xxhash.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * xxHash - Fast Hash algorithm
  3. * Copyright (c) Yann Collet, Facebook, Inc.
  4. *
  5. * You can contact the author at :
  6. * - xxHash homepage: http://www.xxhash.com
  7. * - xxHash source repository : https://github.com/Cyan4973/xxHash
  8. *
  9. * This source code is licensed under both the BSD-style license (found in the
  10. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11. * in the COPYING file in the root directory of this source tree).
  12. * You may select, at your option, one of the above-listed licenses.
  13. */
  14. /* *************************************
  15. * Tuning parameters
  16. ***************************************/
  17. /*!XXH_FORCE_MEMORY_ACCESS :
  18. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  19. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  20. * The below switch allow to select different access method for improved performance.
  21. * Method 0 (default) : use `memcpy()`. Safe and portable.
  22. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
  23. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  24. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
  25. * It can generate buggy code on targets which do not support unaligned memory accesses.
  26. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
  27. * See http://stackoverflow.com/a/32095106/646947 for details.
  28. * Prefer these methods in priority order (0 > 1 > 2)
  29. */
  30. #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  31. # if (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  32. (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
  33. defined(__ICCARM__)
  34. # define XXH_FORCE_MEMORY_ACCESS 1
  35. # endif
  36. #endif
  37. /*!XXH_ACCEPT_NULL_INPUT_POINTER :
  38. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  39. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  40. * By default, this option is disabled. To enable it, uncomment below define :
  41. */
  42. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  43. /*!XXH_FORCE_NATIVE_FORMAT :
  44. * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  45. * Results are therefore identical for little-endian and big-endian CPU.
  46. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  47. * Should endian-independence be of no importance for your application, you may set the #define below to 1,
  48. * to improve speed for Big-endian CPU.
  49. * This option has no impact on Little_Endian CPU.
  50. */
  51. #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
  52. # define XXH_FORCE_NATIVE_FORMAT 0
  53. #endif
  54. /*!XXH_FORCE_ALIGN_CHECK :
  55. * This is a minor performance trick, only useful with lots of very small keys.
  56. * It means : check for aligned/unaligned input.
  57. * The check costs one initial branch per hash; set to 0 when the input data
  58. * is guaranteed to be aligned.
  59. */
  60. #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
  61. # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  62. # define XXH_FORCE_ALIGN_CHECK 0
  63. # else
  64. # define XXH_FORCE_ALIGN_CHECK 1
  65. # endif
  66. #endif
  67. /* *************************************
  68. * Includes & Memory related functions
  69. ***************************************/
  70. /* Modify the local functions below should you wish to use some other memory routines */
  71. /* for ZSTD_malloc(), ZSTD_free() */
  72. #define ZSTD_DEPS_NEED_MALLOC
  73. #include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
  74. static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
  75. static void XXH_free (void* p) { ZSTD_free(p); }
  76. static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
  77. #ifndef XXH_STATIC_LINKING_ONLY
  78. # define XXH_STATIC_LINKING_ONLY
  79. #endif
  80. #include "xxhash.h"
  81. /* *************************************
  82. * Compiler Specific Options
  83. ***************************************/
  84. #include "compiler.h"
  85. /* *************************************
  86. * Basic Types
  87. ***************************************/
  88. #include "mem.h" /* BYTE, U32, U64, size_t */
  89. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  90. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  91. static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
  92. static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
  93. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  94. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  95. /* currently only defined for gcc and icc */
  96. typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
  97. static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
  98. static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
  99. #else
  100. /* portable and safe solution. Generally efficient.
