common.cpp 21 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t program_mode=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. int init_ws()
  21. {
  22. #if defined(__MINGW32__)
  23. WORD wVersionRequested;
  24. WSADATA wsaData;
  25. int err;
  26. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  27. wVersionRequested = MAKEWORD(2, 2);
  28. err = WSAStartup(wVersionRequested, &wsaData);
  29. if (err != 0) {
  30. /* Tell the user that we could not find a usable */
  31. /* Winsock DLL. */
  32. printf("WSAStartup failed with error: %d\n", err);
  33. exit(-1);
  34. }
  35. /* Confirm that the WinSock DLL supports 2.2.*/
  36. /* Note that if the DLL supports versions greater */
  37. /* than 2.2 in addition to 2.2, it will still return */
  38. /* 2.2 in wVersion since that is the version we */
  39. /* requested. */
  40. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  41. /* Tell the user that we could not find a usable */
  42. /* WinSock DLL. */
  43. printf("Could not find a usable version of Winsock.dll\n");
  44. WSACleanup();
  45. exit(-1);
  46. }
  47. else
  48. {
  49. printf("The Winsock 2.2 dll was found okay");
  50. }
  51. int tmp[]={0,100,200,300,500,800,1000,2000,3000,4000,-1};
  52. int succ=0;
  53. for(int i=1;tmp[i]!=-1;i++)
  54. {
  55. if(_setmaxstdio(100)==-1) break;
  56. else succ=i;
  57. }
  58. printf(", _setmaxstdio() was set to %d\n",tmp[succ]);
  59. #endif
  60. return 0;
  61. }
  62. #if defined(__MINGW32__)
  63. int inet_pton(int af, const char *src, void *dst)
  64. {
  65. struct sockaddr_storage ss;
  66. int size = sizeof(ss);
  67. char src_copy[INET6_ADDRSTRLEN+1];
  68. ZeroMemory(&ss, sizeof(ss));
  69. /* stupid non-const API */
  70. strncpy (src_copy, src, INET6_ADDRSTRLEN+1);
  71. src_copy[INET6_ADDRSTRLEN] = 0;
  72. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  73. switch(af) {
  74. case AF_INET:
  75. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  76. return 1;
  77. case AF_INET6:
  78. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  79. return 1;
  80. }
  81. }
  82. return 0;
  83. }
  84. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size)
  85. {
  86. struct sockaddr_storage ss;
  87. unsigned long s = size;
  88. ZeroMemory(&ss, sizeof(ss));
  89. ss.ss_family = af;
  90. switch(af) {
  91. case AF_INET:
  92. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  93. break;
  94. case AF_INET6:
  95. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  96. break;
  97. default:
  98. return NULL;
  99. }
  100. /* cannot direclty use &size because of strict aliasing rules */
  101. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0)?
  102. dst : NULL;
  103. }
  104. char *get_sock_error()
  105. {
  106. static char buf[1000];
  107. int e=WSAGetLastError();
  108. wchar_t *s = NULL;
  109. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  110. NULL, e,
  111. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  112. (LPWSTR)&s, 0, NULL);
  113. sprintf(buf, "%d:%S", e,s);
  114. int len=strlen(buf);
  115. if(len>0&&buf[len-1]=='\n') buf[len-1]=0;
  116. LocalFree(s);
  117. return buf;
  118. }
  119. int get_sock_errno()
  120. {
  121. return WSAGetLastError();
  122. }
  123. #else
  124. char *get_sock_error()
  125. {
  126. static char buf[1000];
  127. sprintf(buf, "%d:%s", errno,strerror(errno));
  128. return buf;
  129. }
  130. int get_sock_errno()
  131. {
  132. return errno;
  133. }
  134. #endif
  135. struct my_random_t
  136. {
  137. std::random_device rd;
  138. std::mt19937 gen;
  139. std::uniform_int_distribution<u64_t> dis64;
  140. std::uniform_int_distribution<u32_t> dis32;
  141. std::uniform_int_distribution<unsigned char> dis8;
  142. my_random_t()
  143. {
  144. std::mt19937 gen_tmp(rd());
  145. gen=gen_tmp;
  146. gen.discard(700000); //magic
  147. }
  148. u64_t gen64()
  149. {
  150. return dis64(gen);
  151. }
  152. u32_t gen32()
  153. {
  154. return dis32(gen);
  155. }
  156. unsigned char gen8()
  157. {
  158. return dis8(gen);
  159. }
  160. /*int random_number_fd;
