main.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<sys/socket.h>
  4. #include<arpa/inet.h>
  5. #include<stdlib.h>
  6. #include<getopt.h>
  7. #include <unistd.h>
  8. #include<errno.h>
  9. #include <fcntl.h>
  10. //#include"aes.h"
  11. #include <sys/epoll.h>
  12. #include <sys/wait.h>
  13. #include<map>
  14. #include<string>
  15. #include<vector>
  16. using namespace std;
  17. #include <sys/time.h>
  18. #include <time.h>
  19. #include <sys/timerfd.h>
  20. typedef unsigned long long u64_t; //this works on most platform,avoid using the PRId64
  21. typedef long long i64_t;
  22. typedef unsigned int u32_t;
  23. typedef int i32_t;
  24. const u32_t anti_replay_window_size=1000;
  25. typedef u64_t anti_replay_seq_t;
  26. int disable_anti_replay=0;
  27. int dup_num=3;
  28. int dup_delay=5000; //1000 = 1ms
  29. int iv_min=2;
  30. int iv_max=30;//< 256;
  31. int random_number_fd=-1;
  32. int remote_fd=-1;
  33. int local_fd=-1;
  34. int is_client = 0, is_server = 0;
  35. int VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV;
  36. void setnonblocking(int sock) {
  37. int opts;
  38. opts = fcntl(sock, F_GETFL);
  39. if (opts < 0) {
  40. perror("fcntl(sock,GETFL)");
  41. exit(1);
  42. }
  43. opts = opts | O_NONBLOCK;
  44. if (fcntl(sock, F_SETFL, opts) < 0) {
  45. perror("fcntl(sock,SETFL,opts)");
  46. exit(1);
  47. }
  48. }
  49. void init_random_number_fd()
  50. {
  51. random_number_fd=open("/dev/urandom",O_RDONLY);
  52. if(random_number_fd==-1)
  53. {
  54. printf("error open /dev/urandom\n");
  55. }
  56. setnonblocking(random_number_fd);
  57. }
  58. void get_true_random_chars(char * s,int len)
  59. {
  60. int size=read(random_number_fd,s,len);
  61. if(size!=len)
  62. {
  63. printf("get random number failed\n");
  64. exit(-1);
  65. }
  66. }
  67. u32_t get_true_random_number()
  68. {
  69. u32_t ret;
  70. int size=read(random_number_fd,&ret,sizeof(ret));
  71. if(size!=sizeof(ret))
  72. {
  73. printf("get random number failed %d\n",size);
  74. exit(-1);
  75. }
  76. return ret;
  77. }
  78. u64_t ntoh64(u64_t a)
  79. {
  80. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  81. {
  82. return __bswap_64( a);
  83. }
  84. else return a;
  85. }
  86. u64_t hton64(u64_t a)
  87. {
  88. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  89. {
  90. return __bswap_64( a);
  91. }
  92. else return a;
  93. }
  94. struct anti_replay_t
  95. {
  96. u64_t max_packet_received;
  97. char window[anti_replay_window_size];
  98. anti_replay_seq_t anti_replay_seq;
  99. anti_replay_seq_t get_new_seq_for_send()
  100. {
  101. return anti_replay_seq++;
  102. }
  103. anti_replay_t()
  104. {
  105. max_packet_received=0;
  106. anti_replay_seq=0;//random first seq
  107. //memset(window,0,sizeof(window)); //not necessary
  108. }
  109. void re_init()
  110. {
  111. max_packet_received=0;
  112. //memset(window,0,sizeof(window));
  113. }
  114. int is_vaild(u64_t seq)
  115. {
  116. if(disable_anti_replay) return 1;
  117. //if(disabled) return 0;
  118. if(seq==max_packet_received) return 0;
  119. else if(seq>max_packet_received)
  120. {
  121. if(seq-max_packet_received>=anti_replay_window_size)
  122. {
  123. memset(window,0,sizeof(window));
  124. window[seq%anti_replay_window_size]=1;
  125. }
  126. else
  127. {
  128. for (u64_t i=max_packet_received+1;i<seq;i++)
  129. window[i%anti_replay_window_size]=0;
  130. window[seq%anti_replay_window_size]=1;
