ImageSharpTransformer.cs 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. using SixLabors.ImageSharp;
  2. using SixLabors.ImageSharp.Formats;
  3. using SixLabors.ImageSharp.PixelFormats;
  4. using SixLabors.ImageSharp.Processing;
  5. using SixLabors.ImageSharp.Processing.Processors.Transforms;
  6. using System.IO;
  7. namespace Masuit.Tools.Media;
  8. /// <summary>
  9. /// 使用ImageSharp进行图像变换
  10. /// </summary>
  11. public class ImageSharpTransformer : IImageTransformer
  12. {
  13. #if NET6_0_OR_GREATER
  14. public byte[] TransformImage(Stream stream, int width, int height)
  15. {
  16. var decoderOptions = new DecoderOptions
  17. {
  18. TargetSize = new Size(144),
  19. SkipMetadata = true,
  20. };
  21. using var image = Image.Load<L8>(decoderOptions, stream);
  22. return TransformImage(image, width, height);
  23. }
  24. #else
  25. public byte[] TransformImage(Stream stream, int width, int height)
  26. {
  27. using var image = Image.Load<L8>(stream);
  28. return TransformImage(image, width, height);
  29. }
  30. #endif
  31. public byte[] TransformImage(Image<L8> image, int width, int height)
  32. {
  33. image.Mutate(x => x.Resize(new ResizeOptions()
  34. {
  35. Size = new Size
  36. {
  37. Width = width,
  38. Height = height
  39. },
  40. Mode = ResizeMode.Stretch,
  41. Sampler = new BicubicResampler()
  42. }));
  43. image.DangerousTryGetSinglePixelMemory(out var pixelSpan);
  44. var pixelArray = pixelSpan.ToArray();
  45. var pixelCount = width * height;
  46. var bytes = new byte[pixelCount];
  47. for (var i = 0; i < pixelCount; i++)
  48. {
  49. bytes[i] = pixelArray[i].PackedValue;
  50. }
  51. return bytes;
  52. }
  53. public byte[,] GetPixelData(Image<L8> image, int width, int height)
  54. {
  55. image.Mutate(x => x.Resize(new ResizeOptions()
  56. {
  57. Size = new Size
  58. {
  59. Width = width,
  60. Height = height
  61. },
  62. Mode = ResizeMode.Stretch,
  63. Sampler = new BicubicResampler()
  64. }));
  65. var grayscalePixels = new byte[width, height];
  66. image.ProcessPixelRows(accessor =>
  67. {
  68. for (int y = 0; y < width; y++)
  69. {
  70. var row = accessor.GetRowSpan(y);
  71. for (int x = 0; x < height; x++)
  72. {
  73. var pixel = row[x];
  74. grayscalePixels[y, x] = pixel.PackedValue;
  75. }
  76. }
  77. });
  78. return grayscalePixels;
  79. }
  80. }
  81. public static class ImageHashExt
  82. {
  83. /// <summary>
  84. /// 使用平均值算法计算图像的64位哈希
  85. /// </summary>
  86. /// <param name="image">读取到的图片流</param>
  87. /// <returns>64位hash值</returns>
  88. public static ulong AverageHash64(this Image image)
  89. {
  90. var hasher = new ImageHasher();
  91. return hasher.AverageHash64(image);
  92. }
  93. /// <summary>
  94. /// 使用中值算法计算给定图像的64位哈希
  95. /// 将图像转换为8x8灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  96. /// </summary>
  97. /// <param name="image">读取到的图片流</param>
  98. /// <returns>64位hash值</returns>
  99. public static ulong MedianHash64(this Image image)
  100. {
  101. var hasher = new ImageHasher();
  102. return hasher.MedianHash64(image);
  103. }
  104. /// <summary>
  105. /// 使用中值算法计算给定图像的256位哈希
  106. /// 将图像转换为16x16的灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  107. /// </summary>
  108. /// <param name="image">读取到的图片流</param>
  109. /// <returns>256位hash值,生成一个4长度的数组返回</returns>
  110. public static ulong[] MedianHash256(this Image image)
  111. {
  112. var hasher = new ImageHasher();
  113. return hasher.MedianHash256(image);
  114. }
  115. /// <summary>
  116. /// 使用差分哈希算法计算图像的64位哈希。
  117. /// </summary>
  118. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  119. /// <param name="image">读取到的图片流</param>
  120. /// <returns>64位hash值</returns>
  121. public static ulong DifferenceHash64(this Image image)
  122. {
  123. var hasher = new ImageHasher();
  124. return hasher.DifferenceHash64(image);
  125. }
  126. /// <summary>
  127. /// 使用差分哈希算法计算图像的64位哈希。
  128. /// </summary>
  129. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  130. /// <param name="image">读取到的图片流</param>
  131. /// <returns>256位hash值</returns>
  132. public static ulong[] DifferenceHash256(this Image image)
  133. {
  134. var hasher = new ImageHasher();
  135. return hasher.DifferenceHash256(image);
  136. }
  137. /// <summary>
  138. /// 使用DCT算法计算图像的64位哈希
  139. /// </summary>
  140. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  141. /// <param name="image">读取到的图片流</param>
  142. /// <returns>64位hash值</returns>
  143. public static ulong DctHash(this Image image)
  144. {
  145. var hasher = new ImageHasher();
  146. return hasher.DctHash(image);
  147. }
  148. /// <summary>
  149. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  150. /// </summary>
  151. /// <param name="image1">图像1</param>
  152. /// <param name="image2">图像2</param>
  153. /// <returns>相似度范围:[0,1]</returns>
  154. public static float Compare(this Image image1, Image image2)
  155. {
  156. var hasher = new ImageHasher();
  157. var hash1 = hasher.DifferenceHash256(image1);
  158. var hash2 = hasher.DifferenceHash256(image2);
  159. return ImageHasher.Compare(hash1, hash2);
  160. }
  161. /// <summary>
  162. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  163. /// </summary>
  164. /// <param name="image1">图像1的hash</param>
  165. /// <param name="image2path">图像2的路径</param>
  166. /// <returns>相似度范围:[0,1]</returns>
  167. public static float Compare(this Image image1, string image2path)
  168. {
  169. var hasher = new ImageHasher();
  170. var hash1 = hasher.DifferenceHash256(image1);
  171. var hash2 = hasher.DifferenceHash256(image2path);
  172. return ImageHasher.Compare(hash1, hash2);
  173. }
  174. }