common.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t client_or_server=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. int init_ws()
  21. {
  22. #if defined(__MINGW32__)
  23. WORD wVersionRequested;
  24. WSADATA wsaData;
  25. int err;
  26. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  27. wVersionRequested = MAKEWORD(2, 2);
  28. err = WSAStartup(wVersionRequested, &wsaData);
  29. if (err != 0) {
  30. /* Tell the user that we could not find a usable */
  31. /* Winsock DLL. */
  32. printf("WSAStartup failed with error: %d\n", err);
  33. exit(-1);
  34. }
  35. /* Confirm that the WinSock DLL supports 2.2.*/
  36. /* Note that if the DLL supports versions greater */
  37. /* than 2.2 in addition to 2.2, it will still return */
  38. /* 2.2 in wVersion since that is the version we */
  39. /* requested. */
  40. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  41. /* Tell the user that we could not find a usable */
  42. /* WinSock DLL. */
  43. printf("Could not find a usable version of Winsock.dll\n");
  44. WSACleanup();
  45. exit(-1);
  46. }
  47. else
  48. {
  49. printf("The Winsock 2.2 dll was found okay");
  50. }
  51. int tmp[]={0,100,200,300,500,800,1000,2000,3000,4000,-1};
  52. int succ=0;
  53. for(int i=1;tmp[i]!=-1;i++)
  54. {
  55. if(_setmaxstdio(100)==-1) break;
  56. else succ=i;
  57. }
  58. printf(", _setmaxstdio() was set to %d\n",tmp[succ]);
  59. #endif
  60. return 0;
  61. }
  62. #if defined(__MINGW32__)
  63. char *get_sock_error()
  64. {
  65. static char buf[1000];
  66. int e=WSAGetLastError();
  67. wchar_t *s = NULL;
  68. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  69. NULL, e,
  70. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  71. (LPWSTR)&s, 0, NULL);
  72. sprintf(buf, "%d:%S", e,s);
  73. int len=strlen(buf);
  74. if(len>0&&buf[len-1]=='\n') buf[len-1]=0;
  75. LocalFree(s);
  76. return buf;
  77. }
  78. int get_sock_errno()
  79. {
  80. return WSAGetLastError();
  81. }
  82. #else
  83. char *get_sock_error()
  84. {
  85. static char buf[1000];
  86. sprintf(buf, "%d:%s", errno,strerror(errno));
  87. return buf;
  88. }
  89. int get_sock_errno()
  90. {
  91. return errno;
  92. }
  93. #endif
  94. struct my_random_t
  95. {
  96. std::random_device rd;
  97. std::mt19937 gen;
  98. std::uniform_int_distribution<u64_t> dis64;
  99. std::uniform_int_distribution<u32_t> dis32;
  100. std::uniform_int_distribution<unsigned char> dis8;
  101. my_random_t()
  102. {
  103. std::mt19937 gen_tmp(rd());
  104. gen=gen_tmp;
  105. gen.discard(700000); //magic
  106. }
  107. u64_t gen64()
  108. {
  109. return dis64(gen);
  110. }
  111. u32_t gen32()
  112. {
  113. return dis32(gen);
  114. }
  115. unsigned char gen8()
  116. {
  117. return dis8(gen);
  118. }
  119. /*int random_number_fd;
  120. random_fd_t()
  121. {
  122. random_number_fd=open("/dev/urandom",O_RDONLY);
  123. if(random_number_fd==-1)
  124. {
  125. mylog(log_fatal,"error open /dev/urandom\n");
  126. myexit(-1);
  127. }
  128. setnonblocking(random_number_fd);
  129. }
  130. int get_fd()
  131. {
  132. return random_number_fd;
  133. }*/
  134. }my_random;
  135. void get_fake_random_chars(char * s,int len)
  136. {
  137. char *p=s;
  138. int left=len;
  139. while(left>=(int)sizeof(u64_t))
  140. {
  141. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  142. u64_t tmp=my_random.gen64();
  143. memcpy(p,&tmp,sizeof(u64_t)); // so,use memcpy instead.