  131. }
  132. max_packet_received=seq;
  133. return 1;
  134. }
  135. else if(seq<max_packet_received)
  136. {
  137. if(max_packet_received-seq>=anti_replay_window_size) return 0;
  138. else
  139. {
  140. if (window[seq%anti_replay_window_size]==1) return 0;
  141. else
  142. {
  143. window[seq%anti_replay_window_size]=1;
  144. return 1;
  145. }
  146. }
  147. }
  148. return 0; //for complier check
  149. }
  150. }anti_replay;
  151. struct my_time:timespec
  152. {
  153. bool operator <(const my_time& other)const
  154. {
  155. if(tv_sec<other.tv_sec) return true;
  156. else if(tv_sec>other.tv_sec) return false;
  157. else return tv_nsec<other.tv_nsec;
  158. }
  159. bool operator ==(const my_time& other)const
  160. {
  161. if(tv_sec==other.tv_sec&&tv_nsec==other.tv_nsec) return true;
  162. return false;
  163. }
  164. };
  165. struct delay_data
  166. {
  167. int fd;
  168. int times_left;
  169. char * data;
  170. int len;
  171. };
  172. int timer_fd;
  173. multimap<my_time,delay_data> delay_mp;
  174. my_time time_after_delay(my_time time)
  175. {
  176. time.tv_nsec+=dup_delay*1000ll; //8ms
  177. if(time.tv_nsec>=1000*1000*1000ll )
  178. {
  179. time.tv_nsec-=1000*1000*1000ll;
  180. time.tv_sec+=1;
  181. }
  182. return time;
  183. }
  184. int add_to_delay_mp(int fd,int times_left,char * buf,int len)
  185. {
  186. delay_data tmp;
  187. tmp.data = buf;
  188. tmp.fd = fd;
  189. tmp.times_left = times_left;
  190. tmp.len = len;
  191. my_time tmp_time;
  192. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  193. tmp_time=time_after_delay(tmp_time);
  194. delay_mp.insert(make_pair(tmp_time,tmp));
  195. return 0;
  196. }
  197. int add_and_new(int fd,int times_left,char * buf,int len)
  198. {
  199. char * str= (char *)malloc(len);
  200. memcpy(str,buf,len);
  201. add_to_delay_mp(fd,times_left,str,len);
  202. return 0;
  203. }
  204. char local_address[100], remote_address[100];
  205. int local_port = -1, remote_port = -1;
  206. //char keya[100], keyb[100];
  207. //int dup_a = 1, dup_b = 1;
  208. //char iv[100];
  209. const int buf_len = 20480;
  210. void handler(int num) {
  211. int status;
  212. int pid;
  213. while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {
  214. if (WIFEXITED(status)) {
  215. //printf("The child exit with code %d",WEXITSTATUS(status));
  216. }
  217. }
  218. }
  219. void encrypt_0(char * input,int &len,char *key)
  220. {
  221. int i,j;
  222. if(key[0]==0) return;
  223. for(i=0,j=0;i<len;i++,j++)
  224. {
  225. if(key[j]==0)j=0;
  226. input[i]^=key[j];
  227. }
  228. }
  229. void decrypt_0(char * input,int &len,char *key)
  230. {
  231. int i,j;
  232. if(key[0]==0) return;
  233. for(i=0,j=0;i<len;i++,j++)
  234. {
  235. if(key[j]==0)j=0;
  236. input[i]^=key[j];
  237. }
  238. }
  239. int add_seq(char * data,int &data_len )
  240. {
  241. if(data_len<0) return -1;
  242. anti_replay_seq_t seq=anti_replay.get_new_seq_for_send();
  243. seq=hton64(seq);
  244. memcpy(data+data_len,&seq,sizeof(seq));
  245. data_len+=sizeof(seq);
  246. return 0;
  247. }
  248. int remove_seq(char * data,int &data_len)
  249. {
  250. anti_replay_seq_t seq;
  251. if(data_len<sizeof(seq)) return -1;
  252. data_len-=sizeof(seq);
  253. memcpy(&seq,data+data_len,sizeof(seq));
  254. seq=ntoh64(seq);
  255. if(anti_replay.is_vaild(seq)==0)
  256. {
  257. //return -1; //TODO for test
  258. }
