common.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit = 0;
  12. raw_mode_t raw_mode = mode_faketcp;
  13. unordered_map<int, const char *> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. // static int random_number_fd=-1;
  15. char iptables_rule[200] = "";
  16. // int is_client = 0, is_server = 0;
  17. program_mode_t program_mode = unset_mode; // 0 unset; 1client 2server
  18. working_mode_t working_mode = tunnel_mode;
  19. int socket_buf_size = 1024 * 1024;
  20. int init_ws() {
  21. #if defined(__MINGW32__)
  22. WORD wVersionRequested;
  23. WSADATA wsaData;
  24. int err;
  25. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  26. wVersionRequested = MAKEWORD(2, 2);
  27. err = WSAStartup(wVersionRequested, &wsaData);
  28. if (err != 0) {
  29. /* Tell the user that we could not find a usable */
  30. /* Winsock DLL. */
  31. printf("WSAStartup failed with error: %d\n", err);
  32. exit(-1);
  33. }
  34. /* Confirm that the WinSock DLL supports 2.2.*/
  35. /* Note that if the DLL supports versions greater */
  36. /* than 2.2 in addition to 2.2, it will still return */
  37. /* 2.2 in wVersion since that is the version we */
  38. /* requested. */
  39. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  40. /* Tell the user that we could not find a usable */
  41. /* WinSock DLL. */
  42. printf("Could not find a usable version of Winsock.dll\n");
  43. WSACleanup();
  44. exit(-1);
  45. } else {
  46. printf("The Winsock 2.2 dll was found okay");
  47. }
  48. int tmp[] = {0, 100, 200, 300, 500, 800, 1000, 2000, 3000, 4000, -1};
  49. int succ = 0;
  50. for (int i = 1; tmp[i] != -1; i++) {
  51. if (_setmaxstdio(100) == -1)
  52. break;
  53. else
  54. succ = i;
  55. }
  56. printf(", _setmaxstdio() was set to %d\n", tmp[succ]);
  57. #endif
  58. return 0;
  59. }
  60. #if defined(__MINGW32__)
  61. int inet_pton(int af, const char *src, void *dst) {
  62. struct sockaddr_storage ss;
  63. int size = sizeof(ss);
  64. char src_copy[INET6_ADDRSTRLEN + 1];
  65. ZeroMemory(&ss, sizeof(ss));
  66. /* stupid non-const API */
  67. strncpy(src_copy, src, INET6_ADDRSTRLEN + 1);
  68. src_copy[INET6_ADDRSTRLEN] = 0;
  69. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  70. switch (af) {
  71. case AF_INET:
  72. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  73. return 1;
  74. case AF_INET6:
  75. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  76. return 1;
  77. }
  78. }
  79. return 0;
  80. }
  81. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size) {
  82. struct sockaddr_storage ss;
  83. unsigned long s = size;
  84. ZeroMemory(&ss, sizeof(ss));
  85. ss.ss_family = af;
  86. switch (af) {
  87. case AF_INET:
  88. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  89. break;
  90. case AF_INET6:
  91. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  92. break;
  93. default:
  94. return NULL;
  95. }
  96. /* cannot direclty use &size because of strict aliasing rules */
  97. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0) ? dst : NULL;
  98. }
  99. char *get_sock_error() {
  100. static char buf[1000];
  101. int e = WSAGetLastError();
  102. wchar_t *s = NULL;
  103. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  104. NULL, e,
  105. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  106. (LPWSTR)&s, 0, NULL);
  107. sprintf(buf, "%d:%S", e, s);
  108. int len = strlen(buf);
  109. if (len > 0 && buf[len - 1] == '\n') buf[len - 1] = 0;
  110. LocalFree(s);
  111. return buf;