  101. * see : http://stackoverflow.com/a/32095106/646947
  102. */
  103. static U32 XXH_read32(const void* memPtr)
  104. {
  105. U32 val;
  106. ZSTD_memcpy(&val, memPtr, sizeof(val));
  107. return val;
  108. }
  109. static U64 XXH_read64(const void* memPtr)
  110. {
  111. U64 val;
  112. ZSTD_memcpy(&val, memPtr, sizeof(val));
  113. return val;
  114. }
  115. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  116. /* ****************************************
  117. * Compiler-specific Functions and Macros
  118. ******************************************/
  119. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  120. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  121. #if defined(_MSC_VER)
  122. # define XXH_rotl32(x,r) _rotl(x,r)
  123. # define XXH_rotl64(x,r) _rotl64(x,r)
  124. #else
  125. #if defined(__ICCARM__)
  126. # include <intrinsics.h>
  127. # define XXH_rotl32(x,r) __ROR(x,(32 - r))
  128. #else
  129. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  130. #endif
  131. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  132. #endif
  133. #if defined(_MSC_VER) /* Visual Studio */
  134. # define XXH_swap32 _byteswap_ulong
  135. # define XXH_swap64 _byteswap_uint64
  136. #elif GCC_VERSION >= 403
  137. # define XXH_swap32 __builtin_bswap32
  138. # define XXH_swap64 __builtin_bswap64
  139. #else
  140. static U32 XXH_swap32 (U32 x)
  141. {
  142. return ((x << 24) & 0xff000000 ) |
  143. ((x << 8) & 0x00ff0000 ) |
  144. ((x >> 8) & 0x0000ff00 ) |
  145. ((x >> 24) & 0x000000ff );
  146. }
  147. static U64 XXH_swap64 (U64 x)
  148. {
  149. return ((x << 56) & 0xff00000000000000ULL) |
  150. ((x << 40) & 0x00ff000000000000ULL) |
  151. ((x << 24) & 0x0000ff0000000000ULL) |
  152. ((x << 8) & 0x000000ff00000000ULL) |
  153. ((x >> 8) & 0x00000000ff000000ULL) |
  154. ((x >> 24) & 0x0000000000ff0000ULL) |
  155. ((x >> 40) & 0x000000000000ff00ULL) |
  156. ((x >> 56) & 0x00000000000000ffULL);
  157. }
  158. #endif
  159. /* *************************************
  160. * Architecture Macros
  161. ***************************************/
  162. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  163. /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
  164. #ifndef XXH_CPU_LITTLE_ENDIAN
  165. static const int g_one = 1;
  166. # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
  167. #endif
  168. /* ***************************
  169. * Memory reads
  170. *****************************/
  171. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  172. FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  173. {
  174. if (align==XXH_unaligned)
  175. return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
  176. else
  177. return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
  178. }
  179. FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  180. {
  181. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  182. }
  183. static U32 XXH_readBE32(const void* ptr)
  184. {
  185. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
  186. }
  187. FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  188. {
  189. if (align==XXH_unaligned)
  190. return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
  191. else
  192. return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
  193. }
  194. FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  195. {
  196. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  197. }
  198. static U64 XXH_readBE64(const void* ptr)
  199. {
  200. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
  201. }
  202. /* *************************************
  203. * Macros
  204. ***************************************/
  205. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
  206. /* *************************************
  207. * Constants
  208. ***************************************/
  209. static const U32 PRIME32_1 = 2654435761U;
  210. static const U32 PRIME32_2 = 2246822519U;
  211. static const U32 PRIME32_3 = 3266489917U;
  212. static const U32 PRIME32_4 = 668265263U;
  213. static const U32 PRIME32_5 = 374761393U;
  214. static const U64 PRIME64_1 = 11400714785074694791ULL;
  215. static const U64 PRIME64_2 = 14029467366897019727ULL;
  216. static const U64 PRIME64_3 = 1609587929392839161ULL;
  217. static const U64 PRIME64_4 = 9650029242287828579ULL;
  218. static const U64 PRIME64_5 = 2870177450012600261ULL;
  219. XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
  220. /* **************************
  221. * Utils
  222. ****************************/
  223. XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
  224. {
  225. ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
  226. }
  227. XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
  228. {
  229. ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
  230. }
  231. /* ***************************
  232. * Simple Hash Functions
  233. *****************************/
  234. static U32 XXH32_round(U32 seed, U32 input)
  235. {
  236. seed += input * PRIME32_2;
  237. seed = XXH_rotl32(seed, 13);