  259. return 0;
  260. }
  261. int do_obscure(const char * input, int in_len,char *output,int &out_len)
  262. {
  263. //memcpy(output,input,in_len);
  264. // out_len=in_len;
  265. //return 0;
  266. int i, j, k;
  267. if (in_len > 65535||in_len<0)
  268. return -1;
  269. int iv_len=iv_min+rand()%(iv_max-iv_min);
  270. get_true_random_chars(output,iv_len);
  271. memcpy(output+iv_len,input,in_len);
  272. output[iv_len+in_len]=(uint8_t)iv_len;
  273. for(i=0,j=0;i<in_len;i++,j++)
  274. {
  275. if(j==iv_len) j=0;
  276. output[iv_len+i]^=output[j];
  277. }
  278. output[iv_len+in_len]^=output[0];
  279. out_len=iv_len+in_len+1;
  280. return 0;
  281. }
  282. int de_obscure(const char * input, int in_len,char *output,int &out_len)
  283. {
  284. //memcpy(output,input,in_len);
  285. //out_len=in_len;
  286. //return 0;
  287. int i, j, k;
  288. if (in_len > 65535||in_len<0)
  289. {
  290. printf("error1,%d",in_len);
  291. return -1;
  292. }
  293. int iv_len= int ((uint8_t)(input[in_len-1]^input[0]) );
  294. out_len=in_len-1-iv_len;
  295. if(out_len<0)
  296. {
  297. printf("error2,%d %d",in_len,out_len);
  298. return -1;
  299. }
  300. for(i=0,j=0;i<in_len;i++,j++)
  301. {
  302. if(j==iv_len) j=0;
  303. output[i]=input[iv_len+i]^input[j];
  304. }
  305. return 0;
  306. }
  307. void check_delay_map()
  308. {
  309. //printf("<<<begin");
  310. if(!delay_mp.empty())
  311. {
  312. my_time current_time;
  313. multimap<my_time,delay_data>::iterator it;
  314. //printf("<map_size:%d>",delay_mp.size());
  315. //lfflush(stdout);
  316. while(1)
  317. {
  318. int ret;
  319. it=delay_mp.begin();
  320. if(it==delay_mp.end()) break;
  321. ret=clock_gettime(CLOCK_MONOTONIC, &current_time);
  322. if(ret!=0)
  323. {
  324. printf("unknown error\n");
  325. exit(1);
  326. }
  327. if(it->first < current_time||it->first ==current_time)
  328. {
  329. //send packet
  330. printf("<%d>",it->second.len);
  331. if( (is_client &&it->second.fd==remote_fd ) || (is_server &&it->second.fd==local_fd ) )
  332. {
  333. char new_data[buf_len];int new_len;
  334. do_obscure(it->second.data,it->second.len,new_data,new_len);
  335. ret = send(it->second.fd, new_data, new_len, 0);
  336. }
  337. else
  338. {
  339. ret = send(it->second.fd, it->second.data, it->second.len, 0);
  340. }
  341. if (ret < 0) {
  342. printf("send return %d at @300", ret);
  343. exit(1);
  344. }
  345. if(it->second.times_left>1)
  346. {
  347. //delay_mp.insert(pair<my_time,delay_data>(current_time));
  348. add_to_delay_mp(it->second.fd,it->second.times_left-1,it->second.data,it->second.len);
  349. }
  350. else
  351. {
  352. free(it->second.data);
  353. }
  354. delay_mp.erase(it);
  355. }
  356. else
  357. {
  358. break;
  359. }
  360. }
  361. if(!delay_mp.empty())
  362. {
  363. itimerspec its;
  364. memset(&its.it_interval,0,sizeof(its.it_interval));
  365. its.it_value=delay_mp.begin()->first;
  366. timerfd_settime(timer_fd,TFD_TIMER_ABSTIME,&its,0);
  367. }
  368. }
  369. //printf("end");
  370. }
  371. int set_buf_size(int fd)
  372. {
  373. int socket_buf_size=1024*1024;
  374. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  375. //if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  376. {
  377. printf("set SO_SNDBUF fail\n");
  378. exit(1);
  379. }
  380. //if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  381. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  382. {