  161. random_fd_t()
  162. {
  163. random_number_fd=open("/dev/urandom",O_RDONLY);
  164. if(random_number_fd==-1)
  165. {
  166. mylog(log_fatal,"error open /dev/urandom\n");
  167. myexit(-1);
  168. }
  169. setnonblocking(random_number_fd);
  170. }
  171. int get_fd()
  172. {
  173. return random_number_fd;
  174. }*/
  175. }my_random;
  176. int address_t::from_str(char *str)
  177. {
  178. clear();
  179. char ip_addr_str[100];u32_t port;
  180. mylog(log_info,"parsing address: %s\n",str);
  181. int is_ipv6=0;
  182. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  183. {
  184. mylog(log_info,"its an ipv6 adress\n");
  185. inner.ipv6.sin6_family=AF_INET6;
  186. is_ipv6=1;
  187. }
  188. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  189. {
  190. mylog(log_info,"its an ipv4 adress\n");
  191. inner.ipv4.sin_family=AF_INET;
  192. }
  193. else
  194. {
  195. mylog(log_error,"failed to parse\n");
  196. myexit(-1);
  197. }
  198. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  199. if(port>65535)
  200. {
  201. mylog(log_error,"invalid port: %d\n",port);
  202. myexit(-1);
  203. }
  204. int ret=-100;
  205. if(is_ipv6)
  206. {
  207. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  208. inner.ipv6.sin6_port=htons(port);
  209. if(ret==0) // 0 if address type doesnt match
  210. {
  211. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  212. myexit(-1);
  213. }
  214. else if(ret==1) // inet_pton returns 1 on success
  215. {
  216. //okay
  217. }
  218. else
  219. {
  220. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  221. myexit(-1);
  222. }
  223. }
  224. else
  225. {
  226. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  227. inner.ipv4.sin_port=htons(port);
  228. if(ret==0)
  229. {
  230. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  231. myexit(-1);
  232. }
  233. else if(ret==1)
  234. {
  235. //okay
  236. }
  237. else
  238. {
  239. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  240. myexit(-1);
  241. }
  242. }
  243. return 0;
  244. }
  245. int address_t::from_str_ip_only(char * str)
  246. {
  247. clear();
  248. u32_t type;
  249. if(strchr(str,':')==NULL)
  250. type=AF_INET;
  251. else
  252. type=AF_INET6;
  253. ((sockaddr*)&inner)->sa_family=type;
  254. int ret;
  255. if(type==AF_INET)
  256. {
  257. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  258. }
  259. else
  260. {
  261. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  262. }
  263. if(ret==0) // 0 if address type doesnt match
  264. {
  265. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  266. myexit(-1);
  267. }
  268. else if(ret==1) // inet_pton returns 1 on success
  269. {
  270. //okay
  271. }
  272. else
  273. {
  274. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  275. myexit(-1);
  276. }
  277. return 0;
  278. }
  279. char * address_t::get_str()
  280. {
  281. static char res[max_addr_len];
  282. to_str(res);
  283. return res;
  284. }
  285. void address_t::to_str(char * s)
  286. {
  287. //static char res[max_addr_len];
  288. char ip_addr[max_addr_len];
  289. u32_t port;
  290. const char * ret=0;
  291. if(get_type()==AF_INET6)
  292. {
  293. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  294. port=inner.ipv6.sin6_port;
  295. }
  296. else if(get_type()==AF_INET)
  297. {
  298. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  299. port=inner.ipv4.sin_port;
  300. }
  301. else
  302. {
  303. assert(0==1);
  304. }
  305. if(ret==0) //NULL on failure
  306. {
  307. mylog(log_error,"inet_ntop failed\n");
  308. myexit(-1);
  309. }
  310. port=ntohs(port);
  311. ip_addr[max_addr_len-1]=0;
  312. if(get_type()==AF_INET6)
  313. {
  314. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  315. }else
  316. {
  317. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  318. }
  319. //return res;
  320. }
  321. char* address_t::get_ip()
  322. {
  323. char ip_addr[max_addr_len];
  324. static char s[max_addr_len];
  325. const char * ret=0;
  326. if(get_type()==AF_INET6)
  327. {
