ImageSharpTransformer.cs 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. using System.IO;
  2. using SixLabors.ImageSharp;
  3. using SixLabors.ImageSharp.PixelFormats;
  4. using SixLabors.ImageSharp.Processing;
  5. using SixLabors.ImageSharp.Processing.Processors.Transforms;
  6. namespace Masuit.Tools.Media;
  7. /// <summary>
  8. /// 使用ImageSharp进行图像变换
  9. /// </summary>
  10. public class ImageSharpTransformer : IImageTransformer
  11. {
  12. public byte[] TransformImage(Stream stream, int width, int height)
  13. {
  14. using var image = Image.Load<Rgba32>(stream);
  15. return TransformImage(image, width, height);
  16. }
  17. public byte[] TransformImage(Image<Rgba32> image, int width, int height)
  18. {
  19. image.Mutate(x => x.Resize(new ResizeOptions()
  20. {
  21. Size = new Size
  22. {
  23. Width = width,
  24. Height = height
  25. },
  26. Mode = ResizeMode.Stretch,
  27. Sampler = new BicubicResampler()
  28. }).Grayscale());
  29. image.DangerousTryGetSinglePixelMemory(out var pixelSpan);
  30. var pixelArray = pixelSpan.ToArray();
  31. var pixelCount = width * height;
  32. var bytes = new byte[pixelCount];
  33. for (var i = 0; i < pixelCount; i++)
  34. {
  35. bytes[i] = pixelArray[i].B;
  36. }
  37. return bytes;
  38. }
  39. }
  40. public static class ImageHashExt
  41. {
  42. /// <summary>
  43. /// 使用平均值算法计算图像的64位哈希
  44. /// </summary>
  45. /// <param name="image">读取到的图片流</param>
  46. /// <returns>64位hash值</returns>
  47. public static ulong AverageHash64(this Image<Rgba32> image)
  48. {
  49. var hasher = new ImageHasher();
  50. return hasher.AverageHash64(image);
  51. }
  52. /// <summary>
  53. /// 使用中值算法计算给定图像的64位哈希
  54. /// 将图像转换为8x8灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  55. /// </summary>
  56. /// <param name="image">读取到的图片流</param>
  57. /// <returns>64位hash值</returns>
  58. public static ulong MedianHash64(this Image<Rgba32> image)
  59. {
  60. var hasher = new ImageHasher();
  61. return hasher.MedianHash64(image);
  62. }
  63. /// <summary>
  64. /// 使用中值算法计算给定图像的256位哈希
  65. /// 将图像转换为16x16的灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  66. /// </summary>
  67. /// <param name="image">读取到的图片流</param>
  68. /// <returns>256位hash值,生成一个4长度的数组返回</returns>
  69. public static ulong[] MedianHash256(this Image<Rgba32> image)
  70. {
  71. var hasher = new ImageHasher();
  72. return hasher.MedianHash256(image);
  73. }
  74. /// <summary>
  75. /// 使用差分哈希算法计算图像的64位哈希。
  76. /// </summary>
  77. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  78. /// <param name="image">读取到的图片流</param>
  79. /// <returns>64位hash值</returns>
  80. public static ulong DifferenceHash64(this Image<Rgba32> image)
  81. {
  82. var hasher = new ImageHasher();
  83. return hasher.DifferenceHash64(image);
  84. }
  85. /// <summary>
  86. /// 使用差分哈希算法计算图像的64位哈希。
  87. /// </summary>
  88. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  89. /// <param name="image">读取到的图片流</param>
  90. /// <returns>256位hash值</returns>
  91. public static ulong[] DifferenceHash256(this Image<Rgba32> image)
  92. {
  93. var hasher = new ImageHasher();
  94. return hasher.DifferenceHash256(image);
  95. }
  96. /// <summary>
  97. /// 使用DCT算法计算图像的64位哈希
  98. /// </summary>
  99. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  100. /// <param name="image">读取到的图片流</param>
  101. /// <returns>64位hash值</returns>
  102. public static ulong DctHash(this Image<Rgba32> image)
  103. {
  104. var hasher = new ImageHasher();
  105. return hasher.DctHash(image);
  106. }
  107. /// <summary>
  108. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  109. /// </summary>
  110. /// <param name="image1">图像1</param>
  111. /// <param name="image2">图像2</param>
  112. /// <returns>相似度范围:[0,1]</returns>
  113. public static float Compare(this Image<Rgba32> image1, Image<Rgba32> image2)
  114. {
  115. var hasher = new ImageHasher();
  116. var hash1 = hasher.DifferenceHash256(image1);
  117. var hash2 = hasher.DifferenceHash256(image2);
  118. return ImageHasher.Compare(hash1, hash2);
  119. }
  120. /// <summary>
  121. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  122. /// </summary>
  123. /// <param name="image1">图像1的hash</param>
  124. /// <param name="image2path">图像2的路径</param>
  125. /// <returns>相似度范围:[0,1]</returns>
  126. public static float Compare(this Image<Rgba32> image1, string image2path)
  127. {
  128. var hasher = new ImageHasher();
  129. var hash1 = hasher.DifferenceHash256(image1);
  130. var hash2 = hasher.DifferenceHash256(image2path);
  131. return ImageHasher.Compare(hash1, hash2);
  132. }
  133. }