packet.cpp 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * packet.cpp
  3. *
  4. * Created on: Sep 15, 2017
  5. * Author: root
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include "packet.h"
  10. #include "misc.h"
  11. int iv_min = 4;
  12. int iv_max = 32; //< 256;
  13. u64_t packet_send_count = 0;
  14. u64_t dup_packet_send_count = 0;
  15. u64_t packet_recv_count = 0;
  16. u64_t dup_packet_recv_count = 0;
  17. typedef u64_t anti_replay_seq_t;
  18. int disable_replay_filter = 0;
  19. int disable_obscure = 0;
  20. int disable_xor = 0;
  21. int random_drop = 0;
  22. char key_string[1000] = "";
  23. // int local_listen_fd=-1;
  24. void encrypt_0(char *input, int &len, char *key) {
  25. int i, j;
  26. if (key[0] == 0) return;
  27. for (i = 0, j = 0; i < len; i++, j++) {
  28. if (key[j] == 0) j = 0;
  29. input[i] ^= key[j];
  30. }
  31. }
  32. void decrypt_0(char *input, int &len, char *key) {
  33. int i, j;
  34. if (key[0] == 0) return;
  35. for (i = 0, j = 0; i < len; i++, j++) {
  36. if (key[j] == 0) j = 0;
  37. input[i] ^= key[j];
  38. }
  39. }
  40. int do_obscure_old(const char *input, int in_len, char *output, int &out_len) {
  41. // memcpy(output,input,in_len);
  42. // out_len=in_len;
  43. // return 0;
  44. int i, j, k;
  45. if (in_len > 65535 || in_len < 0)
  46. return -1;
  47. int iv_len = iv_min + rand() % (iv_max - iv_min);
  48. get_fake_random_chars(output, iv_len);
  49. memcpy(output + iv_len, input, in_len);
  50. output[iv_len + in_len] = (uint8_t)iv_len;
  51. output[iv_len + in_len] ^= output[0];
  52. output[iv_len + in_len] ^= key_string[0];
  53. for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
  54. if (j == iv_len) j = 0;
  55. if (key_string[k] == 0) k = 0;
  56. output[iv_len + i] ^= output[j];
  57. output[iv_len + i] ^= key_string[k];
  58. }
  59. out_len = iv_len + in_len + 1;
  60. return 0;
  61. }
  62. int do_obscure(char *data, int &len) {
  63. assert(len >= 0);
  64. assert(len < buf_len);
  65. int iv_len = random_between(iv_min, iv_max);
  66. get_fake_random_chars(data + len, iv_len);
  67. data[iv_len + len] = (uint8_t)iv_len;
  68. for (int i = 0, j = 0; i < len; i++, j++) {
  69. if (j == iv_len) j = 0;
  70. data[i] ^= data[len + j];
  71. }
  72. len = len + iv_len + 1;
  73. return 0;
  74. }
  75. int de_obscure(char *data, int &len) {
  76. if (len < 1) return -1;
  77. int iv_len = int((uint8_t)data[len - 1]);
  78. if (len < 1 + iv_len) return -1;
  79. len = len - 1 - iv_len;
  80. for (int i = 0, j = 0; i < len; i++, j++) {
  81. if (j == iv_len) j = 0;
  82. data[i] ^= data[len + j];
  83. }
  84. return 0;
  85. }
  86. int de_obscure_old(const char *input, int in_len, char *output, int &out_len) {
  87. // memcpy(output,input,in_len);
  88. // out_len=in_len;
  89. // return 0;
  90. int i, j, k;
  91. if (in_len > 65535 || in_len < 0) {
  92. mylog(log_debug, "in_len > 65535||in_len<0 , %d", in_len);
  93. return -1;
  94. }
  95. int iv_len = int((uint8_t)(input[in_len - 1] ^ input[0] ^ key_string[0]));
  96. out_len = in_len - 1 - iv_len;
  97. if (out_len < 0) {
  98. mylog(log_debug, "%d %d\n", in_len, out_len);
  99. return -1;
  100. }
  101. for (i = 0, j = 0, k = 1; i < in_len; i++, j++, k++) {
  102. if (j == iv_len) j = 0;
  103. if (key_string[k] == 0) k = 0;
