xxhash.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * xxHash - Fast Hash algorithm
  3. * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
  4. *
  5. * You can contact the author at :
  6. * - xxHash homepage: http://www.xxhash.com
  7. * - xxHash source repository : https://github.com/Cyan4973/xxHash
  8. *
  9. * This source code is licensed under both the BSD-style license (found in the
  10. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11. * in the COPYING file in the root directory of this source tree).
  12. * You may select, at your option, one of the above-listed licenses.
  13. */
  14. /* *************************************
  15. * Tuning parameters
  16. ***************************************/
  17. /*!XXH_FORCE_MEMORY_ACCESS :
  18. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  19. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  20. * The below switch allow to select different access method for improved performance.
  21. * Method 0 (default) : use `memcpy()`. Safe and portable.
  22. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
  23. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  24. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
  25. * It can generate buggy code on targets which do not support unaligned memory accesses.
  26. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
  27. * See http://stackoverflow.com/a/32095106/646947 for details.
  28. * Prefer these methods in priority order (0 > 1 > 2)
  29. */
  30. #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  31. # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
  32. # define XXH_FORCE_MEMORY_ACCESS 2
  33. # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  34. (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
  35. defined(__ICCARM__)
  36. # define XXH_FORCE_MEMORY_ACCESS 1
  37. # endif
  38. #endif
  39. /*!XXH_ACCEPT_NULL_INPUT_POINTER :
  40. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  41. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  42. * By default, this option is disabled. To enable it, uncomment below define :
  43. */
  44. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  45. /*!XXH_FORCE_NATIVE_FORMAT :
  46. * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  47. * Results are therefore identical for little-endian and big-endian CPU.
  48. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  49. * Should endian-independence be of no importance for your application, you may set the #define below to 1,
  50. * to improve speed for Big-endian CPU.
  51. * This option has no impact on Little_Endian CPU.
  52. */
  53. #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
  54. # define XXH_FORCE_NATIVE_FORMAT 0
  55. #endif
  56. /*!XXH_FORCE_ALIGN_CHECK :
  57. * This is a minor performance trick, only useful with lots of very small keys.
  58. * It means : check for aligned/unaligned input.
  59. * The check costs one initial branch per hash; set to 0 when the input data
  60. * is guaranteed to be aligned.
  61. */
  62. #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
  63. # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  64. # define XXH_FORCE_ALIGN_CHECK 0
  65. # else
  66. # define XXH_FORCE_ALIGN_CHECK 1
  67. # endif
  68. #endif
  69. /* *************************************
  70. * Includes & Memory related functions
  71. ***************************************/
  72. /* Modify the local functions below should you wish to use some other memory routines */
  73. /* for malloc(), free() */
  74. #include <stdlib.h>
  75. #include <stddef.h> /* size_t */
  76. static void* XXH_malloc(size_t s) { return malloc(s); }
  77. static void XXH_free (void* p) { free(p); }
  78. /* for memcpy() */
  79. #include <string.h>
  80. static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
  81. #ifndef XXH_STATIC_LINKING_ONLY
  82. # define XXH_STATIC_LINKING_ONLY
  83. #endif
  84. #include "xxhash.h"
  85. /* *************************************
  86. * Compiler Specific Options
  87. ***************************************/
  88. #if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
  89. # define INLINE_KEYWORD inline
  90. #else
  91. # define INLINE_KEYWORD
  92. #endif
  93. #if defined(__GNUC__) || defined(__ICCARM__)
  94. # define FORCE_INLINE_ATTR __attribute__((always_inline))
  95. #elif defined(_MSC_VER)
  96. # define FORCE_INLINE_ATTR __forceinline
  97. #else
  98. # define FORCE_INLINE_ATTR
  99. #endif
  100. #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
  101. #ifdef _MSC_VER
  102. # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
  103. #endif
  104. /* *************************************
  105. * Basic Types
  106. ***************************************/
  107. #ifndef MEM_MODULE
  108. # define MEM_MODULE
  109. # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  110. # include <stdint.h>
  111. typedef uint8_t BYTE;
  112. typedef uint16_t U16;
  113. typedef uint32_t U32;
  114. typedef int32_t S32;
  115. typedef uint64_t U64;
  116. # else
  117. typedef unsigned char BYTE;
  118. typedef unsigned short U16;
  119. typedef unsigned int U32;
  120. typedef signed int S32;
  121. typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
  122. # endif
  123. #endif
  124. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  125. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  126. static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
  127. static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
  128. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  129. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  130. /* currently only defined for gcc and icc */
  131. typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
  132. static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
  133. static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
  134. #else
  135. /* portable and safe solution. Generally efficient.