  112. }
  113. int get_sock_errno() {
  114. return WSAGetLastError();
  115. }
  116. #else
  117. char *get_sock_error() {
  118. static char buf[1000];
  119. sprintf(buf, "%d:%s", errno, strerror(errno));
  120. return buf;
  121. }
  122. int get_sock_errno() {
  123. return errno;
  124. }
  125. #endif
  126. struct my_random_t {
  127. std::random_device rd;
  128. std::mt19937 gen;
  129. std::uniform_int_distribution<u64_t> dis64;
  130. std::uniform_int_distribution<u32_t> dis32;
  131. std::uniform_int_distribution<unsigned char> dis8;
  132. my_random_t() {
  133. std::mt19937 gen_tmp(rd());
  134. gen = gen_tmp;
  135. gen.discard(700000); // magic
  136. }
  137. u64_t gen64() {
  138. return dis64(gen);
  139. }
  140. u32_t gen32() {
  141. return dis32(gen);
  142. }
  143. unsigned char gen8() {
  144. return dis8(gen);
  145. }
  146. /*int random_number_fd;
  147. random_fd_t()
  148. {
  149. random_number_fd=open("/dev/urandom",O_RDONLY);
  150. if(random_number_fd==-1)
  151. {
  152. mylog(log_fatal,"error open /dev/urandom\n");
  153. myexit(-1);
  154. }
  155. setnonblocking(random_number_fd);
  156. }
  157. int get_fd()
  158. {
  159. return random_number_fd;
  160. }*/
  161. } my_random;
  162. int address_t::from_str(char *str) {
  163. clear();
  164. char ip_addr_str[100];
  165. u32_t port;
  166. mylog(log_info, "parsing address: %s\n", str);
  167. int is_ipv6 = 0;
  168. if (sscanf(str, "[%[^]]]:%u", ip_addr_str, &port) == 2) {
  169. mylog(log_info, "its an ipv6 adress\n");
  170. inner.ipv6.sin6_family = AF_INET6;
  171. is_ipv6 = 1;
  172. } else if (sscanf(str, "%[^:]:%u", ip_addr_str, &port) == 2) {
  173. mylog(log_info, "its an ipv4 adress\n");
  174. inner.ipv4.sin_family = AF_INET;
  175. } else {
  176. mylog(log_error, "failed to parse\n");
  177. myexit(-1);
  178. }
  179. mylog(log_info, "ip_address is {%s}, port is {%u}\n", ip_addr_str, port);
  180. if (port > 65535) {
  181. mylog(log_error, "invalid port: %d\n", port);
  182. myexit(-1);
  183. }
  184. int ret = -100;
  185. if (is_ipv6) {
  186. ret = inet_pton(AF_INET6, ip_addr_str, &(inner.ipv6.sin6_addr));
  187. inner.ipv6.sin6_port = htons(port);
  188. if (ret == 0) // 0 if address type doesnt match
  189. {
  190. mylog(log_error, "ip_addr %s is not an ipv6 address, %d\n", ip_addr_str, ret);
  191. myexit(-1);
  192. } else if (ret == 1) // inet_pton returns 1 on success
  193. {
  194. // okay
  195. } else {
  196. mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
  197. myexit(-1);
  198. }
  199. } else {
  200. ret = inet_pton(AF_INET, ip_addr_str, &(inner.ipv4.sin_addr));
  201. inner.ipv4.sin_port = htons(port);
  202. if (ret == 0) {
  203. mylog(log_error, "ip_addr %s is not an ipv4 address, %d\n", ip_addr_str, ret);
  204. myexit(-1);
  205. } else if (ret == 1) {
  206. // okay
  207. } else {
  208. mylog(log_error, "ip_addr %s is invalid, %d\n", ip_addr_str, ret);
  209. myexit(-1);
  210. }
  211. }
  212. return 0;
  213. }
  214. int address_t::from_str_ip_only(char *str) {
  215. clear();
  216. u32_t type;
  217. if (strchr(str, ':') == NULL)
  218. type = AF_INET;
  219. else
  220. type = AF_INET6;
  221. ((sockaddr *)&inner)->sa_family = type;
  222. int ret;
  223. if (type == AF_INET) {
  224. ret = inet_pton(type, str, &inner.ipv4.sin_addr);
  225. } else {
  226. ret = inet_pton(type, str, &inner.ipv6.sin6_addr);
  227. }
  228. if (ret == 0) // 0 if address type doesnt match
  229. {
  230. mylog(log_error, "confusion in parsing %s, %d\n", str, ret);