  104. output[i] = input[iv_len + i] ^ input[j] ^ key_string[k];
  105. }
  106. dup_packet_recv_count++;
  107. return 0;
  108. }
  109. /*
  110. int sendto_fd_ip_port (int fd,u32_t ip,int port,char * buf, int len,int flags)
  111. {
  112. sockaddr_in tmp_sockaddr;
  113. memset(&tmp_sockaddr,0,sizeof(tmp_sockaddr));
  114. tmp_sockaddr.sin_family = AF_INET;
  115. tmp_sockaddr.sin_addr.s_addr = ip;
  116. tmp_sockaddr.sin_port = htons(uint16_t(port));
  117. return sendto(fd, buf,
  118. len , 0,
  119. (struct sockaddr *) &tmp_sockaddr,
  120. sizeof(tmp_sockaddr));
  121. }*/
  122. int sendto_fd_addr(int fd, address_t addr, char *buf, int len, int flags) {
  123. return sendto(fd, buf,
  124. len, 0,
  125. (struct sockaddr *)&addr.inner,
  126. addr.get_len());
  127. }
  128. /*
  129. int sendto_ip_port (u32_t ip,int port,char * buf, int len,int flags)
  130. {
  131. return sendto_fd_ip_port(local_listen_fd,ip,port,buf,len,flags);
  132. }*/
  133. int send_fd(int fd, char *buf, int len, int flags) {
  134. return send(fd, buf, len, flags);
  135. }
  136. int my_send(const dest_t &dest, char *data, int len) {
  137. if (dest.cook) {
  138. do_cook(data, len);
  139. }
  140. switch (dest.type) {
  141. case type_fd_addr: {
  142. return sendto_fd_addr(dest.inner.fd, dest.inner.fd_addr.addr, data, len, 0);
  143. break;
  144. }
  145. case type_fd64_addr: {
  146. if (!fd_manager.exist(dest.inner.fd64)) return -1;
  147. int fd = fd_manager.to_fd(dest.inner.fd64);
  148. return sendto_fd_addr(fd, dest.inner.fd64_addr.addr, data, len, 0);
  149. break;
  150. }
  151. case type_fd: {
  152. return send_fd(dest.inner.fd, data, len, 0);
  153. break;
  154. }
  155. case type_write_fd: {
  156. return write(dest.inner.fd, data, len);
  157. break;
  158. }
  159. case type_fd64: {
  160. if (!fd_manager.exist(dest.inner.fd64)) return -1;
  161. int fd = fd_manager.to_fd(dest.inner.fd64);
  162. return send_fd(fd, data, len, 0);
  163. break;
  164. }
  165. /*
  166. case type_fd64_ip_port_conv:
  167. {
  168. if(!fd_manager.exist(dest.inner.fd64)) return -1;
  169. int fd=fd_manager.to_fd(dest.inner.fd64);
  170. char *new_data;
  171. int new_len;
  172. put_conv(dest.conv,data,len,new_data,new_len);
  173. return sendto_fd_ip_port(fd,dest.inner.fd64_ip_port.ip_port.ip,dest.inner.fd64_ip_port.ip_port.port,new_data,new_len,0);
  174. break;
  175. }*/
  176. /*
  177. case type_fd64_conv:
  178. {
  179. char *new_data;
  180. int new_len;
  181. put_conv(dest.conv,data,len,new_data,new_len);
  182. if(!fd_manager.exist(dest.inner.fd64)) return -1;
  183. int fd=fd_manager.to_fd(dest.inner.fd64);
  184. return send_fd(fd,new_data,new_len,0);
  185. }*/
  186. /*
  187. case type_fd:
  188. {
  189. send_fd(dest.inner.fd,data,len,0);
  190. break;
  191. }*/
  192. default:
  193. assert(0 == 1);
  194. }
  195. return 0;
  196. }
  197. /*
  198. * this function comes from http://www.hackersdelight.org/hdcodetxt/crc.c.txt
  199. */
  200. unsigned int crc32h(unsigned char *message, int len) {
  201. assert(len >= 0);
  202. int i, crc;
  203. unsigned int byte, c;
  204. const unsigned int g0 = 0xEDB88320, g1 = g0 >> 1,
  205. g2 = g0 >> 2, g3 = g0 >> 3, g4 = g0 >> 4, g5 = g0 >> 5,
  206. g6 = (g0 >> 6) ^ g0, g7 = ((g0 >> 6) ^ g0) >> 1;
  207. i = 0;
  208. crc = 0xFFFFFFFF;
  209. while (i != len) { // Get next byte.
