common.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t client_or_server=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. struct my_random_t
  21. {
  22. std::random_device rd;
  23. std::mt19937 gen;
  24. std::uniform_int_distribution<u64_t> dis64;
  25. std::uniform_int_distribution<u32_t> dis32;
  26. std::uniform_int_distribution<unsigned char> dis8;
  27. my_random_t()
  28. {
  29. std::mt19937 gen_tmp(rd());
  30. gen=gen_tmp;
  31. gen.discard(700000); //magic
  32. }
  33. u64_t gen64()
  34. {
  35. return dis64(gen);
  36. }
  37. u32_t gen32()
  38. {
  39. return dis32(gen);
  40. }
  41. unsigned char gen8()
  42. {
  43. return dis8(gen);
  44. }
  45. /*int random_number_fd;
  46. random_fd_t()
  47. {
  48. random_number_fd=open("/dev/urandom",O_RDONLY);
  49. if(random_number_fd==-1)
  50. {
  51. mylog(log_fatal,"error open /dev/urandom\n");
  52. myexit(-1);
  53. }
  54. setnonblocking(random_number_fd);
  55. }
  56. int get_fd()
  57. {
  58. return random_number_fd;
  59. }*/
  60. }my_random;
  61. void get_fake_random_chars(char * s,int len)
  62. {
  63. char *p=s;
  64. int left=len;
  65. while(left>=(int)sizeof(u64_t))
  66. {
  67. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  68. u64_t tmp=my_random.gen64();
  69. memcpy(p,&tmp,sizeof(u64_t)); // so,use memcpy instead.
  70. p+=sizeof(u64_t);
  71. left-=sizeof(u64_t);
  72. }
  73. if(left)
  74. {
  75. u64_t tmp=my_random.gen64();
  76. memcpy(p,&tmp,left);
  77. }
  78. }
  79. int random_between(u32_t a,u32_t b)
  80. {
  81. if(a>b)
  82. {
  83. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  84. myexit(1);
  85. }
  86. if(a==b)return a;
  87. else return a+get_fake_random_number()%(b+1-a);
  88. }
  89. /*
  90. u64_t get_current_time()//ms
  91. {
  92. timespec tmp_time;
  93. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  94. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  95. }
  96. u64_t get_current_time_us()
  97. {
  98. timespec tmp_time;
  99. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  100. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  101. }*/
  102. u64_t get_current_time()//ms
  103. {
  104. //timespec tmp_time;
  105. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  106. //return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  107. return (u64_t)(ev_time()*1000);
  108. }
  109. u64_t get_current_time_us()
  110. {
  111. //timespec tmp_time;
  112. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  113. //return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  114. return (u64_t)(ev_time()*1000*1000);
  115. }
  116. u64_t pack_u64(u32_t a,u32_t b)
  117. {
  118. u64_t ret=a;
  119. ret<<=32u;
  120. ret+=b;
  121. return ret;
  122. }
  123. u32_t get_u64_h(u64_t a)
  124. {
  125. return a>>32u;
  126. }
  127. u32_t get_u64_l(u64_t a)
  128. {
  129. return (a<<32u)>>32u;
  130. }
  131. void write_u16(char * p,u16_t w)
  132. {
  133. *(unsigned char*)(p + 1) = (w & 0xff);
  134. *(unsigned char*)(p + 0) = (w >> 8);
  135. }
  136. u16_t read_u16(char * p)
  137. {
  138. u16_t res;
  139. res = *(const unsigned char*)(p + 0);
  140. res = *(const unsigned char*)(p + 1) + (res << 8);
  141. return res;
  142. }
  143. void write_u32(char * p,u32_t l)
  144. {
  145. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  146. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  147. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  148. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  149. }
  150. u32_t read_u32(char * p)
  151. {
  152. u32_t res;
  153. res = *(const unsigned char*)(p + 0);
  154. res = *(const unsigned char*)(p + 1) + (res << 8);
  155. res = *(const unsigned char*)(p + 2) + (res << 8);
