ImageSharpTransformer.cs 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. using System.IO;
  2. using SixLabors.ImageSharp;
  3. using SixLabors.ImageSharp.PixelFormats;
  4. using SixLabors.ImageSharp.Processing;
  5. using SixLabors.ImageSharp.Processing.Processors.Transforms;
  6. using static System.Net.WebRequestMethods;
  7. using Image = SixLabors.ImageSharp.Image;
  8. using Size = SixLabors.ImageSharp.Size;
  9. namespace Masuit.Tools.Media;
  10. /// <summary>
  11. /// 使用ImageSharp进行图像变换
  12. /// </summary>
  13. public class ImageSharpTransformer : IImageTransformer
  14. {
  15. public byte[] TransformImage(Stream stream, int width, int height)
  16. {
  17. using var image = Image.Load<Rgba32>(stream);
  18. return TransformImage(image, width, height);
  19. }
  20. public byte[] TransformImage(Image<Rgba32> image, int width, int height)
  21. {
  22. image.Mutate(x => x.Resize(new ResizeOptions()
  23. {
  24. Size = new Size
  25. {
  26. Width = width,
  27. Height = height
  28. },
  29. Mode = ResizeMode.Stretch,
  30. Sampler = new BicubicResampler()
  31. }).Grayscale());
  32. image.DangerousTryGetSinglePixelMemory(out var pixelSpan);
  33. var pixelArray = pixelSpan.ToArray();
  34. var pixelCount = width * height;
  35. var bytes = new byte[pixelCount];
  36. for (var i = 0; i < pixelCount; i++)
  37. {
  38. bytes[i] = pixelArray[i].B;
  39. }
  40. return bytes;
  41. }
  42. }
  43. public static class ImageHashExt
  44. {
  45. /// <summary>
  46. /// 使用平均值算法计算图像的64位哈希
  47. /// </summary>
  48. /// <param name="image">读取到的图片流</param>
  49. /// <returns>64位hash值</returns>
  50. public static ulong AverageHash64(this Image<Rgba32> image)
  51. {
  52. var hasher = new ImageHasher();
  53. return hasher.AverageHash64(image);
  54. }
  55. /// <summary>
  56. /// 使用中值算法计算给定图像的64位哈希
  57. /// 将图像转换为8x8灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  58. /// </summary>
  59. /// <param name="image">读取到的图片流</param>
  60. /// <returns>64位hash值</returns>
  61. public static ulong MedianHash64(this Image<Rgba32> image)
  62. {
  63. var hasher = new ImageHasher();
  64. return hasher.MedianHash64(image);
  65. }
  66. /// <summary>
  67. /// 使用中值算法计算给定图像的256位哈希
  68. /// 将图像转换为16x16的灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  69. /// </summary>
  70. /// <param name="image">读取到的图片流</param>
  71. /// <returns>256位hash值,生成一个4长度的数组返回</returns>
  72. public static ulong[] MedianHash256(this Image<Rgba32> image)
  73. {
  74. var hasher = new ImageHasher();
  75. return hasher.MedianHash256(image);
  76. }
  77. /// <summary>
  78. /// 使用差分哈希算法计算图像的64位哈希。
  79. /// </summary>
  80. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  81. /// <param name="image">读取到的图片流</param>
  82. /// <returns>64位hash值</returns>
  83. public static ulong DifferenceHash64(this Image<Rgba32> image)
  84. {
  85. var hasher = new ImageHasher();
  86. return hasher.DifferenceHash64(image);
  87. }
  88. /// <summary>
  89. /// 使用差分哈希算法计算图像的64位哈希。
  90. /// </summary>
  91. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  92. /// <param name="image">读取到的图片流</param>
  93. /// <returns>256位hash值</returns>
  94. public static ulong[] DifferenceHash256(this Image<Rgba32> image)
  95. {
  96. var hasher = new ImageHasher();
  97. return hasher.DifferenceHash256(image);
  98. }
  99. /// <summary>
  100. /// 使用DCT算法计算图像的64位哈希
  101. /// </summary>
  102. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  103. /// <param name="image">读取到的图片流</param>
  104. /// <returns>64位hash值</returns>
  105. public static ulong DctHash(this Image<Rgba32> image)
  106. {
  107. var hasher = new ImageHasher();
  108. return hasher.DctHash(image);
  109. }
  110. /// <summary>
  111. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  112. /// </summary>
  113. /// <param name="image1">图像1</param>
  114. /// <param name="image2">图像2</param>
  115. /// <returns>相似度范围:[0,1]</returns>
  116. public static float Compare(this Image<Rgba32> image1, Image<Rgba32> image2)
  117. {
  118. var hasher = new ImageHasher();
  119. var hash1 = hasher.DifferenceHash256(image1);
  120. var hash2 = hasher.DifferenceHash256(image2);
  121. return ImageHasher.Compare(hash1, hash2);
  122. }
  123. /// <summary>
  124. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  125. /// </summary>
  126. /// <param name="image1">图像1的hash</param>
  127. /// <param name="image2path">图像2的路径</param>
  128. /// <returns>相似度范围:[0,1]</returns>
  129. public static float Compare(this Image<Rgba32> image1, string image2path)
  130. {
  131. var hasher = new ImageHasher();
  132. var hash1 = hasher.DifferenceHash256(image1);
  133. var hash2 = hasher.DifferenceHash256(image2path);
  134. return ImageHasher.Compare(hash1, hash2);
  135. }
  136. }