  328. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  329. }
  330. else if(get_type()==AF_INET)
  331. {
  332. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  333. }
  334. else
  335. {
  336. assert(0==1);
  337. }
  338. if(ret==0) //NULL on failure
  339. {
  340. mylog(log_error,"inet_ntop failed\n");
  341. myexit(-1);
  342. }
  343. ip_addr[max_addr_len-1]=0;
  344. if(get_type()==AF_INET6)
  345. {
  346. sprintf(s,"%s",ip_addr);
  347. }else
  348. {
  349. sprintf(s,"%s",ip_addr);
  350. }
  351. return s;
  352. }
  353. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  354. {
  355. clear();
  356. //memset(&inner,0,sizeof(inner));
  357. if(addr->sa_family==AF_INET6)
  358. {
  359. assert(slen==sizeof(sockaddr_in6));
  360. //inner.ipv6= *( (sockaddr_in6*) addr );
  361. memcpy(&inner,addr,slen);
  362. }
  363. else if(addr->sa_family==AF_INET)
  364. {
  365. assert(slen==sizeof(sockaddr_in));
  366. //inner.ipv4= *( (sockaddr_in*) addr );
  367. memcpy(&inner,addr,slen);
  368. }
  369. else
  370. {
  371. assert(0==1);
  372. }
  373. return 0;
  374. }
  375. int address_t::new_connected_udp_fd()
  376. {
  377. int new_udp_fd;
  378. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  379. if (new_udp_fd < 0) {
  380. mylog(log_warn, "create udp_fd error\n");
  381. return -1;
  382. }
  383. setnonblocking(new_udp_fd);
  384. set_buf_size(new_udp_fd,socket_buf_size);
  385. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  386. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  387. if (ret != 0) {
  388. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  389. //sock_close(new_udp_fd);
  390. close(new_udp_fd);
  391. return -1;
  392. }
  393. return new_udp_fd;
  394. }
  395. void get_fake_random_chars(char * s,int len)
  396. {
  397. char *p=s;
  398. int left=len;
  399. while(left>=(int)sizeof(u64_t))
  400. {
  401. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  402. u64_t tmp=my_random.gen64();
  403. memcpy(p,&tmp,sizeof(u64_t)); // so,use memcpy instead.
  404. p+=sizeof(u64_t);
  405. left-=sizeof(u64_t);
  406. }
  407. if(left)
  408. {
  409. u64_t tmp=my_random.gen64();
  410. memcpy(p,&tmp,left);
  411. }
  412. }
  413. int random_between(u32_t a,u32_t b)
  414. {
  415. if(a>b)
  416. {
  417. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  418. myexit(1);
  419. }
  420. if(a==b)return a;
  421. else return a+get_fake_random_number()%(b+1-a);
  422. }
  423. /*
  424. u64_t get_current_time()//ms
  425. {
  426. timespec tmp_time;
  427. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  428. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  429. }
  430. u64_t get_current_time_us()
  431. {
  432. timespec tmp_time;
  433. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  434. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  435. }*/
  436. u64_t get_current_time_us()
  437. {
  438. static u64_t value_fix=0;
  439. static u64_t largest_value=0;
  440. u64_t raw_value=(u64_t)(ev_time()*1000*1000);
  441. u64_t fixed_value=raw_value+value_fix;
  442. if(fixed_value< largest_value)
  443. {
  444. value_fix+= largest_value- fixed_value;
  445. }
  446. else
  447. {
  448. largest_value=fixed_value;
  449. }
  450. //printf("<%lld,%lld,%lld>\n",raw_value,value_fix,raw_value + value_fix);
  451. return raw_value + value_fix; //new fixed value
  452. }
  453. u64_t get_current_time()
  454. {
  455. return get_current_time_us()/1000lu;
  456. }
  457. u64_t pack_u64(u32_t a,u32_t b)
  458. {
  459. u64_t ret=a;
  460. ret<<=32u;
  461. ret+=b;
  462. return ret;
  463. }
  464. u32_t get_u64_h(u64_t a)
  465. {
  466. return a>>32u;
  467. }
  468. u32_t get_u64_l(u64_t a)
  469. {
  470. return (a<<32u)>>32u;
  471. }
  472. void write_u16(char * p,u16_t w)
  473. {
  474. *(unsigned char*)(p + 1) = (w & 0xff);
  475. *(unsigned char*)(p + 0) = (w >> 8);
  476. }
  477. u16_t read_u16(char * p)
  478. {
  479. u16_t res;
  480. res = *(const unsigned char*)(p + 0);
  481. res = *(const unsigned char*)(p + 1) + (res << 8);
