common.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t client_or_server=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. int init_ws()
  21. {
  22. #if defined(__MINGW32__)
  23. WORD wVersionRequested;
  24. WSADATA wsaData;
  25. int err;
  26. /* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */
  27. wVersionRequested = MAKEWORD(2, 2);
  28. err = WSAStartup(wVersionRequested, &wsaData);
  29. if (err != 0) {
  30. /* Tell the user that we could not find a usable */
  31. /* Winsock DLL. */
  32. printf("WSAStartup failed with error: %d\n", err);
  33. exit(-1);
  34. }
  35. /* Confirm that the WinSock DLL supports 2.2.*/
  36. /* Note that if the DLL supports versions greater */
  37. /* than 2.2 in addition to 2.2, it will still return */
  38. /* 2.2 in wVersion since that is the version we */
  39. /* requested. */
  40. if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
  41. /* Tell the user that we could not find a usable */
  42. /* WinSock DLL. */
  43. printf("Could not find a usable version of Winsock.dll\n");
  44. WSACleanup();
  45. exit(-1);
  46. }
  47. else
  48. {
  49. printf("The Winsock 2.2 dll was found okay");
  50. }
  51. int tmp[]={0,100,200,300,500,800,1000,2000,3000,4000,-1};
  52. int succ=0;
  53. for(int i=1;tmp[i]!=-1;i++)
  54. {
  55. if(_setmaxstdio(100)==-1) break;
  56. else succ=i;
  57. }
  58. printf(", _setmaxstdio() was set to %d\n",tmp[succ]);
  59. #endif
  60. return 0;
  61. }
  62. #if defined(__MINGW32__)
  63. int inet_pton(int af, const char *src, void *dst)
  64. {
  65. struct sockaddr_storage ss;
  66. int size = sizeof(ss);
  67. char src_copy[INET6_ADDRSTRLEN+1];
  68. ZeroMemory(&ss, sizeof(ss));
  69. /* stupid non-const API */
  70. strncpy (src_copy, src, INET6_ADDRSTRLEN+1);
  71. src_copy[INET6_ADDRSTRLEN] = 0;
  72. if (WSAStringToAddress(src_copy, af, NULL, (struct sockaddr *)&ss, &size) == 0) {
  73. switch(af) {
  74. case AF_INET:
  75. *(struct in_addr *)dst = ((struct sockaddr_in *)&ss)->sin_addr;
  76. return 1;
  77. case AF_INET6:
  78. *(struct in6_addr *)dst = ((struct sockaddr_in6 *)&ss)->sin6_addr;
  79. return 1;
  80. }
  81. }
  82. return 0;
  83. }
  84. const char *inet_ntop(int af, const void *src, char *dst, socklen_t size)
  85. {
  86. struct sockaddr_storage ss;
  87. unsigned long s = size;
  88. ZeroMemory(&ss, sizeof(ss));
  89. ss.ss_family = af;
  90. switch(af) {
  91. case AF_INET:
  92. ((struct sockaddr_in *)&ss)->sin_addr = *(struct in_addr *)src;
  93. break;
  94. case AF_INET6:
  95. ((struct sockaddr_in6 *)&ss)->sin6_addr = *(struct in6_addr *)src;
  96. break;
  97. default:
  98. return NULL;
  99. }
  100. /* cannot direclty use &size because of strict aliasing rules */
  101. return (WSAAddressToString((struct sockaddr *)&ss, sizeof(ss), NULL, dst, &s) == 0)?
