| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144 |
- // Copyright © 2003-2004, Luc Maisonobe
- // 2015 - Alexey Rozanov <[email protected]> - Adaptations for Avalonia and oval center computations
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with
- // or without modification, are permitted provided that
- // the following conditions are met:
- //
- // Redistributions of source code must retain the
- // above copyright notice, this list of conditions and
- // the following disclaimer.
- // Redistributions in binary form must reproduce the
- // above copyright notice, this list of conditions and
- // the following disclaimer in the documentation
- // and/or other materials provided with the
- // distribution.
- // Neither the names of spaceroots.org, spaceroots.com
- // nor the names of their contributors may be used to
- // endorse or promote products derived from this
- // software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
- // CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
- // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
- // THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
- // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
- // USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
- // IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- // C#/WPF/Avalonia adaptation by Alexey Rozanov <[email protected]>, 2015.
- // I do not mind if anyone would find this adaptation useful, but
- // please retain the above disclaimer made by the original class
- // author Luc Maisonobe. He worked really hard on this subject, so
- // please respect him by at least keeping the above disclaimer intact
- // if you use his code.
- //
- // Commented out some unused values calculations.
- // These are not supposed to be removed from the source code,
- // as these may be helpful for debugging.
- using System;
- using Avalonia.Media;
- using Avalonia.Platform;
- namespace Avalonia.RenderHelpers
- {
- static class ArcToHelper
- {
- /// <summary>
- /// This class represents an elliptical arc on a 2D plane.
- ///
- /// This class is adapted for use with WPF StreamGeometryContext, and needs to be created explicitly
- /// for each particular arc.
- ///
- /// Some helpers
- ///
- /// It can handle ellipses which are not aligned with the x and y reference axes of the plane,
- /// as well as their parts.
- ///
- /// Another improvement is that this class can handle degenerated cases like for example very
- /// flat ellipses(semi-minor axis much smaller than semi-major axis) and drawing of very small
- /// parts of such ellipses at very high magnification scales.This imply monitoring the drawing
- /// approximation error for extremely small values.Such cases occur for example while drawing
- /// orbits of comets near the perihelion.
- ///
- /// When the arc does not cover the complete ellipse, the lines joining the center of the
- /// ellipse to the endpoints can optionally be included or not in the outline, hence allowing
- /// to use it for pie-charts rendering. If these lines are not included, the curve is not
- /// naturally closed.
- /// </summary>
- public sealed class EllipticalArc
- {
- private const double TwoPi = 2 * Math.PI;
- /// <summary>
- /// Coefficients for error estimation while using quadratic Bezier curves for approximation,
- /// 0 ≤ b/a ≤ 0.25
- /// </summary>
- private static readonly double[][][] Coeffs2Low = {
- new[]
- {
- new[] {3.92478, -13.5822, -0.233377, 0.0128206},
- new[] {-1.08814, 0.859987, 3.62265E-4, 2.29036E-4},
- new[] {-0.942512, 0.390456, 0.0080909, 0.00723895},
- new[] {-0.736228, 0.20998, 0.0129867, 0.0103456}
- },
- new[]
- {
- new[] {-0.395018, 6.82464, 0.0995293, 0.0122198},
- new[] {-0.545608, 0.0774863, 0.0267327, 0.0132482},
- new[] {0.0534754, -0.0884167, 0.012595, 0.0343396},
- new[] {0.209052, -0.0599987, -0.00723897, 0.00789976}
- }
- };
- /// <summary>
- /// Coefficients for error estimation while using quadratic Bezier curves for approximation,
- /// 0.25 ≤ b/a ≤ 1
- /// </summary>
- private static readonly double[][][] Coeffs2High = {
- new[]
- {
- new[] {0.0863805, -11.5595, -2.68765, 0.181224},
- new[] {0.242856, -1.81073, 1.56876, 1.68544},
- new[] {0.233337, -0.455621, 0.222856, 0.403469},
- new[] {0.0612978, -0.104879, 0.0446799, 0.00867312}
- },
- new[]
- {
- new[] {0.028973, 6.68407, 0.171472, 0.0211706},
- new[] {0.0307674, -0.0517815, 0.0216803, -0.0749348},
- new[] {-0.0471179, 0.1288, -0.0781702, 2.0},
- new[] {-0.0309683, 0.0531557, -0.0227191, 0.0434511}
- }
- };
- /// <summary>
- /// Safety factor to convert the "best" error approximation into a "max bound" error
- /// </summary>