  210. byte = message[i];
  211. crc = crc ^ byte;
  212. c = ((crc << 31 >> 31) & g7) ^ ((crc << 30 >> 31) & g6) ^
  213. ((crc << 29 >> 31) & g5) ^ ((crc << 28 >> 31) & g4) ^
  214. ((crc << 27 >> 31) & g3) ^ ((crc << 26 >> 31) & g2) ^
  215. ((crc << 25 >> 31) & g1) ^ ((crc << 24 >> 31) & g0);
  216. crc = ((unsigned)crc >> 8) ^ c;
  217. i = i + 1;
  218. }
  219. return ~crc;
  220. }
  221. int put_conv0(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
  222. assert(len_in >= 0);
  223. static char buf[buf_len];
  224. output = buf;
  225. u32_t n_conv = htonl(conv);
  226. memcpy(output, &n_conv, sizeof(n_conv));
  227. memcpy(output + sizeof(n_conv), input, len_in);
  228. u32_t crc32 = crc32h((unsigned char *)output, len_in + sizeof(crc32));
  229. u32_t crc32_n = htonl(crc32);
  230. len_out = len_in + (int)(sizeof(n_conv)) + (int)sizeof(crc32_n);
  231. memcpy(output + len_in + (int)(sizeof(n_conv)), &crc32_n, sizeof(crc32_n));
  232. return 0;
  233. }
  234. int get_conv0(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
  235. assert(len_in >= 0);
  236. u32_t n_conv;
  237. memcpy(&n_conv, input, sizeof(n_conv));
  238. conv = ntohl(n_conv);
  239. output = (char *)input + sizeof(n_conv);
  240. u32_t crc32_n;
  241. len_out = len_in - (int)sizeof(n_conv) - (int)sizeof(crc32_n);
  242. if (len_out < 0) {
  243. mylog(log_debug, "len_out<0\n");
  244. return -1;
  245. }
  246. memcpy(&crc32_n, input + len_in - (int)sizeof(crc32_n), sizeof(crc32_n));
  247. u32_t crc32 = ntohl(crc32_n);
  248. if (crc32 != crc32h((unsigned char *)input, len_in - (int)sizeof(crc32_n))) {
  249. mylog(log_debug, "crc32 check failed\n");
  250. return -1;
  251. }
  252. return 0;
  253. }
  254. int put_crc32(char *s, int &len) {
  255. if (disable_checksum) return 0;
  256. assert(len >= 0);
  257. // if(len<0) return -1;
  258. u32_t crc32 = crc32h((unsigned char *)s, len);
  259. write_u32(s + len, crc32);
  260. len += sizeof(u32_t);
  261. return 0;
  262. }
  263. int do_cook(char *data, int &len) {
  264. put_crc32(data, len);
  265. if (!disable_obscure) do_obscure(data, len);
  266. if (!disable_xor) encrypt_0(data, len, key_string);
  267. return 0;
  268. }
  269. int de_cook(char *s, int &len) {
  270. if (!disable_xor) decrypt_0(s, len, key_string);
  271. if (!disable_obscure) {
  272. int ret = de_obscure(s, len);
  273. if (ret != 0) {
  274. mylog(log_debug, "de_obscure fail\n");
  275. return ret;
  276. }
  277. }
  278. int ret = rm_crc32(s, len);
  279. if (ret != 0) {
  280. mylog(log_debug, "rm_crc32 fail\n");
  281. return ret;
  282. }
  283. return 0;
  284. }
  285. int rm_crc32(char *s, int &len) {
  286. if (disable_checksum) return 0;
  287. assert(len >= 0);
  288. len -= sizeof(u32_t);
  289. if (len < 0) return -1;
  290. u32_t crc32_in = read_u32(s + len);
  291. u32_t crc32 = crc32h((unsigned char *)s, len);
  292. if (crc32 != crc32_in) return -1;
  293. return 0;
  294. }
  295. /*
  296. int do_obs()
  297. {
  298. }
  299. int de_obs()*/
  300. int put_conv(u32_t conv, const char *input, int len_in, char *&output, int &len_out) {
  301. static char buf[buf_len];
  302. output = buf;
  303. u32_t n_conv = htonl(conv);
  304. memcpy(output, &n_conv, sizeof(n_conv));
  305. memcpy(output + sizeof(n_conv), input, len_in);
  306. len_out = len_in + (int)(sizeof(n_conv));
  307. return 0;
  308. }
  309. int get_conv(u32_t &conv, const char *input, int len_in, char *&output, int &len_out) {
  310. u32_t n_conv;
  311. memcpy(&n_conv, input, sizeof(n_conv));
  312. conv = ntohl(n_conv);
  313. output = (char *)input + sizeof(n_conv);
  314. len_out = len_in - (int)sizeof(n_conv);
  315. if (len_out < 0) {
  316. mylog(log_debug, "len_out<0\n");
  317. return -1;
  318. }
  319. return 0;
  320. }