  102. dst : NULL;
  103. }
  104. char *get_sock_error()
  105. {
  106. static char buf[1000];
  107. int e=WSAGetLastError();
  108. wchar_t *s = NULL;
  109. FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  110. NULL, e,
  111. MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  112. (LPWSTR)&s, 0, NULL);
  113. sprintf(buf, "%d:%S", e,s);
  114. int len=strlen(buf);
  115. if(len>0&&buf[len-1]=='\n') buf[len-1]=0;
  116. LocalFree(s);
  117. return buf;
  118. }
  119. int get_sock_errno()
  120. {
  121. return WSAGetLastError();
  122. }
  123. #else
  124. char *get_sock_error()
  125. {
  126. static char buf[1000];
  127. sprintf(buf, "%d:%s", errno,strerror(errno));
  128. return buf;
  129. }
  130. int get_sock_errno()
  131. {
  132. return errno;
  133. }
  134. #endif
  135. struct my_random_t
  136. {
  137. std::random_device rd;
  138. std::mt19937 gen;
  139. std::uniform_int_distribution<u64_t> dis64;
  140. std::uniform_int_distribution<u32_t> dis32;
  141. std::uniform_int_distribution<unsigned char> dis8;
  142. my_random_t()
  143. {
  144. std::mt19937 gen_tmp(rd());
  145. gen=gen_tmp;
  146. gen.discard(700000); //magic
  147. }
  148. u64_t gen64()
  149. {
  150. return dis64(gen);
  151. }
  152. u32_t gen32()
  153. {
  154. return dis32(gen);
  155. }
  156. unsigned char gen8()
  157. {
  158. return dis8(gen);
  159. }
  160. /*int random_number_fd;
  161. random_fd_t()
  162. {
  163. random_number_fd=open("/dev/urandom",O_RDONLY);
  164. if(random_number_fd==-1)
  165. {
  166. mylog(log_fatal,"error open /dev/urandom\n");
  167. myexit(-1);
  168. }
  169. setnonblocking(random_number_fd);
  170. }
  171. int get_fd()
  172. {
  173. return random_number_fd;
  174. }*/
  175. }my_random;
  176. int address_t::from_str(char *str)
  177. {
  178. clear();
  179. char ip_addr_str[100];u32_t port;
  180. mylog(log_info,"parsing address: %s\n",str);
  181. int is_ipv6=0;
  182. if(sscanf(str, "[%[^]]]:%u", ip_addr_str,&port)==2)
  183. {
  184. mylog(log_info,"its an ipv6 adress\n");
  185. inner.ipv6.sin6_family=AF_INET6;
  186. is_ipv6=1;
  187. }
  188. else if(sscanf(str, "%[^:]:%u", ip_addr_str,&port)==2)
  189. {
  190. mylog(log_info,"its an ipv4 adress\n");
  191. inner.ipv4.sin_family=AF_INET;
  192. }
  193. else
  194. {
  195. mylog(log_error,"failed to parse\n");
  196. myexit(-1);
  197. }
  198. mylog(log_info,"ip_address is {%s}, port is {%u}\n",ip_addr_str,port);
  199. if(port>65535)
  200. {
  201. mylog(log_error,"invalid port: %d\n",port);
  202. myexit(-1);
  203. }
  204. int ret=-100;
  205. if(is_ipv6)
  206. {
  207. ret=inet_pton(AF_INET6, ip_addr_str,&(inner.ipv6.sin6_addr));
  208. inner.ipv6.sin6_port=htons(port);
  209. if(ret==0) // 0 if address type doesnt match
  210. {
  211. mylog(log_error,"ip_addr %s is not an ipv6 address, %d\n",ip_addr_str,ret);
  212. myexit(-1);
  213. }
  214. else if(ret==1) // inet_pton returns 1 on success
  215. {
  216. //okay
  217. }
  218. else
  219. {
  220. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  221. myexit(-1);
  222. }
  223. }
  224. else
  225. {
  226. ret=inet_pton(AF_INET, ip_addr_str,&(inner.ipv4.sin_addr));
  227. inner.ipv4.sin_port=htons(port);
  228. if(ret==0)
  229. {
  230. mylog(log_error,"ip_addr %s is not an ipv4 address, %d\n",ip_addr_str,ret);