  156. res = *(const unsigned char*)(p + 3) + (res << 8);
  157. return res;
  158. }
  159. void write_u64(char * s,u64_t a)
  160. {
  161. assert(0==1);
  162. }
  163. u64_t read_u64(char * s)
  164. {
  165. assert(0==1);
  166. return 0;
  167. }
  168. char * my_ntoa(u32_t ip)
  169. {
  170. in_addr a;
  171. a.s_addr=ip;
  172. return inet_ntoa(a);
  173. }
  174. int add_iptables_rule(char * s)
  175. {
  176. strcpy(iptables_rule,s);
  177. char buf[300]="iptables -I ";
  178. strcat(buf,s);
  179. if(system(buf)==0)
  180. {
  181. mylog(log_warn,"auto added iptables rule by: %s\n",buf);
  182. }
  183. else
  184. {
  185. mylog(log_fatal,"auto added iptables failed by: %s\n",buf);
  186. myexit(-1);
  187. }
  188. return 0;
  189. }
  190. int clear_iptables_rule()
  191. {
  192. if(iptables_rule[0]!=0)
  193. {
  194. char buf[300]="iptables -D ";
  195. strcat(buf,iptables_rule);
  196. if(system(buf)==0)
  197. {
  198. mylog(log_warn,"iptables rule cleared by: %s \n",buf);
  199. }
  200. else
  201. {
  202. mylog(log_error,"clear iptables failed by: %s\n",buf);
  203. }
  204. }
  205. return 0;
  206. }
  207. u64_t get_fake_random_number_64()
  208. {
  209. //u64_t ret;
  210. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  211. //if(size!=sizeof(ret))
  212. //{
  213. // mylog(log_fatal,"get random number failed %d\n",size);
  214. // myexit(-1);
  215. //}
  216. return my_random.gen64();
  217. }
  218. u32_t get_fake_random_number()
  219. {
  220. //u32_t ret;
  221. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  222. //if(size!=sizeof(ret))
  223. //{
  224. // mylog(log_fatal,"get random number failed %d\n",size);
  225. // myexit(-1);
  226. //}
  227. return my_random.gen32();
  228. }
  229. u32_t get_fake_random_number_nz() //nz for non-zero
  230. {
  231. u32_t ret=0;
  232. while(ret==0)
  233. {
  234. ret=get_fake_random_number();
  235. }
  236. return ret;
  237. }
  238. /*
  239. u64_t ntoh64(u64_t a)
  240. {
  241. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  242. {
  243. return __bswap_64( a);
  244. }
  245. else return a;
  246. }
  247. u64_t hton64(u64_t a)
  248. {
  249. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  250. {
  251. return __bswap_64( a);
  252. }
  253. else return a;
  254. }*/
  255. void setnonblocking(int sock) {
  256. int opts;
  257. opts = fcntl(sock, F_GETFL);
  258. if (opts < 0) {
  259. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  260. //perror("fcntl(sock,GETFL)");
  261. myexit(1);
  262. }
  263. opts = opts | O_NONBLOCK;
  264. if (fcntl(sock, F_SETFL, opts) < 0) {
  265. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  266. //perror("fcntl(sock,SETFL,opts)");
  267. myexit(1);
  268. }
  269. }
  270. /*
  271. Generic checksum calculation function
  272. */
  273. unsigned short csum(const unsigned short *ptr,int nbytes) {
  274. long sum;
  275. unsigned short oddbyte;
  276. short answer;
  277. sum=0;
  278. while(nbytes>1) {
  279. sum+=*ptr++;
  280. nbytes-=2;
  281. }
  282. if(nbytes==1) {
  283. oddbyte=0;
  284. *((u_char*)&oddbyte)=*(u_char*)ptr;
  285. sum+=oddbyte;
  286. }
  287. sum = (sum>>16)+(sum & 0xffff);
  288. sum = sum + (sum>>16);
  289. answer=(short)~sum;
  290. return(answer);
  291. }
  292. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  293. long sum;
  294. unsigned short oddbyte;
  295. short answer;
  296. sum=0;
  297. unsigned short * tmp= (unsigned short *)&ph;
  298. for(int i=0;i<6;i++)
  299. {
  300. sum+=*tmp++;
  301. }
  302. while(nbytes>1) {
  303. sum+=*ptr++;
  304. nbytes-=2;
  305. }
  306. if(nbytes==1) {
  307. oddbyte=0;
  308. *((u_char*)&oddbyte)=*(u_char*)ptr;
  309. sum+=oddbyte;
  310. }
