common.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t client_or_server=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. int init_ws()
  21. {
  22. #if defined(__MINGW32__)
  23. WORD wVersionRequested;
  24. WSADATA wsaData;
  25. int err;
  26. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  27. wVersionRequested = MAKEWORD(2, 2);
  28. err = WSAStartup(wVersionRequested, &wsaData);
  29. if (err != 0) {
  30. /* Tell the user that we could not find a usable */
  31. /* Winsock DLL. */
  32. printf("WSAStartup failed with error: %d\n", err);
  33. exit(-1);
  34. }
  35. /* Confirm that the WinSock DLL supports 2.2.*/
  36. /* Note that if the DLL supports versions greater */
  37. /* than 2.2 in addition to 2.2, it will still return */
  38. /* 2.2 in wVersion since that is the version we */
  39. /* requested. */
  40. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  41. /* Tell the user that we could not find a usable */
  42. /* WinSock DLL. */
  43. printf("Could not find a usable version of Winsock.dll\n");
  44. WSACleanup();
  45. exit(-1);
  46. }
  47. else
  48. {
  49. printf("The Winsock 2.2 dll was found okay");
  50. }
  51. int tmp[]={0,100,200,300,500,800,1000,2000,3000,4000,-1};
  52. int succ=0;
  53. for(int i=1;tmp[i]!=-1;i++)
  54. {
  55. if(_setmaxstdio(100)==-1) break;
  56. else succ=i;
  57. }
  58. printf(", _setmaxstdio() was set to %d\n",tmp[succ]);
  59. #endif
  60. return 0;
  61. }
  62. #if defined(__MINGW32__)
  63. char *get_sock_error()
  64. {
  65. static char buf[1000];
  66. int e=WSAGetLastError();
  67. wchar_t *s = NULL;
  68. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  69. NULL, e,
  70. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  71. (LPWSTR)&s, 0, NULL);
  72. sprintf(buf, "%d:%S", e,s);
  73. int len=strlen(buf);
  74. if(len>0&&buf[len-1]=='\n') buf[len-1]=0;
  75. LocalFree(s);
  76. return buf;
  77. }
  78. int get_sock_errno()
  79. {
  80. return WSAGetLastError();
  81. }
  82. #else
  83. char *get_sock_error()
  84. {
  85. static char buf[1000];
  86. sprintf(buf, "%d:%s", errno,strerror(errno));
  87. return buf;
  88. }
  89. int get_sock_errno()
  90. {
  91. return errno;
  92. }
  93. #endif
  94. struct my_random_t
  95. {
  96. std::random_device rd;
  97. std::mt19937 gen;
  98. std::uniform_int_distribution<u64_t> dis64;
  99. std::uniform_int_distribution<u32_t> dis32;
  100. std::uniform_int_distribution<unsigned char> dis8;
  101. my_random_t()
  102. {
  103. std::mt19937 gen_tmp(rd());
  104. gen=gen_tmp;
  105. gen.discard(700000); //magic
  106. }
  107. u64_t gen64()
  108. {
  109. return dis64(gen);
  110. }
  111. u32_t gen32()
  112. {
  113. return dis32(gen);
  114. }
  115. unsigned char gen8()
  116. {
  117. return dis8(gen);
  118. }
  119. /*int random_number_fd;
  120. random_fd_t()
  121. {
  122. random_number_fd=open("/dev/urandom",O_RDONLY);
  123. if(random_number_fd==-1)
  124. {
  125. mylog(log_fatal,"error open /dev/urandom\n");
  126. myexit(-1);
  127. }
  128. setnonblocking(random_number_fd);
  129. }
  130. int get_fd()
  131. {
  132. return random_number_fd;
  133. }*/
  134. }my_random;
  135. void get_fake_random_chars(char * s,int len)
  136. {
  137. char *p=s;
  138. int left=len;
  139. while(left>=(int)sizeof(u64_t))
  140. {
  141. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  142. u64_t tmp=my_random.gen64();
  143. memcpy(p,&tmp,sizeof(u64_t)); // so,use memcpy instead.