- private static readonly double[] Safety2 = { 0.02, 2.83, 0.125, 0.01 };
- /// <summary>
- /// Coefficients for error estimation while using cubic Bezier curves for approximation,
- /// 0.25 ≤ b/a ≤ 1
- /// </summary>
- private static readonly double[][][] Coeffs3Low = {
- new[]
- {
- new[] {3.85268, -21.229, -0.330434, 0.0127842},
- new[] {-1.61486, 0.706564, 0.225945, 0.263682},
- new[] {-0.910164, 0.388383, 0.00551445, 0.00671814},
- new[] {-0.630184, 0.192402, 0.0098871, 0.0102527}
- },
- new[]
- {
- new[] {-0.162211, 9.94329, 0.13723, 0.0124084},
- new[] {-0.253135, 0.00187735, 0.0230286, 0.01264},
- new[] {-0.0695069, -0.0437594, 0.0120636, 0.0163087},
- new[] {-0.0328856, -0.00926032, -0.00173573, 0.00527385}
- }
- };
- /// <summary>
- /// Coefficients for error estimation while using cubic Bezier curves for approximation,
- /// 0.25 ≤ b/a ≤ 1
- /// </summary>
- private static readonly double[][][] Coeffs3High = {
- new[]
- {
- new[] {0.0899116, -19.2349, -4.11711, 0.183362},
- new[] {0.138148, -1.45804, 1.32044, 1.38474},
- new[] {0.230903, -0.450262, 0.219963, 0.414038},
- new[] {0.0590565, -0.101062, 0.0430592, 0.0204699}
- },
- new[]
- {
- new[] {0.0164649, 9.89394, 0.0919496, 0.00760802},
- new[] {0.0191603, -0.0322058, 0.0134667, -0.0825018},
- new[] {0.0156192, -0.017535, 0.00326508, -0.228157},
- new[] {-0.0236752, 0.0405821, -0.0173086, 0.176187}
- }
- };
- /// <summary>
- /// Safety factor to convert the "best" error approximation into a "max bound" error
- /// </summary>
- private static readonly double[] Safety3 = { 0.0010, 4.98, 0.207, 0.0067 };
- /// <summary>
- /// Abscissa of the center of the ellipse
- /// </summary>
- internal double Cx;
- /// <summary>
- /// Ordinate of the center of the ellipse
- /// </summary>
- internal double Cy;
- /// <summary>
- /// Semi-major axis
- /// </summary>
- internal double A;
- /// <summary>
- /// Semi-minor axis
- /// </summary>
- internal double B;
- /// <summary>
- /// Orientation of the major axis with respect to the x axis
- /// </summary>
- internal double Theta;
- /// <summary>
- /// Pre-calculated cosine value for the major-axis-to-X orientation (Theta)
- /// </summary>
- private readonly double _cosTheta;
- /// <summary>
- /// Pre-calculated sine value for the major-axis-to-X orientation (Theta)
- /// </summary>
- private readonly double _sinTheta;
- /// <summary>
- /// Start angle of the arc
- /// </summary>
- internal double Eta1;
- /// <summary>
- /// End angle of the arc
- /// </summary>
- internal double Eta2;
- /// <summary>
- /// Abscissa of the start point
- /// </summary>
- internal double X1;
- /// <summary>
- /// Ordinate of the start point
- /// </summary>
- internal double Y1;
- /// <summary>
- /// Abscissa of the end point
- /// </summary>
- internal double X2;
- /// <summary>
- /// Ordinate of the end point
- /// </summary>
- internal double Y2;
- /// <summary>
- /// Abscissa of the first focus
- /// </summary>
- internal double FirstFocusX;
- /// <summary>
- /// Ordinate of the first focus
- /// </summary>
- internal double FirstFocusY;
- /// <summary>
- /// Abscissa of the second focus
- /// </summary>
- internal double SecondFocusX;
- /// <summary>
- /// Ordinate of the second focus
- /// </summary>
- internal double SecondFocusY;
- /// <summary>
- /// Abscissa of the leftmost point of the arc
- /// </summary>
- private double _xLeft;
- /// <summary>
- /// Ordinate of the highest point of the arc
- /// </summary>
- private double _yUp;
- /// <summary>
- /// Horizontal width of the arc
- /// </summary>
- private double _width;
- /// <summary>
- /// Vertical height of the arc
- /// </summary>
- private double _height;
- /// <summary>
- /// Indicator for center to endpoints line inclusion
- /// </summary>
- internal bool IsPieSlice;
- /// <summary>
- /// Maximal degree for Bezier curve approximation
- /// </summary>
- private int _maxDegree;
- /// <summary>
- /// Default flatness for Bezier curve approximation
- /// </summary>
- private double _defaultFlatness;
- /// <summary>
- /// Indicator for semi-major axis significance (compared to semi-minor one).
- /// Computed by dividing the (A-B) difference by the value of A.
- /// This indicator is used for an early escape in intersection test
- /// </summary>
- internal double F;
- /// <summary>
- /// Indicator used for an early escape in intersection test
- /// </summary>
- internal double E2;
- /// <summary>
- /// Indicator used for an early escape in intersection test
- /// </summary>
- internal double G;
- /// <summary>
- /// Indicator used for an early escape in intersection test
- /// </summary>
- internal double G2;
- /// <summary>