  383. printf("set SO_RCVBUF fail\n");
  384. exit(1);
  385. }
  386. return 0;
  387. }
  388. int main(int argc, char *argv[])
  389. {
  390. dup2(1, 2); //redirect stderr to stdout
  391. init_random_number_fd();
  392. int i, j, k;
  393. int opt;
  394. signal(SIGCHLD, handler);
  395. printf("argc=%d ", argc);
  396. for (i = 0; i < argc; i++)
  397. printf("%s ", argv[i]);
  398. printf("\n");
  399. if (argc == 1)
  400. {
  401. printf(
  402. "proc -c/-s -l ip:port -r ip:port [-n dup_times] [-t dup_delay(1000=1ms)] \n");
  403. return -1;
  404. }
  405. int no_l = 1, no_r = 1;
  406. while ((opt = getopt(argc, argv, "l:r:d:t:hcs")) != -1)
  407. {
  408. //string opt_key;
  409. //opt_key+=opt;
  410. switch (opt)
  411. {
  412. case 'd':
  413. dup_num=-1;
  414. sscanf(optarg,"%d\n",&dup_num);
  415. if(dup_num<1 ||dup_num>10)
  416. {
  417. printf("dup_num must be between 1 and 10\n");
  418. exit(-1);
  419. }
  420. break;
  421. case 't':
  422. dup_delay=-1;
  423. sscanf(optarg,"%d\n",&dup_delay);
  424. if(dup_delay<1||dup_delay>1000*1000)
  425. {
  426. printf("dup_delay must be between 1 and 10\n");
  427. exit(-1);
  428. }
  429. break;
  430. case 'c':
  431. is_client = 1;
  432. break;
  433. case 's':
  434. is_server = 1;
  435. break;
  436. case 'l':
  437. no_l = 0;
  438. if (strchr(optarg, ':') != 0)
  439. {
  440. sscanf(optarg, "%[^:]:%d", local_address, &local_port);
  441. }
  442. else
  443. {
  444. printf(" -r ip:port\n");
  445. exit(1);
  446. strcpy(local_address, "127.0.0.1");
  447. sscanf(optarg, "%d", &local_port);
  448. }
  449. break;
  450. case 'r':
  451. no_r = 0;
  452. if (strchr(optarg, ':') != 0)
  453. {
  454. //printf("in :\n");
  455. //printf("%s\n",optarg);
  456. sscanf(optarg, "%[^:]:%d", remote_address, &remote_port);
  457. //printf("%d\n",remote_port);
  458. }
  459. else
  460. {
  461. printf(" -r ip:port\n");
  462. exit(1);
  463. strcpy(remote_address, "127.0.0.1");
  464. sscanf(optarg, "%d", &remote_port);
  465. }
  466. break;
  467. case 'h':
  468. break;
  469. default:
  470. printf("ignore unknown <%s>", optopt);
  471. }
  472. }
  473. if (no_l)
  474. printf("error: -i not found\n");
  475. if (no_r)
  476. printf("error: -o not found\n");
  477. if (no_l || no_r)
  478. exit(-1);
  479. if (is_client == 0 && is_server == 0)
  480. {
  481. printf("-s -c hasnt been set\n");
  482. exit(-1);
  483. }
  484. if (is_client == 1 && is_server == 1)
  485. {
  486. printf("-s -c cant be both set\n");
  487. exit(-1);
  488. }
  489. struct sockaddr_in local_me, local_other;
  490. int local_listen_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  491. int yes = 1;
  492. setsockopt(local_listen_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  493. set_buf_size(local_listen_fd);
  494. char data[buf_len];
  495. //char *data=data0;
  496. socklen_t slen = sizeof(sockaddr_in);
  497. memset(&local_me, 0, sizeof(local_me));
  498. local_me.sin_family = AF_INET;
  499. local_me.sin_port = htons(local_port);
  500. local_me.sin_addr.s_addr = inet_addr(local_address);
  501. if (bind(local_listen_fd, (struct sockaddr*) &local_me, slen) == -1)
  502. {
  503. printf("socket bind error");
  504. exit(1);
  505. }
  506. while (1)
  507. {
  508. int data_len;
  509. if ((data_len = recvfrom(local_listen_fd, data, buf_len, 0,
  510. (struct sockaddr *) &local_other, &slen)) == -1) //<--first packet from a new ip:port turple