  136. * see : http://stackoverflow.com/a/32095106/646947
  137. */
  138. static U32 XXH_read32(const void* memPtr)
  139. {
  140. U32 val;
  141. memcpy(&val, memPtr, sizeof(val));
  142. return val;
  143. }
  144. static U64 XXH_read64(const void* memPtr)
  145. {
  146. U64 val;
  147. memcpy(&val, memPtr, sizeof(val));
  148. return val;
  149. }
  150. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  151. /* ****************************************
  152. * Compiler-specific Functions and Macros
  153. ******************************************/
  154. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  155. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  156. #if defined(_MSC_VER)
  157. # define XXH_rotl32(x,r) _rotl(x,r)
  158. # define XXH_rotl64(x,r) _rotl64(x,r)
  159. #else
  160. #if defined(__ICCARM__)
  161. # include <intrinsics.h>
  162. # define XXH_rotl32(x,r) __ROR(x,(32 - r))
  163. #else
  164. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  165. #endif
  166. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  167. #endif
  168. #if defined(_MSC_VER) /* Visual Studio */
  169. # define XXH_swap32 _byteswap_ulong
  170. # define XXH_swap64 _byteswap_uint64
  171. #elif GCC_VERSION >= 403
  172. # define XXH_swap32 __builtin_bswap32
  173. # define XXH_swap64 __builtin_bswap64
  174. #else
  175. static U32 XXH_swap32 (U32 x)
  176. {
  177. return ((x << 24) & 0xff000000 ) |
  178. ((x << 8) & 0x00ff0000 ) |
  179. ((x >> 8) & 0x0000ff00 ) |
  180. ((x >> 24) & 0x000000ff );
  181. }
  182. static U64 XXH_swap64 (U64 x)
  183. {
  184. return ((x << 56) & 0xff00000000000000ULL) |
  185. ((x << 40) & 0x00ff000000000000ULL) |
  186. ((x << 24) & 0x0000ff0000000000ULL) |
  187. ((x << 8) & 0x000000ff00000000ULL) |
  188. ((x >> 8) & 0x00000000ff000000ULL) |
  189. ((x >> 24) & 0x0000000000ff0000ULL) |
  190. ((x >> 40) & 0x000000000000ff00ULL) |
  191. ((x >> 56) & 0x00000000000000ffULL);
  192. }
  193. #endif
  194. /* *************************************
  195. * Architecture Macros
  196. ***************************************/
  197. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  198. /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
  199. #ifndef XXH_CPU_LITTLE_ENDIAN
  200. static const int g_one = 1;
  201. # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
  202. #endif
  203. /* ***************************
  204. * Memory reads
  205. *****************************/
  206. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  207. FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  208. {
  209. if (align==XXH_unaligned)
  210. return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
  211. else
  212. return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
  213. }
  214. FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  215. {
  216. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  217. }
  218. static U32 XXH_readBE32(const void* ptr)
  219. {
  220. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
  221. }
  222. FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  223. {
  224. if (align==XXH_unaligned)
  225. return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
  226. else
  227. return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
  228. }
  229. FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  230. {
  231. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  232. }
  233. static U64 XXH_readBE64(const void* ptr)
  234. {
  235. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
  236. }
  237. /* *************************************
  238. * Macros
  239. ***************************************/
  240. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
  241. /* *************************************
  242. * Constants
  243. ***************************************/
  244. static const U32 PRIME32_1 = 2654435761U;
  245. static const U32 PRIME32_2 = 2246822519U;
  246. static const U32 PRIME32_3 = 3266489917U;
  247. static const U32 PRIME32_4 = 668265263U;
  248. static const U32 PRIME32_5 = 374761393U;
  249. static const U64 PRIME64_1 = 11400714785074694791ULL;
  250. static const U64 PRIME64_2 = 14029467366897019727ULL;
  251. static const U64 PRIME64_3 = 1609587929392839161ULL;
  252. static const U64 PRIME64_4 = 9650029242287828579ULL;
  253. static const U64 PRIME64_5 = 2870177450012600261ULL;
  254. XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
  255. /* **************************
  256. * Utils
  257. ****************************/
  258. XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
  259. {
  260. memcpy(dstState, srcState, sizeof(*dstState));
  261. }
  262. XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
  263. {
  264. memcpy(dstState, srcState, sizeof(*dstState));
  265. }
  266. /* ***************************
  267. * Simple Hash Functions
  268. *****************************/
  269. static U32 XXH32_round(U32 seed, U32 input)
  270. {
  271. seed += input * PRIME32_2;
  272. seed = XXH_rotl32(seed, 13);