  482. return res;
  483. }
  484. void write_u32(char * p,u32_t l)
  485. {
  486. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  487. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  488. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  489. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  490. }
  491. u32_t read_u32(char * p)
  492. {
  493. u32_t res;
  494. res = *(const unsigned char*)(p + 0);
  495. res = *(const unsigned char*)(p + 1) + (res << 8);
  496. res = *(const unsigned char*)(p + 2) + (res << 8);
  497. res = *(const unsigned char*)(p + 3) + (res << 8);
  498. return res;
  499. }
  500. void write_u64(char * s,u64_t a)
  501. {
  502. assert(0==1);
  503. }
  504. u64_t read_u64(char * s)
  505. {
  506. assert(0==1);
  507. return 0;
  508. }
  509. char * my_ntoa(u32_t ip)
  510. {
  511. in_addr a;
  512. a.s_addr=ip;
  513. return inet_ntoa(a);
  514. }
  515. u64_t get_fake_random_number_64()
  516. {
  517. //u64_t ret;
  518. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  519. //if(size!=sizeof(ret))
  520. //{
  521. // mylog(log_fatal,"get random number failed %d\n",size);
  522. // myexit(-1);
  523. //}
  524. return my_random.gen64();
  525. }
  526. u32_t get_fake_random_number()
  527. {
  528. //u32_t ret;
  529. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  530. //if(size!=sizeof(ret))
  531. //{
  532. // mylog(log_fatal,"get random number failed %d\n",size);
  533. // myexit(-1);
  534. //}
  535. return my_random.gen32();
  536. }
  537. u32_t get_fake_random_number_nz() //nz for non-zero
  538. {
  539. u32_t ret=0;
  540. while(ret==0)
  541. {
  542. ret=get_fake_random_number();
  543. }
  544. return ret;
  545. }
  546. /*
  547. u64_t ntoh64(u64_t a)
  548. {
  549. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  550. {
  551. return __bswap_64( a);
  552. }
  553. else return a;
  554. }
  555. u64_t hton64(u64_t a)
  556. {
  557. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  558. {
  559. return __bswap_64( a);
  560. }
  561. else return a;
  562. }*/
  563. void setnonblocking(int sock) {
  564. #if !defined(__MINGW32__)
  565. int opts;
  566. opts = fcntl(sock, F_GETFL);
  567. if (opts < 0) {
  568. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  569. //perror("fcntl(sock,GETFL)");
  570. myexit(1);
  571. }
  572. opts = opts | O_NONBLOCK;
  573. if (fcntl(sock, F_SETFL, opts) < 0) {
  574. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  575. //perror("fcntl(sock,SETFL,opts)");
  576. myexit(1);
  577. }
  578. #else
  579. int iResult;
  580. u_long iMode = 1;
  581. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  582. if (iResult != NO_ERROR)
  583. printf("ioctlsocket failed with error: %d\n", iResult);
  584. #endif
  585. }
  586. /*
  587. Generic checksum calculation function
  588. */
  589. unsigned short csum(const unsigned short *ptr,int nbytes) {
  590. long sum;
  591. unsigned short oddbyte;
  592. short answer;
  593. sum=0;
  594. while(nbytes>1) {
  595. sum+=*ptr++;
  596. nbytes-=2;
  597. }
  598. if(nbytes==1) {
  599. oddbyte=0;
  600. *((u_char*)&oddbyte)=*(u_char*)ptr;
  601. sum+=oddbyte;
  602. }
  603. sum = (sum>>16)+(sum & 0xffff);
  604. sum = sum + (sum>>16);
  605. answer=(short)~sum;
  606. return(answer);
  607. }
  608. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  609. long sum;
  610. unsigned short oddbyte;
  611. short answer;
  612. sum=0;
  613. unsigned short * tmp= (unsigned short *)&ph;
  614. for(int i=0;i<6;i++)
  615. {
  616. sum+=*tmp++;
  617. }
  618. while(nbytes>1) {
  619. sum+=*ptr++;
  620. nbytes-=2;
  621. }
  622. if(nbytes==1) {
  623. oddbyte=0;
  624. *((u_char*)&oddbyte)=*(u_char*)ptr;
  625. sum+=oddbyte;
  626. }
  627. sum = (sum>>16)+(sum & 0xffff);
  628. sum = sum + (sum>>16);
  629. answer=(short)~sum;
  630. return(answer);
  631. }
  632. int set_buf_size(int fd,int socket_buf_size)
  633. {
  634. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  635. {
  636. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  637. myexit(1);
