1
1

ImageSharpTransformer.cs 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. using SixLabors.ImageSharp;
  2. using SixLabors.ImageSharp.Formats;
  3. using SixLabors.ImageSharp.PixelFormats;
  4. using SixLabors.ImageSharp.Processing;
  5. using SixLabors.ImageSharp.Processing.Processors.Transforms;
  6. using System.IO;
  7. namespace Masuit.Tools.Media;
  8. /// <summary>
  9. /// 使用ImageSharp进行图像变换
  10. /// </summary>
  11. public class ImageSharpTransformer : IImageTransformer
  12. {
  13. #if NET6_0_OR_GREATER
  14. public byte[] TransformImage(Stream stream, int width, int height)
  15. {
  16. var decoderOptions = new DecoderOptions
  17. {
  18. TargetSize = new Size(144),
  19. SkipMetadata = true,
  20. };
  21. using var image = Image.Load<L8>(decoderOptions, stream);
  22. return TransformImage(image, width, height);
  23. }
  24. #else
  25. public byte[] TransformImage(Stream stream, int width, int height)
  26. {
  27. using var image = Image.Load<L8>(stream);
  28. return TransformImage(image, width, height);
  29. }
  30. #endif
  31. public byte[] TransformImage(Image<L8> image, int width, int height)
  32. {
  33. image.Mutate(x => x.Resize(new ResizeOptions()
  34. {
  35. Size = new Size
  36. {
  37. Width = width,
  38. Height = height
  39. },
  40. Mode = ResizeMode.Stretch,
  41. Sampler = new BicubicResampler()
  42. }));
  43. image.DangerousTryGetSinglePixelMemory(out var pixelSpan);
  44. var pixelArray = pixelSpan.ToArray();
  45. var pixelCount = width * height;
  46. var bytes = new byte[pixelCount];
  47. for (var i = 0; i < pixelCount; i++)
  48. {
  49. bytes[i] = pixelArray[i].PackedValue;
  50. }
  51. return bytes;
  52. }
  53. }
  54. public static class ImageHashExt
  55. {
  56. /// <summary>
  57. /// 使用平均值算法计算图像的64位哈希
  58. /// </summary>
  59. /// <param name="image">读取到的图片流</param>
  60. /// <returns>64位hash值</returns>
  61. public static ulong AverageHash64(this Image image)
  62. {
  63. var hasher = new ImageHasher();
  64. return hasher.AverageHash64(image);
  65. }
  66. /// <summary>
  67. /// 使用中值算法计算给定图像的64位哈希
  68. /// 将图像转换为8x8灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  69. /// </summary>
  70. /// <param name="image">读取到的图片流</param>
  71. /// <returns>64位hash值</returns>
  72. public static ulong MedianHash64(this Image image)
  73. {
  74. var hasher = new ImageHasher();
  75. return hasher.MedianHash64(image);
  76. }
  77. /// <summary>
  78. /// 使用中值算法计算给定图像的256位哈希
  79. /// 将图像转换为16x16的灰度图像,从中查找中值像素值,然后在结果哈希中将值大于中值的所有像素标记为1。与基于平均值的实现相比,更能抵抗非线性图像编辑。
  80. /// </summary>
  81. /// <param name="image">读取到的图片流</param>
  82. /// <returns>256位hash值,生成一个4长度的数组返回</returns>
  83. public static ulong[] MedianHash256(this Image image)
  84. {
  85. var hasher = new ImageHasher();
  86. return hasher.MedianHash256(image);
  87. }
  88. /// <summary>
  89. /// 使用差分哈希算法计算图像的64位哈希。
  90. /// </summary>
  91. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  92. /// <param name="image">读取到的图片流</param>
  93. /// <returns>64位hash值</returns>
  94. public static ulong DifferenceHash64(this Image image)
  95. {
  96. var hasher = new ImageHasher();
  97. return hasher.DifferenceHash64(image);
  98. }
  99. /// <summary>
  100. /// 使用差分哈希算法计算图像的64位哈希。
  101. /// </summary>
  102. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  103. /// <param name="image">读取到的图片流</param>
  104. /// <returns>256位hash值</returns>
  105. public static ulong[] DifferenceHash256(this Image image)
  106. {
  107. var hasher = new ImageHasher();
  108. return hasher.DifferenceHash256(image);
  109. }
  110. /// <summary>
  111. /// 使用DCT算法计算图像的64位哈希
  112. /// </summary>
  113. /// <see cref="https://segmentfault.com/a/1190000038308093"/>
  114. /// <param name="image">读取到的图片流</param>
  115. /// <returns>64位hash值</returns>
  116. public static ulong DctHash(this Image image)
  117. {
  118. var hasher = new ImageHasher();
  119. return hasher.DctHash(image);
  120. }
  121. /// <summary>
  122. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  123. /// </summary>
  124. /// <param name="image1">图像1</param>
  125. /// <param name="image2">图像2</param>
  126. /// <returns>相似度范围:[0,1]</returns>
  127. public static float Compare(this Image image1, Image image2)
  128. {
  129. var hasher = new ImageHasher();
  130. var hash1 = hasher.DifferenceHash256(image1);
  131. var hash2 = hasher.DifferenceHash256(image2);
  132. return ImageHasher.Compare(hash1, hash2);
  133. }
  134. /// <summary>
  135. /// 使用汉明距离比较两幅图像的哈希值。结果1表示图像完全相同,而结果0表示图像完全不同。
  136. /// </summary>
  137. /// <param name="image1">图像1的hash</param>
  138. /// <param name="image2path">图像2的路径</param>
  139. /// <returns>相似度范围:[0,1]</returns>
  140. public static float Compare(this Image image1, string image2path)
  141. {
  142. var hasher = new ImageHasher();
  143. var hash1 = hasher.DifferenceHash256(image1);
  144. var hash2 = hasher.DifferenceHash256(image2path);
  145. return ImageHasher.Compare(hash1, hash2);
  146. }
  147. }