  511. {
  512. printf("recv_from error");
  513. exit(1);
  514. }
  515. printf("received packet from %s:%d\n", inet_ntoa(local_other.sin_addr),
  516. ntohs(local_other.sin_port));
  517. data[data_len] = 0;
  518. printf("recv_len: %d\n", data_len);
  519. fflush(stdout);
  520. if (is_server)
  521. {
  522. char new_data[buf_len];
  523. int new_len;
  524. if(de_obscure(data,data_len,new_data,new_len)!=0)
  525. {
  526. printf("remove_padding error!\n");
  527. continue;
  528. }
  529. memcpy(data,new_data,new_len);
  530. data_len=new_len;
  531. if (remove_seq(data, data_len) != 0)
  532. {
  533. printf("remove_seq error!\n");
  534. continue;
  535. }
  536. //data=new_data;
  537. }
  538. local_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  539. //local_me.sin_addr.s_addr=inet_addr("127.0.0.1");
  540. setsockopt(local_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  541. if (bind(local_fd, (struct sockaddr*) &local_me, slen) == -1) //偷懒的方法,有潜在问题
  542. {
  543. printf("socket bind error in chilld");
  544. exit(1);
  545. }
  546. int ret = connect(local_fd, (struct sockaddr *) &local_other, slen); //偷懒的方法,有潜在问题
  547. if (fork() == 0) //子
  548. {
  549. if (ret != 0)
  550. {
  551. printf("connect return %d @1\n", ret);
  552. exit(1);
  553. }
  554. close(local_listen_fd);
  555. struct sockaddr_in remote_me, remote_other;
  556. memset(&remote_other, 0, sizeof(remote_other));
  557. remote_other.sin_family = AF_INET;
  558. //printf("remote_address=%s remote_port=%d\n",remote_address,remote_port);
  559. remote_other.sin_port = htons(remote_port);
  560. remote_other.sin_addr.s_addr = inet_addr(remote_address);
  561. remote_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  562. ret = connect(remote_fd, (struct sockaddr *) &remote_other, slen);
  563. if (ret != 0)
  564. {
  565. printf("connect return %d @2\n", ret);
  566. exit(1);
  567. }
  568. if (is_client)
  569. {
  570. add_seq(data, data_len);
  571. char new_data[buf_len];
  572. int new_len;
  573. do_obscure(data, data_len, new_data, new_len);
  574. ret = send(remote_fd, new_data, new_len, 0); //<----send the packet receved by father process ,only for this packet
  575. printf("send return %d\n", ret);
  576. if(dup_num > 1)
  577. {
  578. add_and_new(remote_fd, dup_num - 1, data, data_len);
  579. }
  580. }
  581. else
  582. {
  583. ret = send(remote_fd, data, data_len, 0);
  584. printf("send return %d\n", ret);
  585. }
  586. if (ret < 0)
  587. exit(-1);
  588. setnonblocking(remote_fd);
  589. set_buf_size(remote_fd);
  590. setnonblocking(local_fd);
  591. set_buf_size(local_fd);
  592. int epollfd = epoll_create1(0);
  593. const int max_events = 4096;
  594. struct epoll_event ev, events[max_events];
  595. if (epollfd < 0)
  596. {
  597. printf("epoll return %d\n", epollfd);
  598. exit(-1);
  599. }
  600. ev.events = EPOLLIN;
  601. ev.data.fd = local_fd;
  602. ret = epoll_ctl(epollfd, EPOLL_CTL_ADD, local_fd, &ev);
  603. if (ret < 0)
  604. {
  605. printf("epoll_ctl return %d\n", ret);
  606. exit(-1);
  607. }
  608. ev.events = EPOLLIN;
  609. ev.data.fd = remote_fd;
  610. ret = epoll_ctl(epollfd, EPOLL_CTL_ADD, remote_fd, &ev);
  611. if (ret < 0)
  612. {
  613. printf("epoll_ctl return %d\n", ret);
  614. exit(-1);
  615. }
  616. if ((timer_fd = timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK)) < 0)
  617. {
  618. printf("timer_fd create error");
  619. exit(1);
