| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 | 
							- /* adler32.c -- compute the Adler-32 checksum of a data stream
 
-  * Copyright (C) 1995-2004 Mark Adler
 
-  * For conditions of distribution and use, see copyright notice in zlib.h
 
-  */
 
- /* @(#) $Id$ */
 
- #define ZLIB_INTERNAL
 
- #include "zlib.h"
 
- #define BASE 65521UL    /* largest prime smaller than 65536 */
 
- #define NMAX 5552
 
- /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
 
- #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
 
- #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
 
- #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
 
- #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
 
- #define DO16(buf)   DO8(buf,0); DO8(buf,8);
 
- /* use NO_DIVIDE if your processor does not do division in hardware */
 
- #ifdef NO_DIVIDE
 
- #  define MOD(a) \
 
-     do { \
 
-         if (a >= (BASE << 16)) a -= (BASE << 16); \
 
-         if (a >= (BASE << 15)) a -= (BASE << 15); \
 
-         if (a >= (BASE << 14)) a -= (BASE << 14); \
 
-         if (a >= (BASE << 13)) a -= (BASE << 13); \
 
-         if (a >= (BASE << 12)) a -= (BASE << 12); \
 
-         if (a >= (BASE << 11)) a -= (BASE << 11); \
 
-         if (a >= (BASE << 10)) a -= (BASE << 10); \
 
-         if (a >= (BASE << 9)) a -= (BASE << 9); \
 
-         if (a >= (BASE << 8)) a -= (BASE << 8); \
 
-         if (a >= (BASE << 7)) a -= (BASE << 7); \
 
-         if (a >= (BASE << 6)) a -= (BASE << 6); \
 
-         if (a >= (BASE << 5)) a -= (BASE << 5); \
 
-         if (a >= (BASE << 4)) a -= (BASE << 4); \
 
-         if (a >= (BASE << 3)) a -= (BASE << 3); \
 
-         if (a >= (BASE << 2)) a -= (BASE << 2); \
 
-         if (a >= (BASE << 1)) a -= (BASE << 1); \
 
-         if (a >= BASE) a -= BASE; \
 
-     } while (0)
 
- #  define MOD4(a) \
 
-     do { \
 
-         if (a >= (BASE << 4)) a -= (BASE << 4); \
 
-         if (a >= (BASE << 3)) a -= (BASE << 3); \
 
-         if (a >= (BASE << 2)) a -= (BASE << 2); \
 
-         if (a >= (BASE << 1)) a -= (BASE << 1); \
 
-         if (a >= BASE) a -= BASE; \
 
-     } while (0)
 
- #else
 
- #  define MOD(a) a %= BASE
 
- #  define MOD4(a) a %= BASE
 
- #endif
 
- /* ========================================================================= */
 
- uLong ZEXPORT adler32(adler, buf, len)
 
-     uLong adler;
 
-     const Bytef *buf;
 
-     uInt len;
 
- {
 
-     unsigned long sum2;
 
-     unsigned n;
 
-     /* split Adler-32 into component sums */
 
-     sum2 = (adler >> 16) & 0xffff;
 
-     adler &= 0xffff;
 
-     /* in case user likes doing a byte at a time, keep it fast */
 
-     if (len == 1) {
 
-         adler += buf[0];
 
-         if (adler >= BASE)
 
-             adler -= BASE;
 
-         sum2 += adler;
 
-         if (sum2 >= BASE)
 
-             sum2 -= BASE;
 
-         return adler | (sum2 << 16);
 
-     }
 
-     /* initial Adler-32 value (deferred check for len == 1 speed) */
 
-     if (buf == Z_NULL)
 
-         return 1L;
 
-     /* in case short lengths are provided, keep it somewhat fast */
 
-     if (len < 16) {
 
-         while (len--) {
 
-             adler += *buf++;
 
-             sum2 += adler;
 
-         }
 
-         if (adler >= BASE)
 
-             adler -= BASE;
 
-         MOD4(sum2);             /* only added so many BASE's */
 
-         return adler | (sum2 << 16);
 
-     }
 
-     /* do length NMAX blocks -- requires just one modulo operation */
 
-     while (len >= NMAX) {
 
-         len -= NMAX;
 
-         n = NMAX / 16;          /* NMAX is divisible by 16 */
 
-         do {
 
-             DO16(buf);          /* 16 sums unrolled */
 
-             buf += 16;
 
-         } while (--n);
 
-         MOD(adler);
 
-         MOD(sum2);
 
-     }
 
-     /* do remaining bytes (less than NMAX, still just one modulo) */
 
-     if (len) {                  /* avoid modulos if none remaining */
 
-         while (len >= 16) {
 
-             len -= 16;
 
-             DO16(buf);
 
-             buf += 16;
 
-         }
 
-         while (len--) {
 
-             adler += *buf++;
 
-             sum2 += adler;
 
-         }
 
-         MOD(adler);
 
-         MOD(sum2);
 
-     }
 
-     /* return recombined sums */
 
-     return adler | (sum2 << 16);
 
- }
 
- /* ========================================================================= */
 
- uLong ZEXPORT adler32_combine(adler1, adler2, len2)
 
-     uLong adler1;
 
-     uLong adler2;
 
-     z_off_t len2;
 
- {
 
-     unsigned long sum1;
 
-     unsigned long sum2;
 
-     unsigned rem;
 
-     /* the derivation of this formula is left as an exercise for the reader */
 
-     rem = (unsigned)(len2 % BASE);
 
-     sum1 = adler1 & 0xffff;
 
-     sum2 = rem * sum1;
 
-     MOD(sum2);
 
-     sum1 += (adler2 & 0xffff) + BASE - 1;
 
-     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
 
-     if (sum1 > BASE) sum1 -= BASE;
 
-     if (sum1 > BASE) sum1 -= BASE;
 
-     if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
 
-     if (sum2 > BASE) sum2 -= BASE;
 
-     return sum1 | (sum2 << 16);
 
- }
 
 
  |