  273. seed *= PRIME32_1;
  274. return seed;
  275. }
  276. FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  277. {
  278. const BYTE* p = (const BYTE*)input;
  279. const BYTE* bEnd = p + len;
  280. U32 h32;
  281. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  282. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  283. if (p==NULL) {
  284. len=0;
  285. bEnd=p=(const BYTE*)(size_t)16;
  286. }
  287. #endif
  288. if (len>=16) {
  289. const BYTE* const limit = bEnd - 16;
  290. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  291. U32 v2 = seed + PRIME32_2;
  292. U32 v3 = seed + 0;
  293. U32 v4 = seed - PRIME32_1;
  294. do {
  295. v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
  296. v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
  297. v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
  298. v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
  299. } while (p<=limit);
  300. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  301. } else {
  302. h32 = seed + PRIME32_5;
  303. }
  304. h32 += (U32) len;
  305. while (p+4<=bEnd) {
  306. h32 += XXH_get32bits(p) * PRIME32_3;
  307. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  308. p+=4;
  309. }
  310. while (p<bEnd) {
  311. h32 += (*p) * PRIME32_5;
  312. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  313. p++;
  314. }
  315. h32 ^= h32 >> 15;
  316. h32 *= PRIME32_2;
  317. h32 ^= h32 >> 13;
  318. h32 *= PRIME32_3;
  319. h32 ^= h32 >> 16;
  320. return h32;
  321. }
  322. XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
  323. {
  324. #if 0
  325. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  326. XXH32_CREATESTATE_STATIC(state);
  327. XXH32_reset(state, seed);
  328. XXH32_update(state, input, len);
  329. return XXH32_digest(state);
  330. #else
  331. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  332. if (XXH_FORCE_ALIGN_CHECK) {
  333. if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
  334. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  335. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  336. else
  337. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  338. } }
  339. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  340. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  341. else
  342. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  343. #endif
  344. }
  345. static U64 XXH64_round(U64 acc, U64 input)
  346. {
  347. acc += input * PRIME64_2;
  348. acc = XXH_rotl64(acc, 31);
  349. acc *= PRIME64_1;
  350. return acc;
  351. }
  352. static U64 XXH64_mergeRound(U64 acc, U64 val)
  353. {
  354. val = XXH64_round(0, val);
  355. acc ^= val;
  356. acc = acc * PRIME64_1 + PRIME64_4;
  357. return acc;
  358. }
  359. FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  360. {
  361. const BYTE* p = (const BYTE*)input;
  362. const BYTE* const bEnd = p + len;
  363. U64 h64;
  364. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  365. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  366. if (p==NULL) {
  367. len=0;
  368. bEnd=p=(const BYTE*)(size_t)32;
  369. }
  370. #endif
  371. if (len>=32) {
  372. const BYTE* const limit = bEnd - 32;
  373. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  374. U64 v2 = seed + PRIME64_2;
  375. U64 v3 = seed + 0;
  376. U64 v4 = seed - PRIME64_1;
  377. do {
  378. v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
  379. v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
  380. v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
  381. v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
  382. } while (p<=limit);
  383. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  384. h64 = XXH64_mergeRound(h64, v1);
  385. h64 = XXH64_mergeRound(h64, v2);
  386. h64 = XXH64_mergeRound(h64, v3);
  387. h64 = XXH64_mergeRound(h64, v4);
  388. } else {
  389. h64 = seed + PRIME64_5;
  390. }
  391. h64 += (U64) len;
  392. while (p+8<=bEnd) {
  393. U64 const k1 = XXH64_round(0, XXH_get64bits(p));
  394. h64 ^= k1;
  395. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  396. p+=8;
  397. }
  398. if (p+4<=bEnd) {
  399. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  400. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  401. p+=4;
  402. }
  403. while (p<bEnd) {
  404. h64 ^= (*p) * PRIME64_5;
  405. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  406. p++;
  407. }
  408. h64 ^= h64 >> 33;
  409. h64 *= PRIME64_2;
  410. h64 ^= h64 >> 29;
  411. h64 *= PRIME64_3;
  412. h64 ^= h64 >> 32;
  413. return h64;
  414. }
  415. XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  416. {
  417. #if 0
  418. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  419. XXH64_CREATESTATE_STATIC(state);
  420. XXH64_reset(state, seed);
  421. XXH64_update(state, input, len);
  422. return XXH64_digest(state);
  423. #else
  424. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  425. if (XXH_FORCE_ALIGN_CHECK) {
  426. if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