- /// Builds an elliptical arc composed of the full unit circle around (0,0)
- /// </summary>
- public EllipticalArc()
- {
- Cx = 0;
- Cy = 0;
- A = 1;
- B = 1;
- Theta = 0;
- Eta1 = 0;
- Eta2 = TwoPi;
- _cosTheta = 1;
- _sinTheta = 0;
- IsPieSlice = false;
- _maxDegree = 3;
- _defaultFlatness = 0.5;
- ComputeFocii();
- ComputeEndPoints();
- ComputeBounds();
- ComputeDerivedFlatnessParameters();
- }
- /// <summary>
- /// Builds an elliptical arc from its canonical geometrical elements
- /// </summary>
- /// <param name="center">Center of the ellipse</param>
- /// <param name="a">Semi-major axis</param>
- /// <param name="b">Semi-minor axis</param>
- /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
- /// <param name="lambda1">Start angle of the arc</param>
- /// <param name="lambda2">End angle of the arc</param>
- /// <param name="isPieSlice">If true, the lines between the center of the ellipse
- /// and the endpoints are part of the shape (it is pie slice like)</param>
- public EllipticalArc(Point center, double a, double b, double theta, double lambda1, double lambda2,
- bool isPieSlice) : this(center.X, center.Y, a, b, theta, lambda1,
- lambda2, isPieSlice)
- {
- }
- /// <summary>
- /// Builds an elliptical arc from its canonical geometrical elements
- /// </summary>
- /// <param name="cx">Abscissa of the center of the ellipse</param>
- /// <param name="cy">Ordinate of the center of the ellipse</param>
- /// <param name="a">Semi-major axis</param>
- /// <param name="b">Semi-minor axis</param>
- /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
- /// <param name="lambda1">Start angle of the arc</param>
- /// <param name="lambda2">End angle of the arc</param>
- /// <param name="isPieSlice">If true, the lines between the center of the ellipse
- /// and the endpoints are part of the shape (it is pie slice like)</param>
- public EllipticalArc(double cx, double cy, double a, double b, double theta, double lambda1, double lambda2,
- bool isPieSlice)
- {
- Cx = cx;
- Cy = cy;
- A = a;
- B = b;
- Theta = theta;
- IsPieSlice = isPieSlice;
- Eta1 = Math.Atan2(Math.Sin(lambda1) / b, Math.Cos(lambda1) / a);
- Eta2 = Math.Atan2(Math.Sin(lambda2) / b, Math.Cos(lambda2) / a);
- _cosTheta = Math.Cos(theta);
- _sinTheta = Math.Sin(theta);
- _maxDegree = 3;
- _defaultFlatness = 0.5; // half a pixel
- Eta2 -= TwoPi * Math.Floor((Eta2 - Eta1) / TwoPi); //make sure we have eta1 <= eta2 <= eta1 + 2 PI
- // the preceding correction fails if we have exactly eta2-eta1 == 2*PI
- // it reduces the interval to zero length
- if (lambda2 - lambda1 > Math.PI && Eta2 - Eta1 < Math.PI)
- {
- Eta2 += TwoPi;
- }
- ComputeFocii();
- ComputeEndPoints();
- ComputeBounds();
- ComputeDerivedFlatnessParameters();
- }
- /// <summary>
- /// Build a full ellipse from its canonical geometrical elements
- /// </summary>
- /// <param name="center">Center of the ellipse</param>
- /// <param name="a">Semi-major axis</param>
- /// <param name="b">Semi-minor axis</param>
- /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
- public EllipticalArc(Point center, double a, double b, double theta) : this(center.X, center.Y, a, b, theta)
- {
- }
- /// <summary>
- /// Build a full ellipse from its canonical geometrical elements
- /// </summary>
- /// <param name="cx">Abscissa of the center of the ellipse</param>
- /// <param name="cy">Ordinate of the center of the ellipse</param>
- /// <param name="a">Semi-major axis</param>
- /// <param name="b">Semi-minor axis</param>
- /// <param name="theta">Orientation of the major axis with respect to the x axis</param>
- public EllipticalArc(double cx, double cy, double a, double b, double theta)
- {
- Cx = cx;
- Cy = cy;
- A = a;
- B = b;
- Theta = theta;
- IsPieSlice = false;
- Eta1 = 0;
- Eta2 = TwoPi;
- _cosTheta = Math.Cos(theta);
- _sinTheta = Math.Sin(theta);
- _maxDegree = 3;
- _defaultFlatness = 0.5; //half a pixel
- ComputeFocii();
- ComputeEndPoints();
- ComputeBounds();
- ComputeDerivedFlatnessParameters();
- }
- /// <summary>
- /// Sets the maximal degree allowed for Bezier curve approximation.
- /// </summary>
- /// <param name="maxDegree">Maximal allowed degree (must be between 1 and 3)</param>
- /// <exception cref="ArgumentException">Thrown if maxDegree is not between 1 and 3</exception>
- public void SetMaxDegree(int maxDegree)
- {
- if (maxDegree < 1 || maxDegree > 3)
- {
- throw new ArgumentException(@"maxDegree must be between 1 and 3", nameof(maxDegree));
- }
- _maxDegree = maxDegree;
- }
- /// <summary>
- /// Sets the default flatness for Bezier curve approximation
- /// </summary>
- /// <param name="defaultFlatness">default flatness (must be greater than 1e-10)</param>