  311. sum = (sum>>16)+(sum & 0xffff);
  312. sum = sum + (sum>>16);
  313. answer=(short)~sum;
  314. return(answer);
  315. }
  316. int set_buf_size(int fd,int socket_buf_size,int force_socket_buf)
  317. {
  318. if(0)
  319. {
  320. /*
  321. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  322. {
  323. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  324. myexit(1);
  325. }
  326. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  327. {
  328. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  329. myexit(1);
  330. }
  331. */
  332. }
  333. else
  334. {
  335. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  336. {
  337. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  338. myexit(1);
  339. }
  340. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  341. {
  342. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  343. myexit(1);
  344. }
  345. }
  346. return 0;
  347. }
  348. void myexit(int a)
  349. {
  350. if(enable_log_color)
  351. printf("%s\n",RESET);
  352. // clear_iptables_rule();
  353. exit(a);
  354. }
  355. void signal_handler(int sig)
  356. {
  357. about_to_exit=1;
  358. // myexit(0);
  359. }
  360. /*
  361. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  362. {
  363. static char buf[buf_len];
  364. data=buf;
  365. id_t tmp=htonl(id1);
  366. memcpy(buf,&tmp,sizeof(tmp));
  367. tmp=htonl(id2);
  368. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  369. tmp=htonl(id3);
  370. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  371. len=sizeof(id_t)*3;
  372. return 0;
  373. }
  374. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  375. {
  376. if(len<int(sizeof(id_t)*3)) return -1;
  377. id1=ntohl( *((id_t*)(data+0)) );
  378. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  379. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  380. return 0;
  381. }
  382. */
  383. bool larger_than_u32(u32_t a,u32_t b)
  384. {
  385. u32_t smaller,bigger;
  386. smaller=min(a,b);//smaller in normal sense
  387. bigger=max(a,b);
  388. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  389. if(distance==bigger-smaller)
  390. {
  391. if(bigger==a)
  392. {
  393. return 1;
  394. }
  395. else
  396. {
  397. return 0;
  398. }
  399. }
  400. else
  401. {
  402. if(smaller==b)
  403. {
  404. return 0;
  405. }
  406. else
  407. {
  408. return 1;
  409. }
  410. }
  411. }
  412. bool larger_than_u16(uint16_t a,uint16_t b)
  413. {
  414. uint16_t smaller,bigger;
  415. smaller=min(a,b);//smaller in normal sense
  416. bigger=max(a,b);
  417. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  418. if(distance==bigger-smaller)
  419. {
  420. if(bigger==a)
  421. {
  422. return 1;
  423. }
  424. else
  425. {
  426. return 0;
  427. }
  428. }
  429. else
  430. {
  431. if(smaller==b)
  432. {
  433. return 0;
  434. }
  435. else
  436. {
  437. return 1;
  438. }
  439. }
  440. }
  441. /*
  442. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  443. {
  444. int ret;
  445. epoll_event ev;
  446. itimerspec its;
  447. memset(&its,0,sizeof(its));
  448. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  449. {
  450. mylog(log_fatal,"timer_fd create error\n");
  451. myexit(1);
  452. }
  453. its.it_interval.tv_sec=(timer_interval/1000);
  454. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  455. its.it_value.tv_nsec=1; //imidiately
  456. timerfd_settime(timer_fd,0,&its,0);
  457. ev.events = EPOLLIN;
  458. ev.data.fd = timer_fd;
  459. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  460. if (ret < 0) {
  461. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  462. myexit(-1);
  463. }
  464. return 0;
  465. }*/
  466. /*
  467. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  468. {
