MD5.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
  2. file Copyright.txt or https://cmake.org/licensing#kwsys for details. */
  3. #include "kwsysPrivate.h"
  4. #include KWSYS_HEADER(MD5.h)
  5. /* Work-around CMake dependency scanning limitation. This must
  6. duplicate the above list of headers. */
  7. #if 0
  8. # include "MD5.h.in"
  9. #endif
  10. #include <stddef.h> /* size_t */
  11. #include <stdint.h> /* uintptr_t */
  12. #include <stdlib.h> /* malloc, free */
  13. #include <string.h> /* memcpy, strlen */
  14. /* This MD5 implementation has been taken from a third party. Slight
  15. modifications to the arrangement of the code have been made to put
  16. it in a single source file instead of a separate header and
  17. implementation file. */
  18. #if defined(__clang__) && !defined(__INTEL_COMPILER)
  19. # pragma clang diagnostic push
  20. # pragma clang diagnostic ignored "-Wcast-align"
  21. #endif
  22. /*
  23. Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
  24. This software is provided 'as-is', without any express or implied
  25. warranty. In no event will the authors be held liable for any damages
  26. arising from the use of this software.
  27. Permission is granted to anyone to use this software for any purpose,
  28. including commercial applications, and to alter it and redistribute it
  29. freely, subject to the following restrictions:
  30. 1. The origin of this software must not be misrepresented; you must not
  31. claim that you wrote the original software. If you use this software
  32. in a product, an acknowledgment in the product documentation would be
  33. appreciated but is not required.
  34. 2. Altered source versions must be plainly marked as such, and must not be
  35. misrepresented as being the original software.
  36. 3. This notice may not be removed or altered from any source distribution.
  37. L. Peter Deutsch
  38. [email protected]
  39. */
  40. /*
  41. Independent implementation of MD5 (RFC 1321).
  42. This code implements the MD5 Algorithm defined in RFC 1321, whose
  43. text is available at
  44. http://www.ietf.org/rfc/rfc1321.txt
  45. The code is derived from the text of the RFC, including the test suite
  46. (section A.5) but excluding the rest of Appendix A. It does not include
  47. any code or documentation that is identified in the RFC as being
  48. copyrighted.
  49. The original and principal author of md5.c is L. Peter Deutsch
  50. <[email protected]>. Other authors are noted in the change history
  51. that follows (in reverse chronological order):
  52. 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
  53. either statically or dynamically; added missing #include <string.h>
  54. in library.
  55. 2002-03-11 lpd Corrected argument list for main(), and added int return
  56. type, in test program and T value program.
  57. 2002-02-21 lpd Added missing #include <stdio.h> in test program.
  58. 2000-07-03 lpd Patched to eliminate warnings about "constant is
  59. unsigned in ANSI C, signed in traditional"; made test program
  60. self-checking.
  61. 1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
  62. 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
  63. 1999-05-03 lpd Original version.
  64. */
  65. /*
  66. * This package supports both compile-time and run-time determination of CPU
  67. * byte order. If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
  68. * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
  69. * defined as non-zero, the code will be compiled to run only on big-endian
  70. * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
  71. * run on either big- or little-endian CPUs, but will run slightly less
  72. * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
  73. */
  74. typedef unsigned char md5_byte_t; /* 8-bit byte */
  75. typedef unsigned int md5_word_t; /* 32-bit word */
  76. /* Define the state of the MD5 Algorithm. */
  77. typedef struct md5_state_s
  78. {
  79. md5_word_t count[2]; /* message length in bits, lsw first */
  80. md5_word_t abcd[4]; /* digest buffer */
  81. md5_byte_t buf[64]; /* accumulate block */
  82. } md5_state_t;
  83. #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
  84. #ifdef ARCH_IS_BIG_ENDIAN
  85. # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
  86. #else
  87. # define BYTE_ORDER 0
  88. #endif
  89. #define T_MASK ((md5_word_t)~0)
  90. #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
