| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 | 
							- // SPDX-License-Identifier: 0BSD
 
- ///////////////////////////////////////////////////////////////////////////////
 
- //
 
- /// \file       memcmplen.h
 
- /// \brief      Optimized comparison of two buffers
 
- //
 
- //  Author:     Lasse Collin
 
- //
 
- ///////////////////////////////////////////////////////////////////////////////
 
- #ifndef LZMA_MEMCMPLEN_H
 
- #define LZMA_MEMCMPLEN_H
 
- #include "common.h"
 
- #ifdef HAVE_IMMINTRIN_H
 
- #	include <immintrin.h>
 
- #endif
 
- // Only include <intrin.h> if it is needed. The header is only needed
 
- // on Windows when using an MSVC compatible compiler. The Intel compiler
 
- // can use the intrinsics without the header file.
 
- #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
 
- 		&& defined(_MSC_VER) \
 
- 		&& (defined(_M_X64) \
 
- 			|| defined(_M_ARM64) || defined(_M_ARM64EC)) \
 
- 		&& !defined(__INTEL_COMPILER)
 
- #	include <intrin.h>
 
- #endif
 
- /// Find out how many equal bytes the two buffers have.
 
- ///
 
- /// \param      buf1    First buffer
 
- /// \param      buf2    Second buffer
 
- /// \param      len     How many bytes have already been compared and will
 
- ///                     be assumed to match
 
- /// \param      limit   How many bytes to compare at most, including the
 
- ///                     already-compared bytes. This must be significantly
 
- ///                     smaller than UINT32_MAX to avoid integer overflows.
 
- ///                     Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
 
- ///                     the specified limit from both buf1 and buf2.
 
- ///
 
- /// \return     Number of equal bytes in the buffers is returned.
 
- ///             This is always at least len and at most limit.
 
- ///
 
- /// \note       LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
 
- ///             It's rounded up to 2^n. This extra amount needs to be
 
- ///             allocated in the buffers being used. It needs to be
 
- ///             initialized too to keep Valgrind quiet.
 
- static lzma_always_inline uint32_t
 
- lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
 
- 		uint32_t len, uint32_t limit)
 
- {
 
- 	assert(len <= limit);
 
- 	assert(limit <= UINT32_MAX / 2);
 
- #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
 
- 		&& (((TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) \
 
- 				&& (defined(__x86_64__) \
 
- 					|| defined(__aarch64__))) \
 
- 			|| (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
 
- 			|| (defined(__INTEL_COMPILER) && defined(_M_X64)) \
 
- 			|| (defined(_MSC_VER) && (defined(_M_X64) \
 
- 				|| defined(_M_ARM64) || defined(_M_ARM64EC))))
 
- 	// This is only for x86-64 and ARM64 for now. This might be fine on
 
- 	// other 64-bit processors too. On big endian one should use xor
 
- 	// instead of subtraction and switch to __builtin_clzll().
 
- 	//
 
- 	// Reasons to use subtraction instead of xor:
 
- 	//
 
- 	//   - On some x86-64 processors (Intel Sandy Bridge to Tiger Lake),
 
- 	//     sub+jz and sub+jnz can be fused but xor+jz or xor+jnz cannot.
 
- 	//     Thus using subtraction has potential to be a tiny amount faster
 
- 	//     since the code checks if the quotient is non-zero.
 
- 	//
 
- 	//   - Some processors (Intel Pentium 4) used to have more ALU
 
- 	//     resources for add/sub instructions than and/or/xor.
 
- 	//
 
- 	// The processor info is based on Agner Fog's microarchitecture.pdf
 
- 	// version 2023-05-26. https://www.agner.org/optimize/
 
- #define LZMA_MEMCMPLEN_EXTRA 8
 
- 	while (len < limit) {
 
- 		const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len);
 
- 		if (x != 0) {
 
- 	// MSVC or Intel C compiler on Windows
 
- #	if defined(_MSC_VER) || defined(__INTEL_COMPILER)
 
- 			unsigned long tmp;
 
- 			_BitScanForward64(&tmp, x);
 
- 			len += (uint32_t)tmp >> 3;
 
- 	// GCC, Clang, or Intel C compiler
 
- #	else
 
- 			len += (uint32_t)__builtin_ctzll(x) >> 3;
 
- #	endif
 
- 			return my_min(len, limit);
 
- 		}
 
- 		len += 8;
 
- 	}
 
- 	return limit;
 
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
 
- 		&& defined(HAVE__MM_MOVEMASK_EPI8) \
 
- 		&& (defined(__SSE2__) \
 
- 			|| (defined(_MSC_VER) && defined(_M_IX86_FP) \
 
- 				&& _M_IX86_FP >= 2))
 
- 	// NOTE: This will use 128-bit unaligned access which
 
- 	// TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit,
 
- 	// but it's convenient here since this is x86-only.
 
- 	//
 
- 	// SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
 
- 	// version is sometimes significantly faster and sometimes
 
- 	// slightly slower than this SSE2 version, so this SSE2
 
- 	// version isn't used on x86-64.
 
- #	define LZMA_MEMCMPLEN_EXTRA 16
 
- 	while (len < limit) {
 
- 		const uint32_t x = 0xFFFF ^ (uint32_t)_mm_movemask_epi8(
 
- 			_mm_cmpeq_epi8(
 
- 			_mm_loadu_si128((const __m128i *)(buf1 + len)),
 
- 			_mm_loadu_si128((const __m128i *)(buf2 + len))));
 
- 		if (x != 0) {
 
- 			len += ctz32(x);
 
- 			return my_min(len, limit);
 
- 		}
 
- 		len += 16;
 
- 	}
 
- 	return limit;
 
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
 
- 	// Generic 32-bit little endian method
 
- #	define LZMA_MEMCMPLEN_EXTRA 4
 
- 	while (len < limit) {
 
- 		uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len);
 
- 		if (x != 0) {
 
- 			if ((x & 0xFFFF) == 0) {
 
- 				len += 2;
 
- 				x >>= 16;
 
- 			}
 
- 			if ((x & 0xFF) == 0)
 
- 				++len;
 
- 			return my_min(len, limit);
 
- 		}
 
- 		len += 4;
 
- 	}
 
- 	return limit;
 
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
 
- 	// Generic 32-bit big endian method
 
- #	define LZMA_MEMCMPLEN_EXTRA 4
 
- 	while (len < limit) {
 
- 		uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len);
 
- 		if (x != 0) {
 
- 			if ((x & 0xFFFF0000) == 0) {
 
- 				len += 2;
 
- 				x <<= 16;
 
- 			}
 
- 			if ((x & 0xFF000000) == 0)
 
- 				++len;
 
- 			return my_min(len, limit);
 
- 		}
 
- 		len += 4;
 
- 	}
 
- 	return limit;
 
- #else
 
- 	// Simple portable version that doesn't use unaligned access.
 
- #	define LZMA_MEMCMPLEN_EXTRA 0
 
- 	while (len < limit && buf1[len] == buf2[len])
 
- 		++len;
 
- 	return len;
 
- #endif
 
- }
 
- #endif
 
 
  |