  231. myexit(-1);
  232. } else if (ret == 1) // inet_pton returns 1 on success
  233. {
  234. // okay
  235. } else {
  236. mylog(log_error, "ip_addr %s is invalid, %d\n", str, ret);
  237. myexit(-1);
  238. }
  239. return 0;
  240. }
  241. char *address_t::get_str() {
  242. static char res[max_addr_len];
  243. to_str(res);
  244. return res;
  245. }
  246. void address_t::to_str(char *s) {
  247. // static char res[max_addr_len];
  248. char ip_addr[max_addr_len];
  249. u32_t port;
  250. const char *ret = 0;
  251. if (get_type() == AF_INET6) {
  252. ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
  253. port = inner.ipv6.sin6_port;
  254. } else if (get_type() == AF_INET) {
  255. ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
  256. port = inner.ipv4.sin_port;
  257. } else {
  258. assert(0 == 1);
  259. }
  260. if (ret == 0) // NULL on failure
  261. {
  262. mylog(log_error, "inet_ntop failed\n");
  263. myexit(-1);
  264. }
  265. port = ntohs(port);
  266. ip_addr[max_addr_len - 1] = 0;
  267. if (get_type() == AF_INET6) {
  268. sprintf(s, "[%s]:%u", ip_addr, (u32_t)port);
  269. } else {
  270. sprintf(s, "%s:%u", ip_addr, (u32_t)port);
  271. }
  272. // return res;
  273. }
  274. char *address_t::get_ip() {
  275. char ip_addr[max_addr_len];
  276. static char s[max_addr_len];
  277. const char *ret = 0;
  278. if (get_type() == AF_INET6) {
  279. ret = inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr, max_addr_len);
  280. } else if (get_type() == AF_INET) {
  281. ret = inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr, max_addr_len);
  282. } else {
  283. assert(0 == 1);
  284. }
  285. if (ret == 0) // NULL on failure
  286. {
  287. mylog(log_error, "inet_ntop failed\n");
  288. myexit(-1);
  289. }
  290. ip_addr[max_addr_len - 1] = 0;
  291. if (get_type() == AF_INET6) {
  292. sprintf(s, "%s", ip_addr);
  293. } else {
  294. sprintf(s, "%s", ip_addr);
  295. }
  296. return s;
  297. }
  298. int address_t::from_sockaddr(sockaddr *addr, socklen_t slen) {
  299. clear();
  300. // memset(&inner,0,sizeof(inner));
  301. if (addr->sa_family == AF_INET6) {
  302. assert(slen == sizeof(sockaddr_in6));
  303. // inner.ipv6= *( (sockaddr_in6*) addr );
  304. memcpy(&inner, addr, slen);
  305. } else if (addr->sa_family == AF_INET) {
  306. assert(slen == sizeof(sockaddr_in));
  307. // inner.ipv4= *( (sockaddr_in*) addr );
  308. memcpy(&inner, addr, slen);
  309. } else {
  310. assert(0 == 1);
  311. }
  312. return 0;
  313. }
  314. int address_t::new_connected_udp_fd() {
  315. int new_udp_fd;
  316. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  317. if (new_udp_fd < 0) {
  318. mylog(log_warn, "create udp_fd error\n");
  319. return -1;
  320. }
  321. setnonblocking(new_udp_fd);
  322. set_buf_size(new_udp_fd, socket_buf_size);
  323. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  324. int ret = connect(new_udp_fd, (struct sockaddr *)&inner, get_len());
  325. if (ret != 0) {
  326. mylog(log_warn, "udp fd connect fail %d %s\n", ret, strerror(errno));
  327. // sock_close(new_udp_fd);
  328. close(new_udp_fd);
  329. return -1;
  330. }
  331. return new_udp_fd;
  332. }
  333. void get_fake_random_chars(char *s, int len) {
  334. char *p = s;
  335. int left = len;
  336. while (left >= (int)sizeof(u64_t)) {
  337. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  338. u64_t tmp = my_random.gen64();
  339. memcpy(p, &tmp, sizeof(u64_t)); // so,use memcpy instead.