  91. #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
  92. #define T3 0x242070db
  93. #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
  94. #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
  95. #define T6 0x4787c62a
  96. #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
  97. #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
  98. #define T9 0x698098d8
  99. #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
  100. #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
  101. #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
  102. #define T13 0x6b901122
  103. #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
  104. #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
  105. #define T16 0x49b40821
  106. #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
  107. #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
  108. #define T19 0x265e5a51
  109. #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
  110. #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
  111. #define T22 0x02441453
  112. #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
  113. #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
  114. #define T25 0x21e1cde6
  115. #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
  116. #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
  117. #define T28 0x455a14ed
  118. #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
  119. #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
  120. #define T31 0x676f02d9
  121. #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
  122. #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
  123. #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
  124. #define T35 0x6d9d6122
  125. #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
  126. #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
  127. #define T38 0x4bdecfa9
  128. #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
  129. #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
  130. #define T41 0x289b7ec6
  131. #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
  132. #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
  133. #define T44 0x04881d05
  134. #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
  135. #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
  136. #define T47 0x1fa27cf8
  137. #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
  138. #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
  139. #define T50 0x432aff97
  140. #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
  141. #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
  142. #define T53 0x655b59c3
  143. #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
  144. #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
  145. #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
  146. #define T57 0x6fa87e4f
  147. #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
  148. #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
  149. #define T60 0x4e0811a1
  150. #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
  151. #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
  152. #define T63 0x2ad7d2bb
  153. #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
  154. static void md5_process(md5_state_t* pms, const md5_byte_t* data /*[64]*/)
  155. {
  156. md5_word_t a = pms->abcd[0];
  157. md5_word_t b = pms->abcd[1];
  158. md5_word_t c = pms->abcd[2];
  159. md5_word_t d = pms->abcd[3];
  160. md5_word_t t;
  161. #if BYTE_ORDER > 0
  162. /* Define storage only for big-endian CPUs. */
  163. md5_word_t X[16];
  164. #else
  165. /* Define storage for little-endian or both types of CPUs. */
  166. md5_word_t xbuf[16];
  167. const md5_word_t* X;
  168. #endif
  169. {
  170. #if BYTE_ORDER == 0
  171. /*
  172. * Determine dynamically whether this is a big-endian or
  173. * little-endian machine, since we can use a more efficient
  174. * algorithm on the latter.
  175. */
  176. static const int w = 1;
  177. if (*((const md5_byte_t*)&w)) /* dynamic little-endian */
  178. #endif
  179. #if BYTE_ORDER <= 0 /* little-endian */
  180. {
  181. /*
  182. * On little-endian machines, we can process properly aligned
  183. * data without copying it.
  184. */
  185. if (!((uintptr_t)data & 3)) {
  186. /* data are properly aligned */
  187. X = (const md5_word_t*)data;
  188. } else {
  189. /* not aligned */
  190. memcpy(xbuf, data, 64);
  191. X = xbuf;
  192. }