  238. seed *= PRIME32_1;
  239. return seed;
  240. }
  241. FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  242. {
  243. const BYTE* p = (const BYTE*)input;
  244. const BYTE* bEnd = p + len;
  245. U32 h32;
  246. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  247. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  248. if (p==NULL) {
  249. len=0;
  250. bEnd=p=(const BYTE*)(size_t)16;
  251. }
  252. #endif
  253. if (len>=16) {
  254. const BYTE* const limit = bEnd - 16;
  255. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  256. U32 v2 = seed + PRIME32_2;
  257. U32 v3 = seed + 0;
  258. U32 v4 = seed - PRIME32_1;
  259. do {
  260. v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
  261. v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
  262. v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
  263. v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
  264. } while (p<=limit);
  265. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  266. } else {
  267. h32 = seed + PRIME32_5;
  268. }
  269. h32 += (U32) len;
  270. while (p+4<=bEnd) {
  271. h32 += XXH_get32bits(p) * PRIME32_3;
  272. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  273. p+=4;
  274. }
  275. while (p<bEnd) {
  276. h32 += (*p) * PRIME32_5;
  277. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  278. p++;
  279. }
  280. h32 ^= h32 >> 15;
  281. h32 *= PRIME32_2;
  282. h32 ^= h32 >> 13;
  283. h32 *= PRIME32_3;
  284. h32 ^= h32 >> 16;
  285. return h32;
  286. }
  287. XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
  288. {
  289. #if 0
  290. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  291. XXH32_CREATESTATE_STATIC(state);
  292. XXH32_reset(state, seed);
  293. XXH32_update(state, input, len);
  294. return XXH32_digest(state);
  295. #else
  296. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  297. if (XXH_FORCE_ALIGN_CHECK) {
  298. if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
  299. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  300. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  301. else
  302. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  303. } }
  304. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  305. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  306. else
  307. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  308. #endif
  309. }
  310. static U64 XXH64_round(U64 acc, U64 input)
  311. {
  312. acc += input * PRIME64_2;
  313. acc = XXH_rotl64(acc, 31);
  314. acc *= PRIME64_1;
  315. return acc;
  316. }
  317. static U64 XXH64_mergeRound(U64 acc, U64 val)
  318. {
  319. val = XXH64_round(0, val);
  320. acc ^= val;
  321. acc = acc * PRIME64_1 + PRIME64_4;
  322. return acc;
  323. }
  324. FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  325. {
  326. const BYTE* p = (const BYTE*)input;
  327. const BYTE* const bEnd = p + len;
  328. U64 h64;
  329. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  330. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  331. if (p==NULL) {
  332. len=0;
  333. bEnd=p=(const BYTE*)(size_t)32;
  334. }
  335. #endif
  336. if (len>=32) {
  337. const BYTE* const limit = bEnd - 32;
  338. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  339. U64 v2 = seed + PRIME64_2;
  340. U64 v3 = seed + 0;
  341. U64 v4 = seed - PRIME64_1;
  342. do {
  343. v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
  344. v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
  345. v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
  346. v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
  347. } while (p<=limit);
  348. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  349. h64 = XXH64_mergeRound(h64, v1);
  350. h64 = XXH64_mergeRound(h64, v2);
  351. h64 = XXH64_mergeRound(h64, v3);
  352. h64 = XXH64_mergeRound(h64, v4);
  353. } else {
  354. h64 = seed + PRIME64_5;
  355. }
  356. h64 += (U64) len;
  357. while (p+8<=bEnd) {
  358. U64 const k1 = XXH64_round(0, XXH_get64bits(p));
  359. h64 ^= k1;
  360. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  361. p+=8;
  362. }
  363. if (p+4<=bEnd) {
  364. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  365. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  366. p+=4;
  367. }
  368. while (p<bEnd) {
  369. h64 ^= (*p) * PRIME64_5;
  370. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  371. p++;
  372. }
  373. h64 ^= h64 >> 33;
  374. h64 *= PRIME64_2;
  375. h64 ^= h64 >> 29;
  376. h64 *= PRIME64_3;
  377. h64 ^= h64 >> 32;
  378. return h64;
  379. }
  380. XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  381. {
  382. #if 0
  383. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  384. XXH64_CREATESTATE_STATIC(state);
  385. XXH64_reset(state, seed);
  386. XXH64_update(state, input, len);
  387. return XXH64_digest(state);
  388. #else
  389. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  390. if (XXH_FORCE_ALIGN_CHECK) {
  391. if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