  144. p+=sizeof(u64_t);
  145. left-=sizeof(u64_t);
  146. }
  147. if(left)
  148. {
  149. u64_t tmp=my_random.gen64();
  150. memcpy(p,&tmp,left);
  151. }
  152. }
  153. int random_between(u32_t a,u32_t b)
  154. {
  155. if(a>b)
  156. {
  157. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  158. myexit(1);
  159. }
  160. if(a==b)return a;
  161. else return a+get_fake_random_number()%(b+1-a);
  162. }
  163. /*
  164. u64_t get_current_time()//ms
  165. {
  166. timespec tmp_time;
  167. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  168. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  169. }
  170. u64_t get_current_time_us()
  171. {
  172. timespec tmp_time;
  173. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  174. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  175. }*/
  176. u64_t get_current_time()//ms
  177. {
  178. //timespec tmp_time;
  179. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  180. //return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  181. return (u64_t)(ev_time()*1000);
  182. }
  183. u64_t get_current_time_us()
  184. {
  185. //timespec tmp_time;
  186. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  187. //return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  188. return (u64_t)(ev_time()*1000*1000);
  189. }
  190. u64_t pack_u64(u32_t a,u32_t b)
  191. {
  192. u64_t ret=a;
  193. ret<<=32u;
  194. ret+=b;
  195. return ret;
  196. }
  197. u32_t get_u64_h(u64_t a)
  198. {
  199. return a>>32u;
  200. }
  201. u32_t get_u64_l(u64_t a)
  202. {
  203. return (a<<32u)>>32u;
  204. }
  205. void write_u16(char * p,u16_t w)
  206. {
  207. *(unsigned char*)(p + 1) = (w & 0xff);
  208. *(unsigned char*)(p + 0) = (w >> 8);
  209. }
  210. u16_t read_u16(char * p)
  211. {
  212. u16_t res;
  213. res = *(const unsigned char*)(p + 0);
  214. res = *(const unsigned char*)(p + 1) + (res << 8);
  215. return res;
  216. }
  217. void write_u32(char * p,u32_t l)
  218. {
  219. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  220. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  221. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  222. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  223. }
  224. u32_t read_u32(char * p)
  225. {
  226. u32_t res;
  227. res = *(const unsigned char*)(p + 0);
  228. res = *(const unsigned char*)(p + 1) + (res << 8);
  229. res = *(const unsigned char*)(p + 2) + (res << 8);
  230. res = *(const unsigned char*)(p + 3) + (res << 8);
  231. return res;
  232. }
  233. void write_u64(char * s,u64_t a)
  234. {
  235. assert(0==1);
  236. }
  237. u64_t read_u64(char * s)
  238. {
  239. assert(0==1);
  240. return 0;
  241. }
  242. char * my_ntoa(u32_t ip)
  243. {
  244. in_addr a;
  245. a.s_addr=ip;
  246. return inet_ntoa(a);
  247. }
  248. int add_iptables_rule(char * s)
  249. {
  250. strcpy(iptables_rule,s);
  251. char buf[300]="iptables -I ";
  252. strcat(buf,s);
  253. if(system(buf)==0)
  254. {
  255. mylog(log_warn,"auto added iptables rule by: %s\n",buf);
  256. }
  257. else
  258. {
  259. mylog(log_fatal,"auto added iptables failed by: %s\n",buf);
  260. myexit(-1);
  261. }
  262. return 0;
  263. }
  264. int clear_iptables_rule()
  265. {
  266. if(iptables_rule[0]!=0)
  267. {
  268. char buf[300]="iptables -D ";
  269. strcat(buf,iptables_rule);
  270. if(system(buf)==0)
  271. {
  272. mylog(log_warn,"iptables rule cleared by: %s \n",buf);
  273. }
  274. else
  275. {
  276. mylog(log_error,"clear iptables failed by: %s\n",buf);
  277. }
  278. }
  279. return 0;
  280. }
  281. u64_t get_fake_random_number_64()
  282. {
  283. //u64_t ret;
  284. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  285. //if(size!=sizeof(ret))
  286. //{
  287. // mylog(log_fatal,"get random number failed %d\n",size);
  288. // myexit(-1);
  289. //}
  290. return my_random.gen64();
  291. }
  292. u32_t get_fake_random_number()
  293. {
  294. //u32_t ret;
  295. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  296. //if(size!=sizeof(ret))
  297. //{
  298. // mylog(log_fatal,"get random number failed %d\n",size);
  299. // myexit(-1);
  300. //}
  301. return my_random.gen32();
  302. }
  303. u32_t get_fake_random_number_nz() //nz for non-zero
  304. {
  305. u32_t ret=0;
  306. while(ret==0)
  307. {
  308. ret=get_fake_random_number();
  309. }
  310. return ret;
  311. }
  312. /*
  313. u64_t ntoh64(u64_t a)
  314. {
  315. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  316. {
  317. return __bswap_64( a);
  318. }
  319. else return a;
  320. }
  321. u64_t hton64(u64_t a)
  322. {
  323. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  324. {