  620. }
  621. ev.events = EPOLLIN;
  622. ev.data.fd = timer_fd;
  623. itimerspec zero_its;
  624. memset(&zero_its, 0, sizeof(zero_its));
  625. timerfd_settime(timer_fd, TFD_TIMER_ABSTIME, &zero_its, 0);
  626. epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  627. if (ret < 0)
  628. {
  629. printf("epoll_ctl return %d\n", ret);
  630. exit(-1);
  631. }
  632. check_delay_map();
  633. for (;;)
  634. {
  635. int nfds = epoll_wait(epollfd, events, max_events, 180 * 1000); //3mins
  636. if (nfds <= 0)
  637. {
  638. printf("epoll_wait return %d\n", nfds);
  639. exit(-1);
  640. }
  641. int n;
  642. for (n = 0; n < nfds; ++n)
  643. {
  644. if (events[n].data.fd == local_fd) //data income from local end
  645. {
  646. data_len = recv(local_fd, data, buf_len, 0);
  647. if (data_len < 0)
  648. {
  649. printf("recv return %d @1", data_len);
  650. exit(1);
  651. }
  652. data[data_len] = 0;
  653. printf("len %d received from child@1\n", data_len);
  654. //printf("%s received from child@1\n",buf);
  655. //printf("before send %s\n",buf);
  656. if(is_client)
  657. {
  658. add_seq(data,data_len);
  659. char new_data[buf_len];
  660. int new_len;
  661. do_obscure(data, data_len, new_data, new_len);
  662. ret = send(remote_fd, new_data, new_len, 0);
  663. if(dup_num>1)
  664. {
  665. add_and_new(remote_fd, dup_num - 1, data, data_len);
  666. }
  667. }
  668. else
  669. {
  670. char new_data[buf_len];
  671. int new_len;
  672. if(de_obscure(data,data_len,new_data,new_len)!=0) {printf("error at line %d\n",__LINE__);continue;}
  673. if(remove_seq(new_data,new_len)!=0) {printf("error at line %d\n",__LINE__);continue;}
  674. ret = send(remote_fd, new_data, new_len, 0);
  675. }
  676. if (ret < 0)
  677. {
  678. printf("send return %d at @1", ret);
  679. exit(1);
  680. }
  681. }
  682. else if (events[n].data.fd == remote_fd)
  683. {
  684. data_len = recv(remote_fd, data, buf_len, 0);
  685. if (data_len < 0)
  686. {
  687. printf("recv return -1 @2", data_len);
  688. exit(1);
  689. }
  690. data[data_len] = 0;
  691. printf("len %d received from child@1\n", data_len);
  692. //printf("%s received from child@2\n",buf);
  693. if(is_client)
  694. {
  695. char new_data[buf_len];
  696. int new_len;
  697. if(de_obscure(data,data_len,new_data,new_len)!=0) {printf("error at line %d\n",__LINE__);continue;}
  698. if(remove_seq(new_data,new_len)!=0) {printf("error at line %d\n",__LINE__);continue;}
  699. ret = send(local_fd, new_data, new_len, 0);
  700. }
  701. else
  702. {
  703. add_seq(data,data_len);
  704. char new_data[buf_len];
  705. int new_len;
  706. do_obscure(data, data_len, new_data, new_len);
  707. ret = send(local_fd, new_data, new_len, 0);
  708. if(dup_num>1)
  709. {
  710. add_and_new(local_fd, dup_num - 1, data, data_len);
  711. }
  712. }
  713. if (ret < 0)
  714. {
  715. printf("send return %d @2", ret);
  716. exit(1);
  717. }
  718. }
  719. else if (events[n].data.fd == timer_fd)
  720. {
  721. uint64_t value;
  722. read(timer_fd, &value, 8);
  723. //printf("<timerfd_triggered, %d>",delay_mp.size());
  724. //fflush(stdout);
  725. }
  726. } //end for n = 0; n < nfds
  727. check_delay_map();
  728. }
  729. exit(0);
  730. }
  731. else //if(fork()==0) ... else
  732. { //fork 's father process
  733. close(local_fd); //father process only listen to local_listen_fd,so,close this fd
  734. }
  735. } //while(1)end
  736. return 0;
  737. }