  231. myexit(-1);
  232. }
  233. else if(ret==1)
  234. {
  235. //okay
  236. }
  237. else
  238. {
  239. mylog(log_error,"ip_addr %s is invalid, %d\n",ip_addr_str,ret);
  240. myexit(-1);
  241. }
  242. }
  243. return 0;
  244. }
  245. int address_t::from_str_ip_only(char * str)
  246. {
  247. clear();
  248. u32_t type;
  249. if(strchr(str,':')==NULL)
  250. type=AF_INET;
  251. else
  252. type=AF_INET6;
  253. ((sockaddr*)&inner)->sa_family=type;
  254. int ret;
  255. if(type==AF_INET)
  256. {
  257. ret=inet_pton(type, str,&inner.ipv4.sin_addr);
  258. }
  259. else
  260. {
  261. ret=inet_pton(type, str,&inner.ipv6.sin6_addr);
  262. }
  263. if(ret==0) // 0 if address type doesnt match
  264. {
  265. mylog(log_error,"confusion in parsing %s, %d\n",str,ret);
  266. myexit(-1);
  267. }
  268. else if(ret==1) // inet_pton returns 1 on success
  269. {
  270. //okay
  271. }
  272. else
  273. {
  274. mylog(log_error,"ip_addr %s is invalid, %d\n",str,ret);
  275. myexit(-1);
  276. }
  277. return 0;
  278. }
  279. char * address_t::get_str()
  280. {
  281. static char res[max_addr_len];
  282. to_str(res);
  283. return res;
  284. }
  285. void address_t::to_str(char * s)
  286. {
  287. //static char res[max_addr_len];
  288. char ip_addr[max_addr_len];
  289. u32_t port;
  290. const char * ret=0;
  291. if(get_type()==AF_INET6)
  292. {
  293. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  294. port=inner.ipv6.sin6_port;
  295. }
  296. else if(get_type()==AF_INET)
  297. {
  298. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  299. port=inner.ipv4.sin_port;
  300. }
  301. else
  302. {
  303. assert(0==1);
  304. }
  305. if(ret==0) //NULL on failure
  306. {
  307. mylog(log_error,"inet_ntop failed\n");
  308. myexit(-1);
  309. }
  310. port=ntohs(port);
  311. ip_addr[max_addr_len-1]=0;
  312. if(get_type()==AF_INET6)
  313. {
  314. sprintf(s,"[%s]:%u",ip_addr,(u32_t)port);
  315. }else
  316. {
  317. sprintf(s,"%s:%u",ip_addr,(u32_t)port);
  318. }
  319. //return res;
  320. }
  321. char* address_t::get_ip()
  322. {
  323. char ip_addr[max_addr_len];
  324. static char s[max_addr_len];
  325. const char * ret=0;
  326. if(get_type()==AF_INET6)
  327. {
  328. ret=inet_ntop(AF_INET6, &inner.ipv6.sin6_addr, ip_addr,max_addr_len);
  329. }
  330. else if(get_type()==AF_INET)
  331. {
  332. ret=inet_ntop(AF_INET, &inner.ipv4.sin_addr, ip_addr,max_addr_len);
  333. }
  334. else
  335. {
  336. assert(0==1);
  337. }
  338. if(ret==0) //NULL on failure
  339. {
  340. mylog(log_error,"inet_ntop failed\n");
  341. myexit(-1);
  342. }
  343. ip_addr[max_addr_len-1]=0;
  344. if(get_type()==AF_INET6)
  345. {
  346. sprintf(s,"%s",ip_addr);
  347. }else
  348. {
  349. sprintf(s,"%s",ip_addr);
  350. }
  351. return s;
  352. }
  353. int address_t::from_sockaddr(sockaddr * addr,socklen_t slen)
  354. {
  355. clear();
  356. //memset(&inner,0,sizeof(inner));
  357. if(addr->sa_family==AF_INET6)
  358. {
  359. assert(slen==sizeof(sockaddr_in6));
  360. //inner.ipv6= *( (sockaddr_in6*) addr );
  361. memcpy(&inner,addr,slen);
  362. }
  363. else if(addr->sa_family==AF_INET)
  364. {
  365. assert(slen==sizeof(sockaddr_in));
  366. //inner.ipv4= *( (sockaddr_in*) addr );
  367. memcpy(&inner,addr,slen);
  368. }
  369. else
  370. {
  371. assert(0==1);
