIndex);
}
///
/// Status stack entry used while resolving explicit
/// embedding levels
///
private readonly struct Status
{
public Status(sbyte embeddingLevel, BidiClass overrideStatus, bool isolateStatus)
{
EmbeddingLevel = embeddingLevel;
OverrideStatus = overrideStatus;
IsolateStatus = isolateStatus;
}
public sbyte EmbeddingLevel { get; }
public BidiClass OverrideStatus { get; }
public bool IsolateStatus { get; }
}
///
/// Provides information about a level run - a continuous
/// sequence of equal levels.
///
private readonly struct LevelRun
{
public LevelRun(int start, int length, int level, BidiClass sos, BidiClass eos)
{
Start = start;
Length = length;
Level = level;
Sos = sos;
Eos = eos;
}
public int Start { get; }
public int Length { get; }
public int Level { get; }
public BidiClass Sos { get; }
public BidiClass Eos { get; }
}
}
}