  427. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  428. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  429. else
  430. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  431. } }
  432. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  433. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  434. else
  435. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  436. #endif
  437. }
  438. /* **************************************************
  439. * Advanced Hash Functions
  440. ****************************************************/
  441. XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
  442. {
  443. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  444. }
  445. XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  446. {
  447. XXH_free(statePtr);
  448. return XXH_OK;
  449. }
  450. XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
  451. {
  452. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  453. }
  454. XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  455. {
  456. XXH_free(statePtr);
  457. return XXH_OK;
  458. }
  459. /*** Hash feed ***/
  460. XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
  461. {
  462. XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  463. memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
  464. state.v1 = seed + PRIME32_1 + PRIME32_2;
  465. state.v2 = seed + PRIME32_2;
  466. state.v3 = seed + 0;
  467. state.v4 = seed - PRIME32_1;
  468. memcpy(statePtr, &state, sizeof(state));
  469. return XXH_OK;
  470. }
  471. XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
  472. {
  473. XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  474. memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
  475. state.v1 = seed + PRIME64_1 + PRIME64_2;
  476. state.v2 = seed + PRIME64_2;
  477. state.v3 = seed + 0;
  478. state.v4 = seed - PRIME64_1;
  479. memcpy(statePtr, &state, sizeof(state));
  480. return XXH_OK;
  481. }
  482. FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
  483. {
  484. const BYTE* p = (const BYTE*)input;
  485. const BYTE* const bEnd = p + len;
  486. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  487. if (input==NULL) return XXH_ERROR;
  488. #endif
  489. state->total_len_32 += (unsigned)len;
  490. state->large_len |= (len>=16) | (state->total_len_32>=16);
  491. if (state->memsize + len < 16) { /* fill in tmp buffer */
  492. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  493. state->memsize += (unsigned)len;
  494. return XXH_OK;
  495. }
  496. if (state->memsize) { /* some data left from previous update */
  497. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  498. { const U32* p32 = state->mem32;
  499. state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
  500. state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
  501. state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
  502. state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
  503. }
  504. p += 16-state->memsize;
  505. state->memsize = 0;
  506. }
  507. if (p <= bEnd-16) {
  508. const BYTE* const limit = bEnd - 16;
  509. U32 v1 = state->v1;
  510. U32 v2 = state->v2;
  511. U32 v3 = state->v3;
  512. U32 v4 = state->v4;
  513. do {
  514. v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
  515. v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
  516. v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
  517. v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
  518. } while (p<=limit);
  519. state->v1 = v1;
  520. state->v2 = v2;
  521. state->v3 = v3;
  522. state->v4 = v4;
  523. }
  524. if (p < bEnd) {
  525. XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
  526. state->memsize = (unsigned)(bEnd-p);
  527. }
  528. return XXH_OK;
  529. }
  530. XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  531. {
  532. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  533. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  534. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  535. else
  536. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  537. }
  538. FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
  539. {
  540. const BYTE * p = (const BYTE*)state->mem32;
  541. const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
  542. U32 h32;
  543. if (state->large_len) {
  544. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  545. } else {
  546. h32 = state->v3 /* == seed */ + PRIME32_5;
  547. }
  548. h32 += state->total_len_32;
  549. while (p+4<=bEnd) {
  550. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  551. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  552. p+=4;
  553. }
  554. while (p<bEnd) {
  555. h32 += (*p) * PRIME32_5;
  556. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  557. p++;
  558. }
  559. h32 ^= h32 >> 15;
  560. h32 *= PRIME32_2;
  561. h32 ^= h32 >> 13;
  562. h32 *= PRIME32_3;
  563. h32 ^= h32 >> 16;
  564. return h32;
  565. }
  566. XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
  567. {