- /// <exception cref="ArgumentException">Thrown if defaultFlatness is lower than 1e-10</exception>
- public void SetDefaultFlatness(double defaultFlatness)
- {
- if (defaultFlatness < 1.0E-10)
- {
- throw new ArgumentException(@"defaultFlatness must be greater than 1.0e-10", nameof(defaultFlatness));
- }
- _defaultFlatness = defaultFlatness;
- }
- /// <summary>
- /// Computes the locations of the focii
- /// </summary>
- private void ComputeFocii()
- {
- double d = Math.Sqrt(A * A - B * B);
- double dx = d * _cosTheta;
- double dy = d * _sinTheta;
- FirstFocusX = Cx - dx;
- FirstFocusY = Cy - dy;
- SecondFocusX = Cx + dx;
- SecondFocusY = Cy + dy;
- }
- /// <summary>
- /// Computes the locations of the endpoints
- /// </summary>
- private void ComputeEndPoints()
- {
- double aCosEta1 = A * Math.Cos(Eta1);
- double bSinEta1 = B * Math.Sin(Eta1);
- X1 = Cx + aCosEta1 * _cosTheta - bSinEta1 * _sinTheta;
- Y1 = Cy + aCosEta1 * _sinTheta + bSinEta1 * _cosTheta;
- double aCosEta2 = A * Math.Cos(Eta2);
- double bSinEta2 = B * Math.Sin(Eta2);
- X2 = Cx + aCosEta2 * _cosTheta - bSinEta2 * _sinTheta;
- Y2 = Cy + aCosEta2 * _sinTheta + bSinEta2 * _cosTheta;
- }
- /// <summary>
- /// Computes the bounding box
- /// </summary>
- private void ComputeBounds()
- {
- double bOnA = B / A;
- double etaXMin;
- double etaXMax;
- double etaYMin;
- double etaYMax;
- if (Math.Abs(_sinTheta) < 0.1)
- {
- double tanTheta = _sinTheta / _cosTheta;
- if (_cosTheta < 0)
- {
- etaXMin = -Math.Atan(tanTheta * bOnA);
- etaXMax = etaXMin + Math.PI;
- etaYMin = 0.5 * Math.PI - Math.Atan(tanTheta / bOnA);
- etaYMax = etaYMin + Math.PI;
- }
- else
- {
- etaXMax = -Math.Atan(tanTheta * bOnA);
- etaXMin = etaXMax - Math.PI;
- etaYMax = 0.5 * Math.PI - Math.Atan(tanTheta / bOnA);
- etaYMin = etaYMax - Math.PI;
- }
- }
- else
- {
- double invTanTheta = _cosTheta / _sinTheta;
- if (_sinTheta < 0)
- {
- etaXMax = 0.5 * Math.PI + Math.Atan(invTanTheta / bOnA);
- etaXMin = etaXMax - Math.PI;
- etaYMin = Math.Atan(invTanTheta * bOnA);
- etaYMax = etaYMin + Math.PI;
- }
- else
- {
- etaXMin = 0.5 * Math.PI + Math.Atan(invTanTheta / bOnA);
- etaXMax = etaXMin + Math.PI;
- etaYMax = Math.Atan(invTanTheta * bOnA);
- etaYMin = etaYMax - Math.PI;
- }
- }
- etaXMin -= TwoPi * Math.Floor((etaXMin - Eta1) / TwoPi);
- etaYMin -= TwoPi * Math.Floor((etaYMin - Eta1) / TwoPi);
- etaXMax -= TwoPi * Math.Floor((etaXMax - Eta1) / TwoPi);
- etaYMax -= TwoPi * Math.Floor((etaYMax - Eta1) / TwoPi);
- _xLeft = etaXMin <= Eta2
- ? Cx + A * Math.Cos(etaXMin) * _cosTheta - B * Math.Sin(etaXMin) * _sinTheta
- : Math.Min(X1, X2);
- _yUp = etaYMin <= Eta2 ? Cy + A * Math.Cos(etaYMin) * _sinTheta + B * Math.Sin(etaYMin) * _cosTheta : Math.Min(Y1, Y2);
- _width = (etaXMax <= Eta2
- ? Cx + A * Math.Cos(etaXMax) * _cosTheta - B * Math.Sin(etaXMax) * _sinTheta
- : Math.Max(X1, X2)) - _xLeft;
- _height = (etaYMax <= Eta2
- ? Cy + A * Math.Cos(etaYMax) * _sinTheta + B * Math.Sin(etaYMax) * _cosTheta
- : Math.Max(Y1, Y2)) - _yUp;
- }
- /// <summary>
- /// Computes the flatness parameters used in intersection tests
- /// </summary>
- private void ComputeDerivedFlatnessParameters()
- {
- F = (A - B) / A;
- E2 = F * (2.0 - F);
- G = 1.0 - F;
- G2 = G * G;
- }
- /// <summary>
- /// Computes the value of a rational function.
- /// This method handles rational functions where the numerator is quadratic
- /// and the denominator is linear
- /// </summary>
- /// <param name="x">Abscissa for which the value should be computed</param>
- /// <param name="c">Coefficients array of the rational function</param>
- /// <returns></returns>
- private static double RationalFunction(double x, double[] c)
- {
- return (x * (x * c[0] + c[1]) + c[2]) / (x + c[3]);
- }
- /// <summary>
- /// Estimate the approximation error for a sub-arc of the instance
- /// </summary>
- /// <param name="degree">Degree of the Bezier curve to use (1, 2 or 3)</param>
- /// <param name="etaA">Start angle of the sub-arc</param>
- /// <param name="etaB">End angle of the sub-arc</param>
- /// <returns>Upper bound of the approximation error between the Bezier curve and the real ellipse</returns>
- public double EstimateError(int degree, double etaA, double etaB)
- {
- if (degree < 1 || degree > _maxDegree)
- throw new ArgumentException($"degree should be between {1} and {_maxDegree}", nameof(degree));
- double eta = 0.5 * (etaA + etaB);
- if (degree < 2)
- {
- //start point
- double aCosEtaA = A * Math.Cos(etaA);
- double bSinEtaA = B * Math.Sin(etaA);
- double xA = Cx + aCosEtaA * _cosTheta - bSinEtaA * _sinTheta;
- double yA = Cy + aCosEtaA * _sinTheta + bSinEtaA * _cosTheta;
- //end point