  638. }
  639. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  640. {
  641. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  642. myexit(1);
  643. }
  644. return 0;
  645. }
  646. void myexit(int a)
  647. {
  648. if(enable_log_color)
  649. printf("%s\n",RESET);
  650. // clear_iptables_rule();
  651. exit(a);
  652. }
  653. void signal_handler(int sig)
  654. {
  655. about_to_exit=1;
  656. // myexit(0);
  657. }
  658. /*
  659. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  660. {
  661. static char buf[buf_len];
  662. data=buf;
  663. id_t tmp=htonl(id1);
  664. memcpy(buf,&tmp,sizeof(tmp));
  665. tmp=htonl(id2);
  666. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  667. tmp=htonl(id3);
  668. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  669. len=sizeof(id_t)*3;
  670. return 0;
  671. }
  672. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  673. {
  674. if(len<int(sizeof(id_t)*3)) return -1;
  675. id1=ntohl( *((id_t*)(data+0)) );
  676. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  677. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  678. return 0;
  679. }
  680. */
  681. /*
  682. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  683. {
  684. int ret;
  685. epoll_event ev;
  686. itimerspec its;
  687. memset(&its,0,sizeof(its));
  688. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  689. {
  690. mylog(log_fatal,"timer_fd create error\n");
  691. myexit(1);
  692. }
  693. its.it_interval.tv_sec=(timer_interval/1000);
  694. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  695. its.it_value.tv_nsec=1; //imidiately
  696. timerfd_settime(timer_fd,0,&its,0);
  697. ev.events = EPOLLIN;
  698. ev.data.fd = timer_fd;
  699. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  700. if (ret < 0) {
  701. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  702. myexit(-1);
  703. }
  704. return 0;
  705. }*/
  706. /*
  707. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  708. {
  709. struct sockaddr_in remote_addr_in;
  710. socklen_t slen = sizeof(sockaddr_in);
  711. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  712. remote_addr_in.sin_family = AF_INET;
  713. remote_addr_in.sin_port = htons(remote_port);
  714. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  715. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  716. if (new_udp_fd < 0) {
  717. mylog(log_warn, "create udp_fd error\n");
  718. return -1;
  719. }
  720. setnonblocking(new_udp_fd);
  721. set_buf_size(new_udp_fd);
  722. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  723. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  724. if (ret != 0) {
  725. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  726. close(new_udp_fd);
  727. return -1;
  728. }
  729. return 0;
  730. }*/
  731. int round_up_div(int a,int b)
  732. {
  733. return (a+b-1)/b;
  734. }
  735. int create_fifo(char * file)
  736. {
  737. #if !defined(__MINGW32__)
  738. if(mkfifo (file, 0666)!=0)
  739. {
  740. if(errno==EEXIST)
  741. {
  742. mylog(log_warn,"warning fifo file %s exist\n",file);
  743. }
  744. else
  745. {
  746. mylog(log_fatal,"create fifo file %s failed\n",file);
  747. myexit(-1);
  748. }
  749. }
  750. int fifo_fd=open (file, O_RDWR);
  751. if(fifo_fd<0)
  752. {
  753. mylog(log_fatal,"create fifo file %s failed\n",file);
  754. myexit(-1);
  755. }
  756. struct stat st;
  757. if (fstat(fifo_fd, &st)!=0)
  758. {
  759. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  760. myexit(-1);
  761. }
  762. if(!S_ISFIFO(st.st_mode))
  763. {
  764. mylog(log_fatal,"%s is not a fifo\n",file);
  765. myexit(-1);
  766. }
  767. setnonblocking(fifo_fd);
  768. return fifo_fd;
  769. #else
  770. assert(0==1&&"not supported\n");
  771. return 0;
  772. #endif
  773. }
  774. /*
  775. int new_listen_socket(int &fd,u32_t ip,int port)
  776. {
  777. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  778. int yes = 1;
  779. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  780. struct sockaddr_in local_me={0};
  781. socklen_t slen = sizeof(sockaddr_in);