  568. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  569. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  570. return XXH32_digest_endian(state_in, XXH_littleEndian);
  571. else
  572. return XXH32_digest_endian(state_in, XXH_bigEndian);
  573. }
  574. /* **** XXH64 **** */
  575. FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
  576. {
  577. const BYTE* p = (const BYTE*)input;
  578. const BYTE* const bEnd = p + len;
  579. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  580. if (input==NULL) return XXH_ERROR;
  581. #endif
  582. state->total_len += len;
  583. if (state->memsize + len < 32) { /* fill in tmp buffer */
  584. if (input != NULL) {
  585. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  586. }
  587. state->memsize += (U32)len;
  588. return XXH_OK;
  589. }
  590. if (state->memsize) { /* tmp buffer is full */
  591. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  592. state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
  593. state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
  594. state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
  595. state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
  596. p += 32-state->memsize;
  597. state->memsize = 0;
  598. }
  599. if (p+32 <= bEnd) {
  600. const BYTE* const limit = bEnd - 32;
  601. U64 v1 = state->v1;
  602. U64 v2 = state->v2;
  603. U64 v3 = state->v3;
  604. U64 v4 = state->v4;
  605. do {
  606. v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
  607. v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
  608. v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
  609. v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
  610. } while (p<=limit);
  611. state->v1 = v1;
  612. state->v2 = v2;
  613. state->v3 = v3;
  614. state->v4 = v4;
  615. }
  616. if (p < bEnd) {
  617. XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
  618. state->memsize = (unsigned)(bEnd-p);
  619. }
  620. return XXH_OK;
  621. }
  622. XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  623. {
  624. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  625. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  626. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  627. else
  628. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  629. }
  630. FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
  631. {
  632. const BYTE * p = (const BYTE*)state->mem64;
  633. const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
  634. U64 h64;
  635. if (state->total_len >= 32) {
  636. U64 const v1 = state->v1;
  637. U64 const v2 = state->v2;
  638. U64 const v3 = state->v3;
  639. U64 const v4 = state->v4;
  640. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  641. h64 = XXH64_mergeRound(h64, v1);
  642. h64 = XXH64_mergeRound(h64, v2);
  643. h64 = XXH64_mergeRound(h64, v3);
  644. h64 = XXH64_mergeRound(h64, v4);
  645. } else {
  646. h64 = state->v3 + PRIME64_5;
  647. }
  648. h64 += (U64) state->total_len;
  649. while (p+8<=bEnd) {
  650. U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
  651. h64 ^= k1;
  652. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  653. p+=8;
  654. }
  655. if (p+4<=bEnd) {
  656. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  657. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  658. p+=4;
  659. }
  660. while (p<bEnd) {
  661. h64 ^= (*p) * PRIME64_5;
  662. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  663. p++;
  664. }
  665. h64 ^= h64 >> 33;
  666. h64 *= PRIME64_2;
  667. h64 ^= h64 >> 29;
  668. h64 *= PRIME64_3;
  669. h64 ^= h64 >> 32;
  670. return h64;
  671. }
  672. XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  673. {
  674. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  675. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  676. return XXH64_digest_endian(state_in, XXH_littleEndian);
  677. else
  678. return XXH64_digest_endian(state_in, XXH_bigEndian);
  679. }
  680. /* **************************
  681. * Canonical representation
  682. ****************************/
  683. /*! Default XXH result types are basic unsigned 32 and 64 bits.
  684. * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
  685. * These functions allow transformation of hash result into and from its canonical format.
  686. * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
  687. */
  688. XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
  689. {
  690. XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
  691. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
  692. memcpy(dst, &hash, sizeof(*dst));
  693. }
  694. XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
  695. {
  696. XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
  697. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
  698. memcpy(dst, &hash, sizeof(*dst));
  699. }
  700. XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
  701. {
  702. return XXH_readBE32(src);
  703. }
  704. XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
  705. {
  706. return XXH_readBE64(src);
  707. }