- double aCosEtaB = A * Math.Cos(etaB);
- double bSinEtaB = B * Math.Sin(etaB);
- double xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
- double yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
- //maximal error point
- double aCosEta = A * Math.Cos(eta);
- double bSinEta = B * Math.Sin(eta);
- double x = Cx + aCosEta * _cosTheta - bSinEta * _sinTheta;
- double y = Cy + aCosEta * _sinTheta + bSinEta * _cosTheta;
- double dx = xB - xA;
- double dy = yB - yA;
- return Math.Abs(x * dy - y * dx + xB * yA - xA * yB) / Math.Sqrt(dx * dx + dy * dy);
- }
- else
- {
- double x = B / A;
- double dEta = etaB - etaA;
- double cos2 = Math.Cos(2 * eta);
- double cos4 = Math.Cos(4 * eta);
- double cos6 = Math.Cos(6 * eta);
- // select the right coeficients set according to degree and b/a
- double[][][] coeffs;
- double[] safety;
- if (degree == 2)
- {
- coeffs = x < 0.25 ? Coeffs2Low : Coeffs2High;
- safety = Safety2;
- }
- else
- {
- coeffs = x < 0.25 ? Coeffs3Low : Coeffs3High;
- safety = Safety3;
- }
- double c0 = RationalFunction(x, coeffs[0][0]) + cos2 * RationalFunction(x, coeffs[0][1]) +
- cos4 * RationalFunction(x, coeffs[0][2]) + cos6 * RationalFunction(x,
- coeffs[0][3]);
- double c1 = RationalFunction(x, coeffs[1][0]) + cos2 * RationalFunction(x, coeffs[1][1]) +
- cos4 * RationalFunction(x, coeffs[1][2]) + cos6 * RationalFunction(x,
- coeffs[1][3]);
- return RationalFunction(x, safety) * A * Math.Exp(c0 + c1 * dEta);
- }
- }
- /// <summary>
- /// Get the elliptical arc point for a given angular parameter
- /// </summary>
- /// <param name="lambda">Angular parameter for which point is desired</param>
- /// <returns>The desired elliptical arc point location</returns>
- public Point PointAt(double lambda)
- {
- double eta = Math.Atan2(Math.Sin(lambda) / B, Math.Cos(lambda) / A);
- double aCosEta = A * Math.Cos(eta);
- double bSinEta = B * Math.Sin(eta);
- Point p = new Point(Cx + aCosEta * _cosTheta - bSinEta * _sinTheta, Cy + aCosEta * _sinTheta + bSinEta * _cosTheta);
- return p;
- }
- /// <summary>
- /// Tests if the specified coordinates are inside the closed shape formed by this arc.
- /// If this is not a pie, then a shape derived by adding a closing chord is considered.
- /// </summary>
- /// <param name="x">Abscissa of the test point</param>
- /// <param name="y">Ordinate of the test point</param>
- /// <returns>True if the specified coordinates are inside the closed shape of this arc</returns>
- public bool Contains(double x, double y)
- {
- // position relative to the focii
- double dx1 = x - FirstFocusX;
- double dy1 = y - FirstFocusY;
- double dx2 = x - SecondFocusX;
- double dy2 = y - SecondFocusY;
- if (dx1 * dx1 + dy1 * dy1 + dx2 * dx2 + dy2 * dy2 > 4 * A * A)
- {
- // the point is outside of the ellipse
- return false;
- }
- if (IsPieSlice)
- {
- // check the location of the test point with respect to the
- // angular sector counted from the centre of the ellipse
- double dxC = x - Cx;
- double dyC = y - Cy;
- double u = dxC * _cosTheta + dyC * _sinTheta;
- double v = dyC * _cosTheta - dxC * _sinTheta;
- double eta = Math.Atan2(v / B, u / A);
- eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
- return eta <= Eta2;
- }
- // check the location of the test point with respect to the
- // chord joining the start and end points
- double dx = X2 - X1;
- double dy = Y2 - Y1;
- return x * dy - y * dx + X2 * Y1 - X1 * Y2 >= 0;
- }
- /// <summary>
- /// Tests if a line segment intersects the arc
- /// </summary>
- /// <param name="xA">abscissa of the first point of the line segment</param>
- /// <param name="yA">ordinate of the first point of the line segment</param>
- /// <param name="xB">abscissa of the second point of the line segment</param>
- /// <param name="yB">ordinate of the second point of the line segment</param>
- /// <returns>true if the two line segments intersect</returns>
- private bool IntersectArc(double xA, double yA, double xB, double yB)
- {
- double dx = xA - xB;
- double dy = yA - yB;
- double l = Math.Sqrt(dx * dx + dy * dy);
- if (l < 1.0E-10 * A)
- {
- // too small line segment, we consider it doesn't intersect anything
- return false;
- }
- double cz = (dx * _cosTheta + dy * _sinTheta) / l;
- double sz = (dy * _cosTheta - dx * _sinTheta) / l;
- // express position of the first point in canonical frame
- dx = xA - Cx;
- dy = yA - Cy;
- double u = dx * _cosTheta + dy * _sinTheta;
- double v = dy * _cosTheta - dx * _sinTheta;
- double u2 = u * u;
- double v2 = v * v;
- double g2U2Ma2 = G2 * (u2 - A * A);
- //double g2U2Ma2Mv2 = g2U2Ma2 - v2;
- double g2U2Ma2Pv2 = g2U2Ma2 + v2;
- // compute intersections with the ellipse along the line