  340. p += sizeof(u64_t);
  341. left -= sizeof(u64_t);
  342. }
  343. if (left) {
  344. u64_t tmp = my_random.gen64();
  345. memcpy(p, &tmp, left);
  346. }
  347. }
  348. int random_between(u32_t a, u32_t b) {
  349. if (a > b) {
  350. mylog(log_fatal, "min >max?? %d %d\n", a, b);
  351. myexit(1);
  352. }
  353. if (a == b)
  354. return a;
  355. else
  356. return a + get_fake_random_number() % (b + 1 - a);
  357. }
  358. /*
  359. u64_t get_current_time()//ms
  360. {
  361. timespec tmp_time;
  362. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  363. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  364. }
  365. u64_t get_current_time_us()
  366. {
  367. timespec tmp_time;
  368. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  369. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  370. }*/
  371. u64_t get_current_time_us() {
  372. static u64_t value_fix = 0;
  373. static u64_t largest_value = 0;
  374. u64_t raw_value = (u64_t)(ev_time() * 1000 * 1000);
  375. u64_t fixed_value = raw_value + value_fix;
  376. if (fixed_value < largest_value) {
  377. value_fix += largest_value - fixed_value;
  378. } else {
  379. largest_value = fixed_value;
  380. }
  381. // printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix);
  382. return raw_value + value_fix; // new fixed value
  383. }
  384. u64_t get_current_time() {
  385. return get_current_time_us() / 1000lu;
  386. }
  387. u64_t pack_u64(u32_t a, u32_t b) {
  388. u64_t ret = a;
  389. ret <<= 32u;
  390. ret += b;
  391. return ret;
  392. }
  393. u32_t get_u64_h(u64_t a) {
  394. return a >> 32u;
  395. }
  396. u32_t get_u64_l(u64_t a) {
  397. return (a << 32u) >> 32u;
  398. }
  399. void write_u16(char *p, u16_t w) {
  400. *(unsigned char *)(p + 1) = (w & 0xff);
  401. *(unsigned char *)(p + 0) = (w >> 8);
  402. }
  403. u16_t read_u16(char *p) {
  404. u16_t res;
  405. res = *(const unsigned char *)(p + 0);
  406. res = *(const unsigned char *)(p + 1) + (res << 8);
  407. return res;
  408. }
  409. void write_u32(char *p, u32_t l) {
  410. *(unsigned char *)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  411. *(unsigned char *)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  412. *(unsigned char *)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  413. *(unsigned char *)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  414. }
  415. u32_t read_u32(char *p) {
  416. u32_t res;
  417. res = *(const unsigned char *)(p + 0);
  418. res = *(const unsigned char *)(p + 1) + (res << 8);
  419. res = *(const unsigned char *)(p + 2) + (res << 8);
  420. res = *(const unsigned char *)(p + 3) + (res << 8);
  421. return res;
  422. }
  423. void write_u64(char *s, u64_t a) {
  424. assert(0 == 1);
  425. }
  426. u64_t read_u64(char *s) {
  427. assert(0 == 1);
  428. return 0;
  429. }
  430. char *my_ntoa(u32_t ip) {
  431. in_addr a;
  432. a.s_addr = ip;
  433. return inet_ntoa(a);
  434. }
  435. u64_t get_fake_random_number_64() {
  436. // u64_t ret;
  437. // int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  438. // if(size!=sizeof(ret))
  439. //{
  440. // mylog(log_fatal,"get random number failed %d\n",size);
  441. // myexit(-1);
  442. //}
  443. return my_random.gen64();
  444. }
  445. u32_t get_fake_random_number() {
  446. // u32_t ret;
  447. // int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  448. // if(size!=sizeof(ret))
  449. //{
  450. // mylog(log_fatal,"get random number failed %d\n",size);
  451. // myexit(-1);
  452. // }
  453. return my_random.gen32();
  454. }
  455. u32_t get_fake_random_number_nz() // nz for non-zero