  144. p+=sizeof(u64_t);
  145. left-=sizeof(u64_t);
  146. }
  147. if(left)
  148. {
  149. u64_t tmp=my_random.gen64();
  150. memcpy(p,&tmp,left);
  151. }
  152. }
  153. int random_between(u32_t a,u32_t b)
  154. {
  155. if(a>b)
  156. {
  157. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  158. myexit(1);
  159. }
  160. if(a==b)return a;
  161. else return a+get_fake_random_number()%(b+1-a);
  162. }
  163. /*
  164. u64_t get_current_time()//ms
  165. {
  166. timespec tmp_time;
  167. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  168. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  169. }
  170. u64_t get_current_time_us()
  171. {
  172. timespec tmp_time;
  173. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  174. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  175. }*/
  176. u64_t get_current_time()//ms
  177. {
  178. //timespec tmp_time;
  179. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  180. //return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  181. return (u64_t)(ev_time()*1000);
  182. }
  183. u64_t get_current_time_rough()//ms
  184. {
  185. return (u64_t)(ev_now(ev_default_loop(0))*1000);
  186. }
  187. u64_t get_current_time_us()
  188. {
  189. //timespec tmp_time;
  190. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  191. //return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  192. return (u64_t)(ev_time()*1000*1000);
  193. }
  194. u64_t pack_u64(u32_t a,u32_t b)
  195. {
  196. u64_t ret=a;
  197. ret<<=32u;
  198. ret+=b;
  199. return ret;
  200. }
  201. u32_t get_u64_h(u64_t a)
  202. {
  203. return a>>32u;
  204. }
  205. u32_t get_u64_l(u64_t a)
  206. {
  207. return (a<<32u)>>32u;
  208. }
  209. void write_u16(char * p,u16_t w)
  210. {
  211. *(unsigned char*)(p + 1) = (w & 0xff);
  212. *(unsigned char*)(p + 0) = (w >> 8);
  213. }
  214. u16_t read_u16(char * p)
  215. {
  216. u16_t res;
  217. res = *(const unsigned char*)(p + 0);
  218. res = *(const unsigned char*)(p + 1) + (res << 8);
  219. return res;
  220. }
  221. void write_u32(char * p,u32_t l)
  222. {
  223. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  224. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  225. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  226. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  227. }
  228. u32_t read_u32(char * p)
  229. {
  230. u32_t res;
  231. res = *(const unsigned char*)(p + 0);
  232. res = *(const unsigned char*)(p + 1) + (res << 8);
  233. res = *(const unsigned char*)(p + 2) + (res << 8);
  234. res = *(const unsigned char*)(p + 3) + (res << 8);
  235. return res;
  236. }
  237. void write_u64(char * s,u64_t a)
  238. {
  239. assert(0==1);
  240. }
  241. u64_t read_u64(char * s)
  242. {
  243. assert(0==1);
  244. return 0;
  245. }
  246. char * my_ntoa(u32_t ip)
  247. {
  248. in_addr a;
  249. a.s_addr=ip;
  250. return inet_ntoa(a);
  251. }
  252. int add_iptables_rule(char * s)
  253. {
  254. strcpy(iptables_rule,s);
  255. char buf[300]="iptables -I ";
  256. strcat(buf,s);
  257. if(system(buf)==0)
  258. {
  259. mylog(log_warn,"auto added iptables rule by: %s\n",buf);
  260. }
  261. else
  262. {
  263. mylog(log_fatal,"auto added iptables failed by: %s\n",buf);
  264. myexit(-1);
  265. }
  266. return 0;
  267. }
  268. int clear_iptables_rule()
  269. {
  270. if(iptables_rule[0]!=0)
  271. {
  272. char buf[300]="iptables -D ";
  273. strcat(buf,iptables_rule);
  274. if(system(buf)==0)
  275. {
  276. mylog(log_warn,"iptables rule cleared by: %s \n",buf);
  277. }
  278. else
  279. {
  280. mylog(log_error,"clear iptables failed by: %s\n",buf);
  281. }
  282. }
  283. return 0;
  284. }
  285. u64_t get_fake_random_number_64()
  286. {
  287. //u64_t ret;
  288. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  289. //if(size!=sizeof(ret))
  290. //{
  291. // mylog(log_fatal,"get random number failed %d\n",size);
  292. // myexit(-1);
  293. //}
  294. return my_random.gen64();
  295. }
  296. u32_t get_fake_random_number()
  297. {
  298. //u32_t ret;
  299. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  300. //if(size!=sizeof(ret))
  301. //{
  302. // mylog(log_fatal,"get random number failed %d\n",size);
  303. // myexit(-1);
  304. //}
  305. return my_random.gen32();
  306. }
  307. u32_t get_fake_random_number_nz() //nz for non-zero
  308. {
  309. u32_t ret=0;
  310. while(ret==0)
  311. {
  312. ret=get_fake_random_number();
  313. }
  314. return ret;
  315. }
  316. /*
  317. u64_t ntoh64(u64_t a)
  318. {
  319. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  320. {
  321. return __bswap_64( a);
  322. }
  323. else return a;
  324. }
  325. u64_t hton64(u64_t a)
  326. {