- // as the roots of a 2nd degree polynom : c0 k^2 - 2 c1 k + c2 = 0
- double c0 = 1.0 - E2 * cz * cz;
- double c1 = G2 * u * cz + v * sz;
- double c2 = g2U2Ma2Pv2;
- double c12 = c1 * c1;
- double c0C2 = c0 * c2;
- if (c12 < c0C2)
- {
- // the line does not intersect the ellipse at all
- return false;
- }
- double k = c1 >= 0 ? (c1 + Math.Sqrt(c12 - c0C2)) / c0 : c2 / (c1 - Math.Sqrt(c12 - c0C2));
- if (k >= 0 && k <= l)
- {
- double uIntersect = u - k * cz;
- double vIntersect = v - k * sz;
- double eta = Math.Atan2(vIntersect / B, uIntersect / A);
- eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
- if (eta <= Eta2)
- {
- return true;
- }
- }
- k = c2 / (k * c0);
- if (k >= 0 && k <= l)
- {
- double uIntersect = u - k * cz;
- double vIntersect = v - k * sz;
- double eta = Math.Atan2(vIntersect / B, uIntersect / A);
- eta -= TwoPi * Math.Floor((eta - Eta1) / TwoPi);
- if (eta <= Eta2)
- {
- return true;
- }
- }
- return false;
- }
- /// <summary>
- /// Tests if two line segments intersect
- /// </summary>
- /// <param name="x1">Abscissa of the first point of the first line segment</param>
- /// <param name="y1">Ordinate of the first point of the first line segment</param>
- /// <param name="x2">Abscissa of the second point of the first line segment</param>
- /// <param name="y2">Ordinate of the second point of the first line segment</param>
- /// <param name="xA">Abscissa of the first point of the second line segment</param>
- /// <param name="yA">Ordinate of the first point of the second line segment</param>
- /// <param name="xB">Abscissa of the second point of the second line segment</param>
- /// <param name="yB">Ordinate of the second point of the second line segment</param>
- /// <returns>true if the two line segments intersect</returns>
- private static bool Intersect(double x1, double y1, double x2, double y2, double xA, double yA, double xB,
- double yB)
- {
- // elements of the equation of the (1, 2) line segment
- double dx12 = x2 - x1;
- double dy12 = y2 - y1;
- double k12 = x2 * y1 - x1 * y2;
- // elements of the equation of the (A, B) line segment
- double dxAb = xB - xA;
- double dyAb = yB - yA;
- double kAb = xB * yA - xA * yB;
- // compute relative positions of endpoints versus line segments
- double pAvs12 = xA * dy12 - yA * dx12 + k12;
- double pBvs12 = xB * dy12 - yB * dx12 + k12;
- double p1VsAb = x1 * dyAb - y1 * dxAb + kAb;
- double p2VsAb = x2 * dyAb - y2 * dxAb + kAb;
- return pAvs12 * pBvs12 <= 0 && p1VsAb * p2VsAb <= 0;
- }
- /// <summary>
- /// Tests if a line segment intersects the outline
- /// </summary>
- /// <param name="xA">Abscissa of the first point of the line segment</param>
- /// <param name="yA">Ordinate of the first point of the line segment</param>
- /// <param name="xB">Abscissa of the second point of the line segment</param>
- /// <param name="yB">Ordinate of the second point of the line segment</param>
- /// <returns>true if the two line segments intersect</returns>
- private bool IntersectOutline(double xA, double yA, double xB, double yB)
- {
- if (IntersectArc(xA, yA, xB, yB))
- {
- return true;
- }
- if (IsPieSlice)
- {
- return Intersect(Cx, Cy, X1, Y1, xA, yA, xB, yB) || Intersect(Cx, Cy, X2, Y2, xA, yA, xB, yB);
- }
- return Intersect(X1, Y1, X2, Y2, xA, yA, xB, yB);
- }
- /// <summary>
- /// Tests if the interior of a closed path derived from this arc entirely contains the specified rectangular area.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- /// <param name="x">Abscissa of the upper-left corner of the test rectangle</param>
- /// <param name="y">Ordinate of the upper-left corner of the test rectangle</param>
- /// <param name="w">Width of the test rectangle</param>
- /// <param name="h">Height of the test rectangle</param>
- /// <returns>true if the interior of a closed path derived from this arc entirely contains the specified rectangular area; false otherwise</returns>
- public bool Contains(double x, double y, double w, double h)
- {
- double xPlusW = x + w;
- double yPlusH = y + h;
- return Contains(x, y) && Contains(xPlusW, y) && Contains(x, yPlusH) && Contains(xPlusW, yPlusH) &&
- !IntersectOutline(x, y, xPlusW, y) && !IntersectOutline(xPlusW,
- y, xPlusW, yPlusH) && !IntersectOutline(xPlusW, yPlusH, x, yPlusH) &&
- !IntersectOutline(x, yPlusH, x, y);
- }
- /// <summary>
- /// Tests if a specified Point2D is inside the boundary of a closed path derived from this arc.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- /// <param name="p">Test point</param>
- /// <returns>true if the specified point is inside a closed path derived from this arc</returns>
- public bool Contains(Point p)
- {