  456. {
  457. u32_t ret = 0;
  458. while (ret == 0) {
  459. ret = get_fake_random_number();
  460. }
  461. return ret;
  462. }
  463. /*
  464. u64_t ntoh64(u64_t a)
  465. {
  466. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  467. {
  468. return __bswap_64( a);
  469. }
  470. else return a;
  471. }
  472. u64_t hton64(u64_t a)
  473. {
  474. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  475. {
  476. return __bswap_64( a);
  477. }
  478. else return a;
  479. }*/
  480. void setnonblocking(int sock) {
  481. #if !defined(__MINGW32__)
  482. int opts;
  483. opts = fcntl(sock, F_GETFL);
  484. if (opts < 0) {
  485. mylog(log_fatal, "fcntl(sock,GETFL)\n");
  486. // perror("fcntl(sock,GETFL)");
  487. myexit(1);
  488. }
  489. opts = opts | O_NONBLOCK;
  490. if (fcntl(sock, F_SETFL, opts) < 0) {
  491. mylog(log_fatal, "fcntl(sock,SETFL,opts)\n");
  492. // perror("fcntl(sock,SETFL,opts)");
  493. myexit(1);
  494. }
  495. #else
  496. int iResult;
  497. u_long iMode = 1;
  498. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  499. if (iResult != NO_ERROR)
  500. printf("ioctlsocket failed with error: %d\n", iResult);
  501. #endif
  502. }
  503. /*
  504. Generic checksum calculation function
  505. */
  506. unsigned short csum(const unsigned short *ptr, int nbytes) {
  507. long sum;
  508. unsigned short oddbyte;
  509. short answer;
  510. sum = 0;
  511. while (nbytes > 1) {
  512. sum += *ptr++;
  513. nbytes -= 2;
  514. }
  515. if (nbytes == 1) {
  516. oddbyte = 0;
  517. *((u_char *)&oddbyte) = *(u_char *)ptr;
  518. sum += oddbyte;
  519. }
  520. sum = (sum >> 16) + (sum & 0xffff);
  521. sum = sum + (sum >> 16);
  522. answer = (short)~sum;
  523. return (answer);
  524. }
  525. unsigned short tcp_csum(const pseudo_header &ph, const unsigned short *ptr, int nbytes) { // works both for big and little endian
  526. long sum;
  527. unsigned short oddbyte;
  528. short answer;
  529. sum = 0;
  530. unsigned short *tmp = (unsigned short *)&ph;
  531. for (int i = 0; i < 6; i++) {
  532. sum += *tmp++;
  533. }
  534. while (nbytes > 1) {
  535. sum += *ptr++;
  536. nbytes -= 2;
  537. }
  538. if (nbytes == 1) {
  539. oddbyte = 0;
  540. *((u_char *)&oddbyte) = *(u_char *)ptr;
  541. sum += oddbyte;
  542. }
  543. sum = (sum >> 16) + (sum & 0xffff);
  544. sum = sum + (sum >> 16);
  545. answer = (short)~sum;
  546. return (answer);
  547. }
  548. int set_buf_size(int fd, int socket_buf_size) {
  549. if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  550. mylog(log_fatal, "SO_SNDBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
  551. myexit(1);
  552. }
  553. if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size)) < 0) {
  554. mylog(log_fatal, "SO_RCVBUF fail socket_buf_size=%d errno=%s\n", socket_buf_size, get_sock_error());
  555. myexit(1);
  556. }
  557. return 0;
  558. }
  559. void myexit(int a) {
  560. if (enable_log_color)
  561. printf("%s\n", RESET);
  562. // clear_iptables_rule();
  563. exit(a);
  564. }
  565. void signal_handler(int sig) {
  566. about_to_exit = 1;
  567. // myexit(0);
  568. }
  569. /*
  570. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  571. {
  572. static char buf[buf_len];
  573. data=buf;
  574. id_t tmp=htonl(id1);
  575. memcpy(buf,&tmp,sizeof(tmp));
  576. tmp=htonl(id2);
  577. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  578. tmp=htonl(id3);
  579. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  580. len=sizeof(id_t)*3;
  581. return 0;
  582. }
  583. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  584. {