  193. }
  194. #endif
  195. #if BYTE_ORDER == 0
  196. else /* dynamic big-endian */
  197. #endif
  198. #if BYTE_ORDER >= 0 /* big-endian */
  199. {
  200. /*
  201. * On big-endian machines, we must arrange the bytes in the
  202. * right order.
  203. */
  204. const md5_byte_t* xp = data;
  205. int i;
  206. # if BYTE_ORDER == 0
  207. X = xbuf; /* (dynamic only) */
  208. # else
  209. # define xbuf X /* (static only) */
  210. # endif
  211. for (i = 0; i < 16; ++i, xp += 4) {
  212. xbuf[i] =
  213. (md5_word_t)(xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24));
  214. }
  215. }
  216. #endif
  217. }
  218. #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
  219. /* Round 1. */
  220. /* Let [abcd k s i] denote the operation
  221. a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
  222. #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
  223. #define SET(a, b, c, d, k, s, Ti) \
  224. t = a + F(b, c, d) + X[k] + (Ti); \
  225. a = ROTATE_LEFT(t, s) + b
  226. /* Do the following 16 operations. */
  227. SET(a, b, c, d, 0, 7, T1);
  228. SET(d, a, b, c, 1, 12, T2);
  229. SET(c, d, a, b, 2, 17, T3);
  230. SET(b, c, d, a, 3, 22, T4);
  231. SET(a, b, c, d, 4, 7, T5);
  232. SET(d, a, b, c, 5, 12, T6);
  233. SET(c, d, a, b, 6, 17, T7);
  234. SET(b, c, d, a, 7, 22, T8);
  235. SET(a, b, c, d, 8, 7, T9);
  236. SET(d, a, b, c, 9, 12, T10);
  237. SET(c, d, a, b, 10, 17, T11);
  238. SET(b, c, d, a, 11, 22, T12);
  239. SET(a, b, c, d, 12, 7, T13);
  240. SET(d, a, b, c, 13, 12, T14);
  241. SET(c, d, a, b, 14, 17, T15);
  242. SET(b, c, d, a, 15, 22, T16);
  243. #undef SET
  244. /* Round 2. */
  245. /* Let [abcd k s i] denote the operation
  246. a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
  247. #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
  248. #define SET(a, b, c, d, k, s, Ti) \
  249. t = a + G(b, c, d) + X[k] + (Ti); \
  250. a = ROTATE_LEFT(t, s) + b
  251. /* Do the following 16 operations. */
  252. SET(a, b, c, d, 1, 5, T17);
  253. SET(d, a, b, c, 6, 9, T18);
  254. SET(c, d, a, b, 11, 14, T19);
  255. SET(b, c, d, a, 0, 20, T20);
  256. SET(a, b, c, d, 5, 5, T21);
  257. SET(d, a, b, c, 10, 9, T22);
  258. SET(c, d, a, b, 15, 14, T23);
  259. SET(b, c, d, a, 4, 20, T24);
  260. SET(a, b, c, d, 9, 5, T25);
  261. SET(d, a, b, c, 14, 9, T26);
  262. SET(c, d, a, b, 3, 14, T27);
  263. SET(b, c, d, a, 8, 20, T28);
  264. SET(a, b, c, d, 13, 5, T29);
  265. SET(d, a, b, c, 2, 9, T30);
  266. SET(c, d, a, b, 7, 14, T31);
  267. SET(b, c, d, a, 12, 20, T32);
  268. #undef SET
  269. /* Round 3. */
  270. /* Let [abcd k s t] denote the operation
  271. a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
  272. #define H(x, y, z) ((x) ^ (y) ^ (z))
  273. #define SET(a, b, c, d, k, s, Ti) \
  274. t = a + H(b, c, d) + X[k] + (Ti); \
  275. a = ROTATE_LEFT(t, s) + b
  276. /* Do the following 16 operations. */
  277. SET(a, b, c, d, 5, 4, T33);
  278. SET(d, a, b, c, 8, 11, T34);
  279. SET(c, d, a, b, 11, 16, T35);
  280. SET(b, c, d, a, 14, 23, T36);
  281. SET(a, b, c, d, 1, 4, T37);
  282. SET(d, a, b, c, 4, 11, T38);
  283. SET(c, d, a, b, 7, 16, T39);
  284. SET(b, c, d, a, 10, 23, T40);
  285. SET(a, b, c, d, 13, 4, T41);
  286. SET(d, a, b, c, 0, 11, T42);
  287. SET(c, d, a, b, 3, 16, T43);
  288. SET(b, c, d, a, 6, 23, T44);
  289. SET(a, b, c, d, 9, 4, T45);
  290. SET(d, a, b, c, 12, 11, T46);
  291. SET(c, d, a, b, 15, 16, T47);
  292. SET(b, c, d, a, 2, 23, T48);
  293. #undef SET
  294. /* Round 4. */
  295. /* Let [abcd k s t] denote the operation
  296. a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
  297. #define I(x, y, z) ((y) ^ ((x) | ~(z)))
  298. #define SET(a, b, c, d, k, s, Ti) \
  299. t = a + I(b, c, d) + X[k] + (Ti); \
  300. a = ROTATE_LEFT(t, s) + b
  301. /* Do the following 16 operations. */
  302. SET(a, b, c, d, 0, 6, T49);
  303. SET(d, a, b, c, 7, 10, T50);
  304. SET(c, d, a, b, 14, 15, T51);
  305. SET(b, c, d, a, 5, 21, T52);
  306. SET(a, b, c, d, 12, 6, T53);
  307. SET(d, a, b, c, 3, 10, T54);
  308. SET(c, d, a, b, 10, 15, T55);
  309. SET(b, c, d, a, 1, 21, T56);
  310. SET(a, b, c, d, 8, 6, T57);
  311. SET(d, a, b, c, 15, 10, T58);
  312. SET(c, d, a, b, 6, 15, T59);
  313. SET(b, c, d, a, 13, 21, T60);
  314. SET(a, b, c, d, 4, 6, T61);
  315. SET(d, a, b, c, 11, 10, T62);
  316. SET(c, d, a, b, 2, 15, T63);
  317. SET(b, c, d, a, 9, 21, T64);
  318. #undef SET