- return Contains(p.X, p.Y);
- }
- /// <summary>
- /// Tests if the interior of a closed path derived from this arc entirely contains the specified Rectangle2D.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- /// <param name="r">Test rectangle</param>
- /// <returns>True if the interior of a closed path derived from this arc entirely contains the specified Rectangle2D; false otherwise</returns>
- public bool Contains(Rect r)
- {
- return Contains(r.X, r.Y, r.Width, r.Height);
- }
- /// <summary>
- /// Returns an integer Rectangle that completely encloses the closed path derived from this arc.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- public Rect GetBounds()
- {
- return new Rect(_xLeft, _yUp, _width, _height);
- }
- /// <summary>
- /// Builds the arc outline using given StreamGeometryContext and default (max) Bezier curve degree and acceptable error of half a pixel (0.5)
- /// </summary>
- /// <param name="path">A StreamGeometryContext to output the path commands to</param>
- public void BuildArc(IStreamGeometryContextImpl path)
- {
- BuildArc(path, _maxDegree, _defaultFlatness, true);
- }
- /// <summary>
- /// Builds the arc outline using given StreamGeometryContext
- /// </summary>
- /// <param name="path">A StreamGeometryContext to output the path commands to</param>
- /// <param name="degree">degree of the Bezier curve to use</param>
- /// <param name="threshold">acceptable error</param>
- /// <param name="openNewFigure">if true, a new figure will be started in the specified StreamGeometryContext</param>
- public void BuildArc(IStreamGeometryContextImpl path, int degree, double threshold, bool openNewFigure)
- {
- if (degree < 1 || degree > _maxDegree)
- throw new ArgumentException($"degree should be between {1} and {_maxDegree}", nameof(degree));
- // find the number of Bezier curves needed
- bool found = false;
- int n = 1;
- double dEta;
- double etaB;
- while (!found && n < 1024)
- {
- dEta = (Eta2 - Eta1) / n;
- if (dEta <= 0.5 * Math.PI)
- {
- etaB = Eta1;
- found = true;
- for (int i = 0; found && i < n; ++i)
- {
- double etaA = etaB;
- etaB += dEta;
- found = EstimateError(degree, etaA, etaB) <= threshold;
- }
- }
- n = n << 1;
- }
- dEta = (Eta2 - Eta1) / n;
- etaB = Eta1;
- double cosEtaB = Math.Cos(etaB);
- double sinEtaB = Math.Sin(etaB);
- double aCosEtaB = A * cosEtaB;
- double bSinEtaB = B * sinEtaB;
- double aSinEtaB = A * sinEtaB;
- double bCosEtaB = B * cosEtaB;
- double xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
- double yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
- double xBDot = -aSinEtaB * _cosTheta - bCosEtaB * _sinTheta;
- double yBDot = -aSinEtaB * _sinTheta + bCosEtaB * _cosTheta;
- /*
- This controls the drawing in case of pies
- if (openNewFigure)
- {
- if (IsPieSlice)
- {
- path.BeginFigure(new Point(Cx, Cy), false, false);
- path.LineTo(new Point(xB, yB), true, true);
- }
- else
- {
- path.BeginFigure(new Point(xB, yB), false, false);
- }
- }
- else
- {
- //path.LineTo(new Point(xB, yB), true, true);
- }
- */
- //otherwise we're supposed to be already at the (xB,yB)
- double t = Math.Tan(0.5 * dEta);
- double alpha = Math.Sin(dEta) * (Math.Sqrt(4 + 3 * t * t) - 1) / 3;
- for (int i = 0; i < n; ++i)
- {
- //double etaA = etaB;
- double xA = xB;
- double yA = yB;
- double xADot = xBDot;
- double yADot = yBDot;
- etaB += dEta;
- cosEtaB = Math.Cos(etaB);
- sinEtaB = Math.Sin(etaB);
- aCosEtaB = A * cosEtaB;
- bSinEtaB = B * sinEtaB;
- aSinEtaB = A * sinEtaB;
- bCosEtaB = B * cosEtaB;
- xB = Cx + aCosEtaB * _cosTheta - bSinEtaB * _sinTheta;
- yB = Cy + aCosEtaB * _sinTheta + bSinEtaB * _cosTheta;
- xBDot = -aSinEtaB * _cosTheta - bCosEtaB * _sinTheta;
- yBDot = -aSinEtaB * _sinTheta + bCosEtaB * _cosTheta;
- if (degree == 1)
- {
- path.LineTo(new Point(xB, yB));
- }
- else if (degree == 2)
- {
- double k = (yBDot * (xB - xA) - xBDot * (yB - yA)) / (xADot * yBDot - yADot * xBDot);
- path.QuadraticBezierTo(new Point(xA + k * xADot, yA + k * yADot), new Point(xB, yB));
- }
- else
- {
- path.CubicBezierTo(
- new Point(xA + alpha * xADot, yA + alpha * yADot),
- new Point(xB - alpha * xBDot, yB - alpha * yBDot),
- new Point(xB, yB)
- );
- }
- }
- if (IsPieSlice)
- {
- path.LineTo(new Point(Cx, Cy));
- }
- }
- /// <summary>
- /// Calculates the angle between two vectors
- /// </summary>
- /// <param name="v1">Vector V1</param>
- /// <param name="v2">Vector V2</param>
- /// <returns>The signed angle between v2 and v1</returns>
- static double GetAngle(Vector v1, Vector v2)
- {
- var scalar = v1 * v2;
- return Math.Atan2(v1.X * v2.Y - v2.X * v1.Y, scalar);
- }
- /// <summary>
- /// Simple matrix used for rotate transforms.