  585. if(len<int(sizeof(id_t)*3)) return -1;
  586. id1=ntohl( *((id_t*)(data+0)) );
  587. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  588. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  589. return 0;
  590. }
  591. */
  592. /*
  593. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  594. {
  595. int ret;
  596. epoll_event ev;
  597. itimerspec its;
  598. memset(&its,0,sizeof(its));
  599. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  600. {
  601. mylog(log_fatal,"timer_fd create error\n");
  602. myexit(1);
  603. }
  604. its.it_interval.tv_sec=(timer_interval/1000);
  605. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  606. its.it_value.tv_nsec=1; //imidiately
  607. timerfd_settime(timer_fd,0,&its,0);
  608. ev.events = EPOLLIN;
  609. ev.data.fd = timer_fd;
  610. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  611. if (ret < 0) {
  612. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  613. myexit(-1);
  614. }
  615. return 0;
  616. }*/
  617. /*
  618. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  619. {
  620. struct sockaddr_in remote_addr_in;
  621. socklen_t slen = sizeof(sockaddr_in);
  622. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  623. remote_addr_in.sin_family = AF_INET;
  624. remote_addr_in.sin_port = htons(remote_port);
  625. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  626. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  627. if (new_udp_fd < 0) {
  628. mylog(log_warn, "create udp_fd error\n");
  629. return -1;
  630. }
  631. setnonblocking(new_udp_fd);
  632. set_buf_size(new_udp_fd);
  633. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  634. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  635. if (ret != 0) {
  636. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  637. close(new_udp_fd);
  638. return -1;
  639. }
  640. return 0;
  641. }*/
  642. int round_up_div(int a, int b) {
  643. return (a + b - 1) / b;
  644. }
  645. int create_fifo(char *file) {
  646. #if !defined(__MINGW32__)
  647. if (mkfifo(file, 0666) != 0) {
  648. if (errno == EEXIST) {
  649. mylog(log_warn, "warning fifo file %s exist\n", file);
  650. } else {
  651. mylog(log_fatal, "create fifo file %s failed\n", file);
  652. myexit(-1);
  653. }
  654. }
  655. int fifo_fd = open(file, O_RDWR);
  656. if (fifo_fd < 0) {
  657. mylog(log_fatal, "create fifo file %s failed\n", file);
  658. myexit(-1);
  659. }
  660. struct stat st;
  661. if (fstat(fifo_fd, &st) != 0) {
  662. mylog(log_fatal, "fstat failed for fifo file %s\n", file);
  663. myexit(-1);
  664. }
  665. if (!S_ISFIFO(st.st_mode)) {
  666. mylog(log_fatal, "%s is not a fifo\n", file);
  667. myexit(-1);
  668. }
  669. setnonblocking(fifo_fd);
  670. return fifo_fd;
  671. #else
  672. assert(0 == 1 && "not supported\n");
  673. return 0;
  674. #endif
  675. }
  676. /*
  677. int new_listen_socket(int &fd,u32_t ip,int port)
  678. {
  679. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  680. int yes = 1;
  681. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  682. struct sockaddr_in local_me={0};
  683. socklen_t slen = sizeof(sockaddr_in);
  684. //memset(&local_me, 0, sizeof(local_me));
  685. local_me.sin_family = AF_INET;
  686. local_me.sin_port = htons(port);
  687. local_me.sin_addr.s_addr = ip;
  688. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  689. mylog(log_fatal,"socket bind error\n");
  690. //perror("socket bind error");
  691. myexit(1);
  692. }
  693. setnonblocking(fd);
  694. set_buf_size(fd,socket_buf_size);
  695. mylog(log_debug,"local_listen_fd=%d\n",fd);
  696. return 0;
  697. }