  782. //memset(&local_me, 0, sizeof(local_me));
  783. local_me.sin_family = AF_INET;
  784. local_me.sin_port = htons(port);
  785. local_me.sin_addr.s_addr = ip;
  786. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  787. mylog(log_fatal,"socket bind error\n");
  788. //perror("socket bind error");
  789. myexit(1);
  790. }
  791. setnonblocking(fd);
  792. set_buf_size(fd,socket_buf_size);
  793. mylog(log_debug,"local_listen_fd=%d\n",fd);
  794. return 0;
  795. }
  796. int new_connected_socket(int &fd,u32_t ip,int port)
  797. {
  798. char ip_port[40];
  799. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  800. struct sockaddr_in remote_addr_in = { 0 };
  801. socklen_t slen = sizeof(sockaddr_in);
  802. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  803. remote_addr_in.sin_family = AF_INET;
  804. remote_addr_in.sin_port = htons(port);
  805. remote_addr_in.sin_addr.s_addr = ip;
  806. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  807. if (fd < 0) {
  808. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  809. return -1;
  810. }
  811. setnonblocking(fd);
  812. set_buf_size(fd, socket_buf_size);
  813. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  814. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  815. if (ret != 0) {
  816. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  817. sock_close(fd);
  818. return -1;
  819. }
  820. return 0;
  821. }
  822. */
  823. int new_listen_socket2(int &fd,address_t &addr)
  824. {
  825. fd =socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  826. int yes = 1;
  827. if (::bind(fd, (struct sockaddr*) &addr.inner, addr.get_len()) == -1) {
  828. mylog(log_fatal,"socket bind error\n");
  829. //perror("socket bind error");
  830. myexit(1);
  831. }
  832. setnonblocking(fd);
  833. set_buf_size(fd,socket_buf_size);
  834. mylog(log_debug,"local_listen_fd=%d\n",fd);
  835. return 0;
  836. }
  837. int new_connected_socket2(int &fd,address_t &addr,bool bind_enabled,address_t &bind_addr,char interface_string[])
  838. {
  839. fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  840. if (fd < 0) {
  841. mylog(log_warn, "[%s]create udp_fd error\n", addr.get_str());
  842. return -1;
  843. }
  844. if (bind_enabled && ::bind(fd, (struct sockaddr*) &bind_addr.inner, bind_addr.get_len()) == -1) {
  845. mylog(log_fatal,"socket bind error\n");
  846. //perror("socket bind error");
  847. myexit(1);
  848. }
  849. if (strlen(interface_string) > 0 && setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, interface_string, strlen(interface_string)) < 0) {
  850. mylog(log_fatal,"socket interface bind error\n");
  851. //perror("socket bind error");
  852. myexit(1);
  853. }
  854. setnonblocking(fd);
  855. set_buf_size(fd, socket_buf_size);
  856. mylog(log_debug, "[%s]created new udp_fd %d\n", addr.get_str(), fd);
  857. int ret = connect(fd, (struct sockaddr *) &addr.inner, addr.get_len());
  858. if (ret != 0) {
  859. mylog(log_warn, "[%s]fd connect fail\n",addr.get_str());
  860. sock_close(fd);
  861. return -1;
  862. }
  863. return 0;
  864. }
  865. u32_t djb2(unsigned char *str,int len)
  866. {
  867. u32_t hash = 5381;
  868. int c;
  869. int i=0;
  870. while(c = *str++,i++!=len)
  871. {
  872. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  873. }
  874. hash=htonl(hash);
  875. return hash;
  876. }
  877. u32_t sdbm(unsigned char *str,int len)
  878. {
  879. u32_t hash = 0;
  880. int c;
  881. int i=0;
  882. while(c = *str++,i++!=len)
  883. {
  884. hash = c + (hash << 6) + (hash << 16) - hash;
  885. }
  886. //hash=htonl(hash);
  887. return hash;
  888. }
  889. vector<string> string_to_vec(const char * s,const char * sp) {
  890. vector<string> res;
  891. string str=s;
  892. char *p = strtok ((char *)str.c_str(),sp);
  893. while (p != NULL)
  894. {
  895. res.push_back(p);
  896. //printf ("%s\n",p);
  897. p = strtok(NULL, sp);
  898. }
  899. /* for(int i=0;i<(int)res.size();i++)
  900. {
  901. printf("<<%s>>\n",res[i].c_str());
  902. }*/
  903. return res;
  904. }