  392. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  393. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  394. else
  395. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  396. } }
  397. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  398. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  399. else
  400. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  401. #endif
  402. }
  403. /* **************************************************
  404. * Advanced Hash Functions
  405. ****************************************************/
  406. XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
  407. {
  408. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  409. }
  410. XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  411. {
  412. XXH_free(statePtr);
  413. return XXH_OK;
  414. }
  415. XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
  416. {
  417. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  418. }
  419. XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  420. {
  421. XXH_free(statePtr);
  422. return XXH_OK;
  423. }
  424. /*** Hash feed ***/
  425. XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
  426. {
  427. XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  428. ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
  429. state.v1 = seed + PRIME32_1 + PRIME32_2;
  430. state.v2 = seed + PRIME32_2;
  431. state.v3 = seed + 0;
  432. state.v4 = seed - PRIME32_1;
  433. ZSTD_memcpy(statePtr, &state, sizeof(state));
  434. return XXH_OK;
  435. }
  436. XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
  437. {
  438. XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  439. ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
  440. state.v1 = seed + PRIME64_1 + PRIME64_2;
  441. state.v2 = seed + PRIME64_2;
  442. state.v3 = seed + 0;
  443. state.v4 = seed - PRIME64_1;
  444. ZSTD_memcpy(statePtr, &state, sizeof(state));
  445. return XXH_OK;
  446. }
  447. FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
  448. {
  449. const BYTE* p = (const BYTE*)input;
  450. const BYTE* const bEnd = p + len;
  451. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  452. if (input==NULL) return XXH_ERROR;
  453. #endif
  454. state->total_len_32 += (unsigned)len;
  455. state->large_len |= (len>=16) | (state->total_len_32>=16);
  456. if (state->memsize + len < 16) { /* fill in tmp buffer */
  457. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  458. state->memsize += (unsigned)len;
  459. return XXH_OK;
  460. }
  461. if (state->memsize) { /* some data left from previous update */
  462. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  463. { const U32* p32 = state->mem32;
  464. state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
  465. state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
  466. state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
  467. state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
  468. }
  469. p += 16-state->memsize;
  470. state->memsize = 0;
  471. }
  472. if (p <= bEnd-16) {
  473. const BYTE* const limit = bEnd - 16;
  474. U32 v1 = state->v1;
  475. U32 v2 = state->v2;
  476. U32 v3 = state->v3;
  477. U32 v4 = state->v4;
  478. do {
  479. v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
  480. v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
  481. v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
  482. v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
  483. } while (p<=limit);
  484. state->v1 = v1;
  485. state->v2 = v2;
  486. state->v3 = v3;
  487. state->v4 = v4;
  488. }
  489. if (p < bEnd) {
  490. XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
  491. state->memsize = (unsigned)(bEnd-p);
  492. }
  493. return XXH_OK;
  494. }
  495. XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  496. {
  497. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  498. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  499. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  500. else
  501. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  502. }
  503. FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
  504. {
  505. const BYTE * p = (const BYTE*)state->mem32;
  506. const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
  507. U32 h32;
  508. if (state->large_len) {
  509. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  510. } else {
  511. h32 = state->v3 /* == seed */ + PRIME32_5;
  512. }
  513. h32 += state->total_len_32;
  514. while (p+4<=bEnd) {
  515. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  516. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  517. p+=4;
  518. }
  519. while (p<bEnd) {
  520. h32 += (*p) * PRIME32_5;
  521. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  522. p++;
  523. }
  524. h32 ^= h32 >> 15;
  525. h32 *= PRIME32_2;
  526. h32 ^= h32 >> 13;
  527. h32 *= PRIME32_3;
  528. h32 ^= h32 >> 16;
  529. return h32;
  530. }
  531. XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
  532. {
