using System; using System.Numerics; using System.Runtime.InteropServices; using Avalonia.Media; using Xunit; namespace Avalonia.Visuals.UnitTests; /// /// These tests use the "official" Matrix4x4 and Matrix3x2 from the System.Numerics namespace, to validate /// that Avalonias own implementation of a 3x3 Matrix works correctly. /// public class MatrixTests { /// /// Because Avalonia is working internally with doubles, but System.Numerics Vector and Matrix implementations /// only make use of floats, we need to reduce precision, comparing them. It should be sufficient to compare /// 5 fractional digits to ensure, that the result is correct. /// /// The expected vector /// The actual transformed point private static void AssertCoordinatesEqualWithReducedPrecision(Vector2 expected, Point actual) { double ReducePrecision(double input) => Math.Truncate(input * 10000); var expectedX = ReducePrecision(expected.X); var expectedY = ReducePrecision(expected.Y); var actualX = ReducePrecision(actual.X); var actualY = ReducePrecision(actual.Y); Assert.Equal(expectedX, actualX); Assert.Equal(expectedY, actualY); } [Fact] public void Transform_Point_Should_Return_Correct_Value_For_Translated_Matrix() { var vector2 = Vector2.Transform( new Vector2(1, 1), Matrix3x2.CreateTranslation(2, 2)); var expected = new Point(vector2.X, vector2.Y); var matrix = Matrix.CreateTranslation(2, 2); var point = new Point(1, 1); var transformedPoint = matrix.Transform(point); Assert.Equal(expected, transformedPoint); } [Fact] public void Transform_Point_Should_Return_Correct_Value_For_Rotated_Matrix() { var expected = Vector2.Transform( new Vector2(0, 10), Matrix3x2.CreateRotation((float)Matrix.ToRadians(45))); var matrix = Matrix.CreateRotation(Matrix.ToRadians(45)); var point = new Point(0, 10); var actual = matrix.Transform(point); AssertCoordinatesEqualWithReducedPrecision(expected, actual); } [Fact] public void Transform_Point_Should_Return_Correct_Value_For_Scaled_Matrix() { var vector2 = Vector2.Transform( new Vector2(1, 1), Matrix3x2.CreateScale(2, 2)); var expected = new Point(vector2.X, vector2.Y); var matrix = Matrix.CreateScale(2, 2); var point = new Point(1, 1); var actual = matrix.Transform(point); Assert.Equal(expected, actual); } [Fact] public void Transform_Point_Should_Return_Correct_Value_For_Skewed_Matrix() { var expected = Vector2.Transform( new Vector2(1, 1), Matrix3x2.CreateSkew(30, 20)); var matrix = Matrix.CreateSkew(30, 20); var point = new Point(1, 1); var actual = matrix.Transform(point); AssertCoordinatesEqualWithReducedPrecision(expected, actual); } }