  372. }
  373. return 0;
  374. }
  375. int address_t::new_connected_udp_fd()
  376. {
  377. int new_udp_fd;
  378. new_udp_fd = socket(get_type(), SOCK_DGRAM, IPPROTO_UDP);
  379. if (new_udp_fd < 0) {
  380. mylog(log_warn, "create udp_fd error\n");
  381. return -1;
  382. }
  383. setnonblocking(new_udp_fd);
  384. set_buf_size(new_udp_fd,socket_buf_size);
  385. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  386. int ret = connect(new_udp_fd, (struct sockaddr *) &inner, get_len());
  387. if (ret != 0) {
  388. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno) );
  389. //sock_close(new_udp_fd);
  390. close(new_udp_fd);
  391. return -1;
  392. }
  393. return new_udp_fd;
  394. }
  395. void get_fake_random_chars(char * s,int len)
  396. {
  397. char *p=s;
  398. int left=len;
  399. while(left>=(int)sizeof(u64_t))
  400. {
  401. //*((u64_t*)p)=my_random.gen64(); //this may break strict-alias , also p may not point to a multiple of sizeof(u64_t)
  402. u64_t tmp=my_random.gen64();
  403. memcpy(p,&tmp,sizeof(u64_t)); // so,use memcpy instead.
  404. p+=sizeof(u64_t);
  405. left-=sizeof(u64_t);
  406. }
  407. if(left)
  408. {
  409. u64_t tmp=my_random.gen64();
  410. memcpy(p,&tmp,left);
  411. }
  412. }
  413. int random_between(u32_t a,u32_t b)
  414. {
  415. if(a>b)
  416. {
  417. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  418. myexit(1);
  419. }
  420. if(a==b)return a;
  421. else return a+get_fake_random_number()%(b+1-a);
  422. }
  423. /*
  424. u64_t get_current_time()//ms
  425. {
  426. timespec tmp_time;
  427. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  428. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  429. }
  430. u64_t get_current_time_us()
  431. {
  432. timespec tmp_time;
  433. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  434. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  435. }*/
  436. u64_t get_current_time()//ms
  437. {
  438. //timespec tmp_time;
  439. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  440. //return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  441. return (u64_t)(ev_time()*1000);
  442. }
  443. u64_t get_current_time_rough()//ms
  444. {
  445. return (u64_t)(ev_now(ev_default_loop(0))*1000);
  446. }
  447. u64_t get_current_time_us()
  448. {
  449. //timespec tmp_time;
  450. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  451. //return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  452. return (u64_t)(ev_time()*1000*1000);
  453. }
  454. u64_t pack_u64(u32_t a,u32_t b)
  455. {
  456. u64_t ret=a;
  457. ret<<=32u;
  458. ret+=b;
  459. return ret;
  460. }
  461. u32_t get_u64_h(u64_t a)
  462. {
  463. return a>>32u;
  464. }
  465. u32_t get_u64_l(u64_t a)
  466. {
  467. return (a<<32u)>>32u;
  468. }
  469. void write_u16(char * p,u16_t w)
  470. {
  471. *(unsigned char*)(p + 1) = (w & 0xff);
  472. *(unsigned char*)(p + 0) = (w >> 8);
  473. }
  474. u16_t read_u16(char * p)
  475. {
  476. u16_t res;
  477. res = *(const unsigned char*)(p + 0);
  478. res = *(const unsigned char*)(p + 1) + (res << 8);
  479. return res;
  480. }
  481. void write_u32(char * p,u32_t l)
  482. {
  483. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  484. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  485. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  486. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  487. }
