using System;
using System.Numerics;
using System.Runtime.InteropServices;
using Avalonia.Media;
using Xunit;
namespace Avalonia.Visuals.UnitTests;
///
/// These tests use the "official" Matrix4x4 and Matrix3x2 from the System.Numerics namespace, to validate
/// that Avalonias own implementation of a 3x3 Matrix works correctly.
///
public class MatrixTests
{
///
/// Because Avalonia is working internally with doubles, but System.Numerics Vector and Matrix implementations
/// only make use of floats, we need to reduce precision, comparing them. It should be sufficient to compare
/// 5 fractional digits to ensure, that the result is correct.
///
/// The expected vector
/// The actual transformed point
private static void AssertCoordinatesEqualWithReducedPrecision(Vector2 expected, Point actual)
{
double ReducePrecision(double input) => Math.Truncate(input * 10000);
var expectedX = ReducePrecision(expected.X);
var expectedY = ReducePrecision(expected.Y);
var actualX = ReducePrecision(actual.X);
var actualY = ReducePrecision(actual.Y);
Assert.Equal(expectedX, actualX);
Assert.Equal(expectedY, actualY);
}
[Fact]
public void Transform_Point_Should_Return_Correct_Value_For_Translated_Matrix()
{
var vector2 = Vector2.Transform(
new Vector2(1, 1),
Matrix3x2.CreateTranslation(2, 2));
var expected = new Point(vector2.X, vector2.Y);
var matrix = Matrix.CreateTranslation(2, 2);
var point = new Point(1, 1);
var transformedPoint = matrix.Transform(point);
Assert.Equal(expected, transformedPoint);
}
[Fact]
public void Transform_Point_Should_Return_Correct_Value_For_Rotated_Matrix()
{
var expected = Vector2.Transform(
new Vector2(0, 10),
Matrix3x2.CreateRotation((float)Matrix.ToRadians(45)));
var matrix = Matrix.CreateRotation(Matrix.ToRadians(45));
var point = new Point(0, 10);
var actual = matrix.Transform(point);
AssertCoordinatesEqualWithReducedPrecision(expected, actual);
}
[Fact]
public void Transform_Point_Should_Return_Correct_Value_For_Scaled_Matrix()
{
var vector2 = Vector2.Transform(
new Vector2(1, 1),
Matrix3x2.CreateScale(2, 2));
var expected = new Point(vector2.X, vector2.Y);
var matrix = Matrix.CreateScale(2, 2);
var point = new Point(1, 1);
var actual = matrix.Transform(point);
Assert.Equal(expected, actual);
}
[Fact]
public void Transform_Point_Should_Return_Correct_Value_For_Skewed_Matrix()
{
var expected = Vector2.Transform(
new Vector2(1, 1),
Matrix3x2.CreateSkew(30, 20));
var matrix = Matrix.CreateSkew(30, 20);
var point = new Point(1, 1);
var actual = matrix.Transform(point);
AssertCoordinatesEqualWithReducedPrecision(expected, actual);
}
}