  319. /* Then perform the following additions. (That is increment each
  320. of the four registers by the value it had before this block
  321. was started.) */
  322. pms->abcd[0] += a;
  323. pms->abcd[1] += b;
  324. pms->abcd[2] += c;
  325. pms->abcd[3] += d;
  326. }
  327. /* Initialize the algorithm. */
  328. static void md5_init(md5_state_t* pms)
  329. {
  330. pms->count[0] = pms->count[1] = 0;
  331. pms->abcd[0] = 0x67452301;
  332. pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
  333. pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
  334. pms->abcd[3] = 0x10325476;
  335. }
  336. /* Append a string to the message. */
  337. static void md5_append(md5_state_t* pms, const md5_byte_t* data, size_t nbytes)
  338. {
  339. const md5_byte_t* p = data;
  340. size_t left = nbytes;
  341. size_t offset = (pms->count[0] >> 3) & 63;
  342. md5_word_t nbits = (md5_word_t)(nbytes << 3);
  343. if (nbytes <= 0) {
  344. return;
  345. }
  346. /* Update the message length. */
  347. pms->count[1] += (md5_word_t)(nbytes >> 29);
  348. pms->count[0] += nbits;
  349. if (pms->count[0] < nbits) {
  350. pms->count[1]++;
  351. }
  352. /* Process an initial partial block. */
  353. if (offset) {
  354. size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
  355. memcpy(pms->buf + offset, p, copy);
  356. if (offset + copy < 64) {
  357. return;
  358. }
  359. p += copy;
  360. left -= copy;
  361. md5_process(pms, pms->buf);
  362. }
  363. /* Process full blocks. */
  364. for (; left >= 64; p += 64, left -= 64) {
  365. md5_process(pms, p);
  366. }
  367. /* Process a final partial block. */
  368. if (left) {
  369. memcpy(pms->buf, p, left);
  370. }
  371. }
  372. /* Finish the message and return the digest. */
  373. static void md5_finish(md5_state_t* pms, md5_byte_t digest[16])
  374. {
  375. static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  376. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  377. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  378. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  379. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  380. md5_byte_t data[8];
  381. int i;
  382. /* Save the length before padding. */
  383. for (i = 0; i < 8; ++i) {
  384. data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
  385. }
  386. /* Pad to 56 bytes mod 64. */
  387. md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
  388. /* Append the length. */
  389. md5_append(pms, data, 8);
  390. for (i = 0; i < 16; ++i) {
  391. digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
  392. }
  393. }
  394. #if defined(__clang__) && !defined(__INTEL_COMPILER)
  395. # pragma clang diagnostic pop
  396. #endif
  397. /* Wrap up the MD5 state in our opaque structure. */
  398. struct kwsysMD5_s
  399. {
  400. md5_state_t md5_state;
  401. };
  402. kwsysMD5* kwsysMD5_New(void)
  403. {
  404. /* Allocate a process control structure. */
  405. kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
  406. if (!md5) {
  407. return 0;
  408. }
  409. return md5;
  410. }
  411. void kwsysMD5_Delete(kwsysMD5* md5)
  412. {
  413. /* Make sure we have an instance. */
  414. if (!md5) {
  415. return;
  416. }
  417. /* Free memory. */
  418. free(md5);
  419. }
  420. void kwsysMD5_Initialize(kwsysMD5* md5)
  421. {
  422. md5_init(&md5->md5_state);
  423. }
  424. void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
  425. {
  426. size_t dlen;
  427. if (length < 0) {
  428. dlen = strlen((char const*)data);
  429. } else {
  430. dlen = (size_t)length;
  431. }
  432. md5_append(&md5->md5_state, (md5_byte_t const*)data, dlen);
  433. }
  434. void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
  435. {
  436. md5_finish(&md5->md5_state, (md5_byte_t*)digest);
  437. }
  438. void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
  439. {
  440. unsigned char digest[16];
  441. kwsysMD5_Finalize(md5, digest);
  442. kwsysMD5_DigestToHex(digest, buffer);
  443. }
  444. void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
  445. {
  446. /* Map from 4-bit index to hexadecimal representation. */
  447. static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
  448. '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
  449. /* Map each 4-bit block separately. */
  450. char* out = buffer;
  451. int i;
  452. for (i = 0; i < 16; ++i) {
  453. *out++ = hex[digest[i] >> 4];
  454. *out++ = hex[digest[i] & 0xF];
  455. }
  456. }