  327. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  328. {
  329. return __bswap_64( a);
  330. }
  331. else return a;
  332. }*/
  333. void setnonblocking(int sock) {
  334. #if !defined(__MINGW32__)
  335. int opts;
  336. opts = fcntl(sock, F_GETFL);
  337. if (opts < 0) {
  338. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  339. //perror("fcntl(sock,GETFL)");
  340. myexit(1);
  341. }
  342. opts = opts | O_NONBLOCK;
  343. if (fcntl(sock, F_SETFL, opts) < 0) {
  344. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  345. //perror("fcntl(sock,SETFL,opts)");
  346. myexit(1);
  347. }
  348. #else
  349. int iResult;
  350. u_long iMode = 1;
  351. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  352. if (iResult != NO_ERROR)
  353. printf("ioctlsocket failed with error: %d\n", iResult);
  354. #endif
  355. }
  356. /*
  357. Generic checksum calculation function
  358. */
  359. unsigned short csum(const unsigned short *ptr,int nbytes) {
  360. long sum;
  361. unsigned short oddbyte;
  362. short answer;
  363. sum=0;
  364. while(nbytes>1) {
  365. sum+=*ptr++;
  366. nbytes-=2;
  367. }
  368. if(nbytes==1) {
  369. oddbyte=0;
  370. *((u_char*)&oddbyte)=*(u_char*)ptr;
  371. sum+=oddbyte;
  372. }
  373. sum = (sum>>16)+(sum & 0xffff);
  374. sum = sum + (sum>>16);
  375. answer=(short)~sum;
  376. return(answer);
  377. }
  378. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  379. long sum;
  380. unsigned short oddbyte;
  381. short answer;
  382. sum=0;
  383. unsigned short * tmp= (unsigned short *)&ph;
  384. for(int i=0;i<6;i++)
  385. {
  386. sum+=*tmp++;
  387. }
  388. while(nbytes>1) {
  389. sum+=*ptr++;
  390. nbytes-=2;
  391. }
  392. if(nbytes==1) {
  393. oddbyte=0;
  394. *((u_char*)&oddbyte)=*(u_char*)ptr;
  395. sum+=oddbyte;
  396. }
  397. sum = (sum>>16)+(sum & 0xffff);
  398. sum = sum + (sum>>16);
  399. answer=(short)~sum;
  400. return(answer);
  401. }
  402. int set_buf_size(int fd,int socket_buf_size,int force_socket_buf)
  403. {
  404. if(0)
  405. {
  406. /*
  407. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  408. {
  409. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  410. myexit(1);
  411. }
  412. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  413. {
  414. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  415. myexit(1);
  416. }
  417. */
  418. }
  419. else
  420. {
  421. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  422. {
  423. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  424. myexit(1);
  425. }
  426. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  427. {
  428. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  429. myexit(1);
  430. }
  431. }
  432. return 0;
  433. }
  434. void myexit(int a)
  435. {
  436. if(enable_log_color)
  437. printf("%s\n",RESET);
  438. // clear_iptables_rule();
  439. exit(a);
  440. }
  441. void signal_handler(int sig)
  442. {
  443. about_to_exit=1;
  444. // myexit(0);
  445. }
  446. /*
  447. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  448. {
  449. static char buf[buf_len];
  450. data=buf;
  451. id_t tmp=htonl(id1);
  452. memcpy(buf,&tmp,sizeof(tmp));
  453. tmp=htonl(id2);
  454. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  455. tmp=htonl(id3);
  456. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  457. len=sizeof(id_t)*3;
  458. return 0;
  459. }
  460. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  461. {
  462. if(len<int(sizeof(id_t)*3)) return -1;
  463. id1=ntohl( *((id_t*)(data+0)) );
  464. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  465. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  466. return 0;
  467. }
  468. */
  469. bool larger_than_u32(u32_t a,u32_t b)
  470. {
  471. u32_t smaller,bigger;
  472. smaller=min(a,b);//smaller in normal sense
  473. bigger=max(a,b);
  474. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  475. if(distance==bigger-smaller)
  476. {
  477. if(bigger==a)
  478. {
  479. return 1;
  480. }
  481. else
  482. {
  483. return 0;
  484. }
  485. }
  486. else
  487. {
  488. if(smaller==b)
  489. {
  490. return 0;
  491. }
  492. else
  493. {
  494. return 1;
  495. }
  496. }
  497. }
  498. bool larger_than_u16(uint16_t a,uint16_t b)
  499. {
  500. uint16_t smaller,bigger;
  501. smaller=min(a,b);//smaller in normal sense
  502. bigger=max(a,b);
  503. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  504. if(distance==bigger-smaller)
  505. {
  506. if(bigger==a)
  507. {
  508. return 1;
  509. }
  510. else
  511. {
  512. return 0;
  513. }
  514. }
  515. else
  516. {
  517. if(smaller==b)
  518. {
  519. return 0;
  520. }
  521. else
  522. {
  523. return 1;
  524. }