  325. return __bswap_64( a);
  326. }
  327. else return a;
  328. }*/
  329. void setnonblocking(int sock) {
  330. #if !defined(__MINGW32__)
  331. int opts;
  332. opts = fcntl(sock, F_GETFL);
  333. if (opts < 0) {
  334. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  335. //perror("fcntl(sock,GETFL)");
  336. myexit(1);
  337. }
  338. opts = opts | O_NONBLOCK;
  339. if (fcntl(sock, F_SETFL, opts) < 0) {
  340. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  341. //perror("fcntl(sock,SETFL,opts)");
  342. myexit(1);
  343. }
  344. #else
  345. int iResult;
  346. u_long iMode = 1;
  347. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  348. if (iResult != NO_ERROR)
  349. printf("ioctlsocket failed with error: %d\n", iResult);
  350. #endif
  351. }
  352. /*
  353. Generic checksum calculation function
  354. */
  355. unsigned short csum(const unsigned short *ptr,int nbytes) {
  356. long sum;
  357. unsigned short oddbyte;
  358. short answer;
  359. sum=0;
  360. while(nbytes>1) {
  361. sum+=*ptr++;
  362. nbytes-=2;
  363. }
  364. if(nbytes==1) {
  365. oddbyte=0;
  366. *((u_char*)&oddbyte)=*(u_char*)ptr;
  367. sum+=oddbyte;
  368. }
  369. sum = (sum>>16)+(sum & 0xffff);
  370. sum = sum + (sum>>16);
  371. answer=(short)~sum;
  372. return(answer);
  373. }
  374. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  375. long sum;
  376. unsigned short oddbyte;
  377. short answer;
  378. sum=0;
  379. unsigned short * tmp= (unsigned short *)&ph;
  380. for(int i=0;i<6;i++)
  381. {
  382. sum+=*tmp++;
  383. }
  384. while(nbytes>1) {
  385. sum+=*ptr++;
  386. nbytes-=2;
  387. }
  388. if(nbytes==1) {
  389. oddbyte=0;
  390. *((u_char*)&oddbyte)=*(u_char*)ptr;
  391. sum+=oddbyte;
  392. }
  393. sum = (sum>>16)+(sum & 0xffff);
  394. sum = sum + (sum>>16);
  395. answer=(short)~sum;
  396. return(answer);
  397. }
  398. int set_buf_size(int fd,int socket_buf_size,int force_socket_buf)
  399. {
  400. if(0)
  401. {
  402. /*
  403. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  404. {
  405. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  406. myexit(1);
  407. }
  408. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  409. {
  410. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  411. myexit(1);
  412. }
  413. */
  414. }
  415. else
  416. {
  417. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  418. {
  419. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  420. myexit(1);
  421. }
  422. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  423. {
  424. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  425. myexit(1);
  426. }
  427. }
  428. return 0;
  429. }
  430. void myexit(int a)
  431. {
  432. if(enable_log_color)
  433. printf("%s\n",RESET);
  434. // clear_iptables_rule();
  435. exit(a);
  436. }
  437. void signal_handler(int sig)
  438. {
  439. about_to_exit=1;
  440. // myexit(0);
  441. }
  442. /*
  443. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  444. {
  445. static char buf[buf_len];
  446. data=buf;
  447. id_t tmp=htonl(id1);
  448. memcpy(buf,&tmp,sizeof(tmp));
  449. tmp=htonl(id2);
  450. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  451. tmp=htonl(id3);
  452. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  453. len=sizeof(id_t)*3;
  454. return 0;
  455. }
  456. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  457. {
  458. if(len<int(sizeof(id_t)*3)) return -1;
  459. id1=ntohl( *((id_t*)(data+0)) );
  460. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  461. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  462. return 0;
  463. }
  464. */
  465. bool larger_than_u32(u32_t a,u32_t b)
  466. {
  467. u32_t smaller,bigger;
  468. smaller=min(a,b);//smaller in normal sense
  469. bigger=max(a,b);
  470. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  471. if(distance==bigger-smaller)
  472. {
  473. if(bigger==a)
  474. {
  475. return 1;
  476. }
  477. else
  478. {
  479. return 0;
  480. }
  481. }
  482. else
  483. {
  484. if(smaller==b)
  485. {
  486. return 0;
  487. }
  488. else
  489. {
  490. return 1;
  491. }
  492. }
  493. }
  494. bool larger_than_u16(uint16_t a,uint16_t b)
  495. {
  496. uint16_t smaller,bigger;
  497. smaller=min(a,b);//smaller in normal sense
  498. bigger=max(a,b);
  499. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  500. if(distance==bigger-smaller)
  501. {
  502. if(bigger==a)
  503. {
  504. return 1;
  505. }
  506. else
  507. {
  508. return 0;
  509. }
  510. }
  511. else
  512. {
  513. if(smaller==b)
  514. {
  515. return 0;
  516. }
  517. else
  518. {
  519. return 1;
  520. }
  521. }
  522. }
  523. /*