- /// At some point I did not trust the WPF Matrix struct, and wrote my own simple one -_-
- /// This is supposed to be replaced with proper WPF Matrices everywhere
- /// </summary>
- private readonly struct SimpleMatrix
- {
- private readonly double _a, _b, _c, _d;
- public SimpleMatrix(double a, double b, double c, double d)
- {
- _a = a;
- _b = b;
- _c = c;
- _d = d;
- }
- public static Point operator *(SimpleMatrix m, Point p)
- {
- return new Point(m._a * p.X + m._b * p.Y, m._c * p.X + m._d * p.Y);
- }
- }
- /// <summary>
- /// ArcTo Helper for StreamGeometryContext
- /// </summary>
- /// <param name="path">Target path</param>
- /// <param name="p1">Start point</param>
- /// <param name="p2">End point</param>
- /// <param name="size">Ellipse radii</param>
- /// <param name="theta">Ellipse theta (angle measured from the abscissa)</param>
- /// <param name="isLargeArc">Large Arc Indicator</param>
- /// <param name="clockwise">Clockwise direction flag</param>
- public static void BuildArc(IStreamGeometryContextImpl path, Point p1, Point p2, Size size, double theta, bool isLargeArc, bool clockwise)
- {
- // var orthogonalizer = new RotateTransform(-theta);
- var orth = new SimpleMatrix(Math.Cos(theta), Math.Sin(theta), -Math.Sin(theta), Math.Cos(theta));
- var rest = new SimpleMatrix(Math.Cos(theta), -Math.Sin(theta), Math.Sin(theta), Math.Cos(theta));
- // var restorer = orthogonalizer.Inverse;
- // if(restorer == null) throw new InvalidOperationException("Can't get a restorer!");
- Point p1S = orth * (new Point((p1.X - p2.X) / 2, (p1.Y - p2.Y) / 2));
- double rx = size.Width;
- double ry = size.Height;
- double rx2 = rx * rx;
- double ry2 = ry * ry;
- double y1S2 = p1S.Y * p1S.Y;
- double x1S2 = p1S.X * p1S.X;
- double numerator = rx2*ry2 - rx2*y1S2 - ry2*x1S2;
- double denominator = rx2*y1S2 + ry2*x1S2;
- if (Math.Abs(denominator) < 1e-8)
- {
- path.LineTo(p2);
- return;
- }
- if ((numerator / denominator) < 0)
- {
- double lambda = x1S2/rx2 + y1S2/ry2;
- double lambdaSqrt = Math.Sqrt(lambda);
- if (lambda > 1)
- {
- rx *= lambdaSqrt;
- ry *= lambdaSqrt;
- rx2 = rx*rx;
- ry2 = ry*ry;
- numerator = rx2 * ry2 - rx2 * y1S2 - ry2 * x1S2;
- if (numerator < 0)
- numerator = 0;
- denominator = rx2 * y1S2 + ry2 * x1S2;
- }
- }
- double multiplier = Math.Sqrt(numerator / denominator);
- Point mulVec = new Point(rx * p1S.Y / ry, -ry * p1S.X / rx);
- int sign = (clockwise != isLargeArc) ? 1 : -1;
- Point cs = new Point(mulVec.X * multiplier * sign, mulVec.Y * multiplier * sign);
- Vector translation = new Vector((p1.X + p2.X) / 2, (p1.Y + p2.Y) / 2);
- Point c = rest * (cs) + translation;
- // See "http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter" to understand
- // how the ellipse center is calculated
- // from here, W3C recommendations from the above link make less sense than Darth Vader pouring
- // some sea water in a water filter while standing in the water confused
- // Therefore, we are on our own with our task of finding out lambda1 and lambda2
- // matching our points p1 and p2.
- // Fortunately it is not so difficult now, when we already know the ellipse centre.
- // We eliminate the offset, making our ellipse zero-centered, then we eliminate the theta,
- // making its Y and X axes the same as global axes. Then we can easily get our angles using
- // good old school formula for angles between vectors.
- // We should remember that this class expects true angles, and not the t-values for ellipse equation.
- // To understand how t-values are obtained, one should see Etas calculation in the constructor code.
- var p1NoOffset = orth * (p1-c);
- var p2NoOffset = orth * (p2-c);
- // if the arc is drawn clockwise, we swap start and end points
- var revisedP1 = clockwise ? p1NoOffset : p2NoOffset;
- var revisedP2 = clockwise ? p2NoOffset : p1NoOffset;
- var thetaStart = GetAngle(new Vector(1, 0), revisedP1);
- var thetaEnd = GetAngle(new Vector(1, 0), revisedP2);
- // Uncomment this to draw a pie
- // path.LineTo(c, true, true);
- // path.LineTo(clockwise ? p1 : p2, true,true);
- path.LineTo(clockwise ? p1 : p2);
- var arc = new EllipticalArc(c.X, c.Y, rx, ry, theta, thetaStart, thetaEnd, false);
- arc.BuildArc(path, arc._maxDegree, arc._defaultFlatness, false);
- //uncomment this to draw a pie
- //path.LineTo(c, true, true);
- }
- /// <summary>
- /// Tests if the interior of the closed path derived from this arc intersects the interior of a specified rectangular area.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- public bool Intersects(double x, double y, double w, double h)
- {
- double xPlusW = x + w;
- double yPlusH = y + h;
- return Contains(x, y) || Contains(xPlusW, y) || Contains(x, yPlusH) || Contains(xPlusW, yPlusH) ||
- IntersectOutline(x, y, xPlusW, y) || IntersectOutline(xPlusW,
- y, xPlusW, yPlusH) || IntersectOutline(xPlusW, yPlusH, x, yPlusH) ||
- IntersectOutline(x, yPlusH, x, y);
- }
- /// <summary>
- /// Tests if the interior of the closed path derived from this arc intersects the interior of a specified rectangular area.
- /// The closed path is derived with respect to the IsPieSlice value.
- /// </summary>
- public bool Intersects(Rect r)
- {
- return Intersects(r.X, r.Y, r.Width, r.Height);
- }
- }
- public static void ArcTo(IStreamGeometryContextImpl streamGeometryContextImpl, Point currentPoint, Point point, Size size, double rotationAngle, bool isLargeArc, SweepDirection sweepDirection)
- {
- EllipticalArc.BuildArc(streamGeometryContextImpl, currentPoint, point, size, rotationAngle*Math.PI/180,
- isLargeArc,
- sweepDirection == SweepDirection.Clockwise);
- }
- }
- }
|