  469. struct sockaddr_in remote_addr_in;
  470. socklen_t slen = sizeof(sockaddr_in);
  471. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  472. remote_addr_in.sin_family = AF_INET;
  473. remote_addr_in.sin_port = htons(remote_port);
  474. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  475. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  476. if (new_udp_fd < 0) {
  477. mylog(log_warn, "create udp_fd error\n");
  478. return -1;
  479. }
  480. setnonblocking(new_udp_fd);
  481. set_buf_size(new_udp_fd);
  482. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  483. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  484. if (ret != 0) {
  485. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  486. close(new_udp_fd);
  487. return -1;
  488. }
  489. return 0;
  490. }*/
  491. void ip_port_t::from_u64(u64_t u64)
  492. {
  493. ip=get_u64_h(u64);
  494. port=get_u64_l(u64);
  495. }
  496. u64_t ip_port_t::to_u64()
  497. {
  498. return pack_u64(ip,port);
  499. }
  500. char * ip_port_t::to_s()
  501. {
  502. static char res[40];
  503. sprintf(res,"%s:%d",my_ntoa(ip),port);
  504. return res;
  505. }
  506. int round_up_div(int a,int b)
  507. {
  508. return (a+b-1)/b;
  509. }
  510. int create_fifo(char * file)
  511. {
  512. if(mkfifo (file, 0666)!=0)
  513. {
  514. if(errno==EEXIST)
  515. {
  516. mylog(log_warn,"warning fifo file %s exist\n",file);
  517. }
  518. else
  519. {
  520. mylog(log_fatal,"create fifo file %s failed\n",file);
  521. myexit(-1);
  522. }
  523. }
  524. int fifo_fd=open (file, O_RDWR);
  525. if(fifo_fd<0)
  526. {
  527. mylog(log_fatal,"create fifo file %s failed\n",file);
  528. myexit(-1);
  529. }
  530. struct stat st;
  531. if (fstat(fifo_fd, &st)!=0)
  532. {
  533. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  534. myexit(-1);
  535. }
  536. if(!S_ISFIFO(st.st_mode))
  537. {
  538. mylog(log_fatal,"%s is not a fifo\n",file);
  539. myexit(-1);
  540. }
  541. setnonblocking(fifo_fd);
  542. return fifo_fd;
  543. }
  544. int new_listen_socket(int &fd,u32_t ip,int port)
  545. {
  546. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  547. int yes = 1;
  548. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  549. struct sockaddr_in local_me={0};
  550. socklen_t slen = sizeof(sockaddr_in);
  551. //memset(&local_me, 0, sizeof(local_me));
  552. local_me.sin_family = AF_INET;
  553. local_me.sin_port = htons(port);
  554. local_me.sin_addr.s_addr = ip;
  555. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  556. mylog(log_fatal,"socket bind error\n");
  557. //perror("socket bind error");
  558. myexit(1);
  559. }
  560. setnonblocking(fd);
  561. set_buf_size(fd,socket_buf_size);
  562. mylog(log_debug,"local_listen_fd=%d\n",fd);
  563. return 0;
  564. }
  565. int new_connected_socket(int &fd,u32_t ip,int port)
  566. {
  567. char ip_port[40];
  568. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  569. struct sockaddr_in remote_addr_in = { 0 };
  570. socklen_t slen = sizeof(sockaddr_in);
  571. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  572. remote_addr_in.sin_family = AF_INET;
  573. remote_addr_in.sin_port = htons(port);
  574. remote_addr_in.sin_addr.s_addr = ip;
  575. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  576. if (fd < 0) {
  577. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  578. return -1;
  579. }
  580. setnonblocking(fd);
  581. set_buf_size(fd, socket_buf_size);
  582. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  583. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  584. if (ret != 0) {
  585. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  586. close(fd);
  587. return -1;
  588. }
  589. return 0;
  590. }