  698. int new_connected_socket(int &fd,u32_t ip,int port)
  699. {
  700. char ip_port[40];
  701. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  702. struct sockaddr_in remote_addr_in = { 0 };
  703. socklen_t slen = sizeof(sockaddr_in);
  704. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  705. remote_addr_in.sin_family = AF_INET;
  706. remote_addr_in.sin_port = htons(port);
  707. remote_addr_in.sin_addr.s_addr = ip;
  708. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  709. if (fd < 0) {
  710. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  711. return -1;
  712. }
  713. setnonblocking(fd);
  714. set_buf_size(fd, socket_buf_size);
  715. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  716. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  717. if (ret != 0) {
  718. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  719. sock_close(fd);
  720. return -1;
  721. }
  722. return 0;
  723. }
  724. */
  725. int new_listen_socket2(int &fd, address_t &addr) {
  726. fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  727. int yes = 1;
  728. if (::bind(fd, (struct sockaddr *)&addr.inner, addr.get_len()) == -1) {
  729. mylog(log_fatal, "socket bind error=%s\n", get_sock_error());
  730. // perror("socket bind error");
  731. myexit(1);
  732. }
  733. setnonblocking(fd);
  734. set_buf_size(fd, socket_buf_size);
  735. mylog(log_debug, "local_listen_fd=%d\n", fd);
  736. return 0;
  737. }
  738. int new_connected_socket2(int &fd, address_t &addr, address_t *bind_addr, char *interface_string) {
  739. fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  740. if (fd < 0) {
  741. mylog(log_warn, "[%s]create udp_fd error\n", addr.get_str());
  742. return -1;
  743. }
  744. if (bind_addr && ::bind(fd, (struct sockaddr *)&bind_addr->inner, bind_addr->get_len()) == -1) {
  745. mylog(log_fatal, "socket bind error=%s\n", get_sock_error());
  746. // perror("socket bind error");
  747. myexit(1);
  748. }
  749. #ifdef __linux__
  750. if (interface_string && ::setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, interface_string, strlen(interface_string)) < 0) {
  751. mylog(log_fatal, "socket interface bind error=%s\n", get_sock_error());
  752. // perror("socket bind error");
  753. myexit(1);
  754. }
  755. #endif
  756. setnonblocking(fd);
  757. set_buf_size(fd, socket_buf_size);
  758. mylog(log_debug, "[%s]created new udp_fd %d\n", addr.get_str(), fd);
  759. int ret = connect(fd, (struct sockaddr *)&addr.inner, addr.get_len());
  760. if (ret != 0) {
  761. mylog(log_warn, "[%s]fd connect fail\n", addr.get_str());
  762. sock_close(fd);
  763. return -1;
  764. }
  765. return 0;
  766. }
  767. u32_t djb2(unsigned char *str, int len) {
  768. u32_t hash = 5381;
  769. int c;
  770. for (int i=0; i<len ;i++) {
  771. c = *(str++);
  772. hash = ((hash << 5) + hash) ^ c; /* (hash * 33) ^ c */
  773. }
  774. hash = htonl(hash);
  775. return hash;
  776. }
  777. u32_t sdbm(unsigned char *str, int len) {
  778. u32_t hash = 0;
  779. int c;
  780. for (int i=0; i<len ;i++) {
  781. c = *(str++);
  782. hash = c + (hash << 6) + (hash << 16) - hash;
  783. }
  784. // hash=htonl(hash);
  785. return hash;
  786. }
  787. vector<string> string_to_vec(const char *s, const char *sp) {
  788. vector<string> res;
  789. string str = s;
  790. char *p = strtok((char *)str.c_str(), sp);
  791. while (p != NULL) {
  792. res.push_back(p);
  793. // printf ("%s\n",p);
  794. p = strtok(NULL, sp);
  795. }
  796. /* for(int i=0;i<(int)res.size();i++)
  797. {
  798. printf("<<%s>>\n",res[i].c_str());
  799. }*/
  800. return res;
  801. }