  533. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  534. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  535. return XXH32_digest_endian(state_in, XXH_littleEndian);
  536. else
  537. return XXH32_digest_endian(state_in, XXH_bigEndian);
  538. }
  539. /* **** XXH64 **** */
  540. FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
  541. {
  542. const BYTE* p = (const BYTE*)input;
  543. const BYTE* const bEnd = p + len;
  544. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  545. if (input==NULL) return XXH_ERROR;
  546. #endif
  547. state->total_len += len;
  548. if (state->memsize + len < 32) { /* fill in tmp buffer */
  549. if (input != NULL) {
  550. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  551. }
  552. state->memsize += (U32)len;
  553. return XXH_OK;
  554. }
  555. if (state->memsize) { /* tmp buffer is full */
  556. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  557. state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
  558. state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
  559. state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
  560. state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
  561. p += 32-state->memsize;
  562. state->memsize = 0;
  563. }
  564. if (p+32 <= bEnd) {
  565. const BYTE* const limit = bEnd - 32;
  566. U64 v1 = state->v1;
  567. U64 v2 = state->v2;
  568. U64 v3 = state->v3;
  569. U64 v4 = state->v4;
  570. do {
  571. v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
  572. v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
  573. v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
  574. v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
  575. } while (p<=limit);
  576. state->v1 = v1;
  577. state->v2 = v2;
  578. state->v3 = v3;
  579. state->v4 = v4;
  580. }
  581. if (p < bEnd) {
  582. XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
  583. state->memsize = (unsigned)(bEnd-p);
  584. }
  585. return XXH_OK;
  586. }
  587. XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  588. {
  589. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  590. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  591. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  592. else
  593. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  594. }
  595. FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
  596. {
  597. const BYTE * p = (const BYTE*)state->mem64;
  598. const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
  599. U64 h64;
  600. if (state->total_len >= 32) {
  601. U64 const v1 = state->v1;
  602. U64 const v2 = state->v2;
  603. U64 const v3 = state->v3;
  604. U64 const v4 = state->v4;
  605. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  606. h64 = XXH64_mergeRound(h64, v1);
  607. h64 = XXH64_mergeRound(h64, v2);
  608. h64 = XXH64_mergeRound(h64, v3);
  609. h64 = XXH64_mergeRound(h64, v4);
  610. } else {
  611. h64 = state->v3 + PRIME64_5;
  612. }
  613. h64 += (U64) state->total_len;
  614. while (p+8<=bEnd) {
  615. U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
  616. h64 ^= k1;
  617. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  618. p+=8;
  619. }
  620. if (p+4<=bEnd) {
  621. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  622. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  623. p+=4;
  624. }
  625. while (p<bEnd) {
  626. h64 ^= (*p) * PRIME64_5;
  627. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  628. p++;
  629. }
  630. h64 ^= h64 >> 33;
  631. h64 *= PRIME64_2;
  632. h64 ^= h64 >> 29;
  633. h64 *= PRIME64_3;
  634. h64 ^= h64 >> 32;
  635. return h64;
  636. }
  637. XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  638. {
  639. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  640. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  641. return XXH64_digest_endian(state_in, XXH_littleEndian);
  642. else
  643. return XXH64_digest_endian(state_in, XXH_bigEndian);
  644. }
  645. /* **************************
  646. * Canonical representation
  647. ****************************/
  648. /*! Default XXH result types are basic unsigned 32 and 64 bits.
  649. * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
  650. * These functions allow transformation of hash result into and from its canonical format.
  651. * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
  652. */
  653. XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
  654. {
  655. XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
  656. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
  657. ZSTD_memcpy(dst, &hash, sizeof(*dst));
  658. }
  659. XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
  660. {
  661. XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
  662. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
  663. ZSTD_memcpy(dst, &hash, sizeof(*dst));
  664. }
  665. XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
  666. {
  667. return XXH_readBE32(src);
  668. }
  669. XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
  670. {
  671. return XXH_readBE64(src);
  672. }