  525. }
  526. }
  527. /*
  528. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  529. {
  530. int ret;
  531. epoll_event ev;
  532. itimerspec its;
  533. memset(&its,0,sizeof(its));
  534. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  535. {
  536. mylog(log_fatal,"timer_fd create error\n");
  537. myexit(1);
  538. }
  539. its.it_interval.tv_sec=(timer_interval/1000);
  540. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  541. its.it_value.tv_nsec=1; //imidiately
  542. timerfd_settime(timer_fd,0,&its,0);
  543. ev.events = EPOLLIN;
  544. ev.data.fd = timer_fd;
  545. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  546. if (ret < 0) {
  547. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  548. myexit(-1);
  549. }
  550. return 0;
  551. }*/
  552. /*
  553. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  554. {
  555. struct sockaddr_in remote_addr_in;
  556. socklen_t slen = sizeof(sockaddr_in);
  557. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  558. remote_addr_in.sin_family = AF_INET;
  559. remote_addr_in.sin_port = htons(remote_port);
  560. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  561. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  562. if (new_udp_fd < 0) {
  563. mylog(log_warn, "create udp_fd error\n");
  564. return -1;
  565. }
  566. setnonblocking(new_udp_fd);
  567. set_buf_size(new_udp_fd);
  568. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  569. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  570. if (ret != 0) {
  571. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  572. close(new_udp_fd);
  573. return -1;
  574. }
  575. return 0;
  576. }*/
  577. void ip_port_t::from_u64(u64_t u64)
  578. {
  579. ip=get_u64_h(u64);
  580. port=get_u64_l(u64);
  581. }
  582. u64_t ip_port_t::to_u64()
  583. {
  584. return pack_u64(ip,port);
  585. }
  586. char * ip_port_t::to_s()
  587. {
  588. static char res[40];
  589. sprintf(res,"%s:%d",my_ntoa(ip),port);
  590. return res;
  591. }
  592. int round_up_div(int a,int b)
  593. {
  594. return (a+b-1)/b;
  595. }
  596. int create_fifo(char * file)
  597. {
  598. #if !defined(__MINGW32__)
  599. if(mkfifo (file, 0666)!=0)
  600. {
  601. if(errno==EEXIST)
  602. {
  603. mylog(log_warn,"warning fifo file %s exist\n",file);
  604. }
  605. else
  606. {
  607. mylog(log_fatal,"create fifo file %s failed\n",file);
  608. myexit(-1);
  609. }
  610. }
  611. int fifo_fd=open (file, O_RDWR);
  612. if(fifo_fd<0)
  613. {
  614. mylog(log_fatal,"create fifo file %s failed\n",file);
  615. myexit(-1);
  616. }
  617. struct stat st;
  618. if (fstat(fifo_fd, &st)!=0)
  619. {
  620. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  621. myexit(-1);
  622. }
  623. if(!S_ISFIFO(st.st_mode))
  624. {
  625. mylog(log_fatal,"%s is not a fifo\n",file);
  626. myexit(-1);
  627. }
  628. setnonblocking(fifo_fd);
  629. return fifo_fd;
  630. #else
  631. assert(0==1&&"not supported\n");
  632. return 0;
  633. #endif
  634. }
  635. int new_listen_socket(int &fd,u32_t ip,int port)
  636. {
  637. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  638. int yes = 1;
  639. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  640. struct sockaddr_in local_me={0};
  641. socklen_t slen = sizeof(sockaddr_in);
  642. //memset(&local_me, 0, sizeof(local_me));
  643. local_me.sin_family = AF_INET;
  644. local_me.sin_port = htons(port);
  645. local_me.sin_addr.s_addr = ip;
  646. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  647. mylog(log_fatal,"socket bind error\n");
  648. //perror("socket bind error");
  649. myexit(1);
  650. }
  651. setnonblocking(fd);
  652. set_buf_size(fd,socket_buf_size);
  653. mylog(log_debug,"local_listen_fd=%d\n",fd);
  654. return 0;
  655. }
  656. int new_connected_socket(int &fd,u32_t ip,int port)
  657. {
  658. char ip_port[40];
  659. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  660. struct sockaddr_in remote_addr_in = { 0 };
  661. socklen_t slen = sizeof(sockaddr_in);
  662. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  663. remote_addr_in.sin_family = AF_INET;
  664. remote_addr_in.sin_port = htons(port);
  665. remote_addr_in.sin_addr.s_addr = ip;
  666. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  667. if (fd < 0) {
  668. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  669. return -1;
  670. }
  671. setnonblocking(fd);
  672. set_buf_size(fd, socket_buf_size);
  673. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  674. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  675. if (ret != 0) {
  676. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  677. sock_close(fd);
  678. return -1;
  679. }
  680. return 0;
  681. }