  524. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  525. {
  526. int ret;
  527. epoll_event ev;
  528. itimerspec its;
  529. memset(&its,0,sizeof(its));
  530. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  531. {
  532. mylog(log_fatal,"timer_fd create error\n");
  533. myexit(1);
  534. }
  535. its.it_interval.tv_sec=(timer_interval/1000);
  536. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  537. its.it_value.tv_nsec=1; //imidiately
  538. timerfd_settime(timer_fd,0,&its,0);
  539. ev.events = EPOLLIN;
  540. ev.data.fd = timer_fd;
  541. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  542. if (ret < 0) {
  543. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  544. myexit(-1);
  545. }
  546. return 0;
  547. }*/
  548. /*
  549. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  550. {
  551. struct sockaddr_in remote_addr_in;
  552. socklen_t slen = sizeof(sockaddr_in);
  553. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  554. remote_addr_in.sin_family = AF_INET;
  555. remote_addr_in.sin_port = htons(remote_port);
  556. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  557. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  558. if (new_udp_fd < 0) {
  559. mylog(log_warn, "create udp_fd error\n");
  560. return -1;
  561. }
  562. setnonblocking(new_udp_fd);
  563. set_buf_size(new_udp_fd);
  564. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  565. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  566. if (ret != 0) {
  567. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  568. close(new_udp_fd);
  569. return -1;
  570. }
  571. return 0;
  572. }*/
  573. void ip_port_t::from_u64(u64_t u64)
  574. {
  575. ip=get_u64_h(u64);
  576. port=get_u64_l(u64);
  577. }
  578. u64_t ip_port_t::to_u64()
  579. {
  580. return pack_u64(ip,port);
  581. }
  582. char * ip_port_t::to_s()
  583. {
  584. static char res[40];
  585. sprintf(res,"%s:%d",my_ntoa(ip),port);
  586. return res;
  587. }
  588. int round_up_div(int a,int b)
  589. {
  590. return (a+b-1)/b;
  591. }
  592. int create_fifo(char * file)
  593. {
  594. #if !defined(__MINGW32__)
  595. if(mkfifo (file, 0666)!=0)
  596. {
  597. if(errno==EEXIST)
  598. {
  599. mylog(log_warn,"warning fifo file %s exist\n",file);
  600. }
  601. else
  602. {
  603. mylog(log_fatal,"create fifo file %s failed\n",file);
  604. myexit(-1);
  605. }
  606. }
  607. int fifo_fd=open (file, O_RDWR);
  608. if(fifo_fd<0)
  609. {
  610. mylog(log_fatal,"create fifo file %s failed\n",file);
  611. myexit(-1);
  612. }
  613. struct stat st;
  614. if (fstat(fifo_fd, &st)!=0)
  615. {
  616. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  617. myexit(-1);
  618. }
  619. if(!S_ISFIFO(st.st_mode))
  620. {
  621. mylog(log_fatal,"%s is not a fifo\n",file);
  622. myexit(-1);
  623. }
  624. setnonblocking(fifo_fd);
  625. return fifo_fd;
  626. #else
  627. assert(0==1&&"not supported\n");
  628. return 0;
  629. #endif
  630. }
  631. int new_listen_socket(int &fd,u32_t ip,int port)
  632. {
  633. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  634. int yes = 1;
  635. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  636. struct sockaddr_in local_me={0};
  637. socklen_t slen = sizeof(sockaddr_in);
  638. //memset(&local_me, 0, sizeof(local_me));
  639. local_me.sin_family = AF_INET;
  640. local_me.sin_port = htons(port);
  641. local_me.sin_addr.s_addr = ip;
  642. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  643. mylog(log_fatal,"socket bind error\n");
  644. //perror("socket bind error");
  645. myexit(1);
  646. }
  647. setnonblocking(fd);
  648. set_buf_size(fd,socket_buf_size);
  649. mylog(log_debug,"local_listen_fd=%d\n",fd);
  650. return 0;
  651. }
  652. int new_connected_socket(int &fd,u32_t ip,int port)
  653. {
  654. char ip_port[40];
  655. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  656. struct sockaddr_in remote_addr_in = { 0 };
  657. socklen_t slen = sizeof(sockaddr_in);
  658. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  659. remote_addr_in.sin_family = AF_INET;
  660. remote_addr_in.sin_port = htons(port);
  661. remote_addr_in.sin_addr.s_addr = ip;
  662. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  663. if (fd < 0) {
  664. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  665. return -1;
  666. }
  667. setnonblocking(fd);
  668. set_buf_size(fd, socket_buf_size);
  669. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  670. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  671. if (ret != 0) {
  672. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  673. close(fd);
  674. return -1;
  675. }
  676. return 0;
  677. }