  488. u32_t read_u32(char * p)
  489. {
  490. u32_t res;
  491. res = *(const unsigned char*)(p + 0);
  492. res = *(const unsigned char*)(p + 1) + (res << 8);
  493. res = *(const unsigned char*)(p + 2) + (res << 8);
  494. res = *(const unsigned char*)(p + 3) + (res << 8);
  495. return res;
  496. }
  497. void write_u64(char * s,u64_t a)
  498. {
  499. assert(0==1);
  500. }
  501. u64_t read_u64(char * s)
  502. {
  503. assert(0==1);
  504. return 0;
  505. }
  506. char * my_ntoa(u32_t ip)
  507. {
  508. in_addr a;
  509. a.s_addr=ip;
  510. return inet_ntoa(a);
  511. }
  512. u64_t get_fake_random_number_64()
  513. {
  514. //u64_t ret;
  515. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  516. //if(size!=sizeof(ret))
  517. //{
  518. // mylog(log_fatal,"get random number failed %d\n",size);
  519. // myexit(-1);
  520. //}
  521. return my_random.gen64();
  522. }
  523. u32_t get_fake_random_number()
  524. {
  525. //u32_t ret;
  526. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  527. //if(size!=sizeof(ret))
  528. //{
  529. // mylog(log_fatal,"get random number failed %d\n",size);
  530. // myexit(-1);
  531. //}
  532. return my_random.gen32();
  533. }
  534. u32_t get_fake_random_number_nz() //nz for non-zero
  535. {
  536. u32_t ret=0;
  537. while(ret==0)
  538. {
  539. ret=get_fake_random_number();
  540. }
  541. return ret;
  542. }
  543. /*
  544. u64_t ntoh64(u64_t a)
  545. {
  546. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  547. {
  548. return __bswap_64( a);
  549. }
  550. else return a;
  551. }
  552. u64_t hton64(u64_t a)
  553. {
  554. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  555. {
  556. return __bswap_64( a);
  557. }
  558. else return a;
  559. }*/
  560. void setnonblocking(int sock) {
  561. #if !defined(__MINGW32__)
  562. int opts;
  563. opts = fcntl(sock, F_GETFL);
  564. if (opts < 0) {
  565. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  566. //perror("fcntl(sock,GETFL)");
  567. myexit(1);
  568. }
  569. opts = opts | O_NONBLOCK;
  570. if (fcntl(sock, F_SETFL, opts) < 0) {
  571. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  572. //perror("fcntl(sock,SETFL,opts)");
  573. myexit(1);
  574. }
  575. #else
  576. int iResult;
  577. u_long iMode = 1;
  578. iResult = ioctlsocket(sock, FIONBIO, &iMode);
  579. if (iResult != NO_ERROR)
  580. printf("ioctlsocket failed with error: %d\n", iResult);
  581. #endif
  582. }
  583. /*
  584. Generic checksum calculation function
  585. */
  586. unsigned short csum(const unsigned short *ptr,int nbytes) {
  587. long sum;
  588. unsigned short oddbyte;
  589. short answer;
  590. sum=0;
  591. while(nbytes>1) {
  592. sum+=*ptr++;
  593. nbytes-=2;
  594. }
  595. if(nbytes==1) {
  596. oddbyte=0;
  597. *((u_char*)&oddbyte)=*(u_char*)ptr;
  598. sum+=oddbyte;
  599. }
  600. sum = (sum>>16)+(sum & 0xffff);
  601. sum = sum + (sum>>16);
  602. answer=(short)~sum;
  603. return(answer);
  604. }
  605. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  606. long sum;
  607. unsigned short oddbyte;
  608. short answer;
  609. sum=0;
  610. unsigned short * tmp= (unsigned short *)&ph;
  611. for(int i=0;i<6;i++)
  612. {
  613. sum+=*tmp++;
  614. }
  615. while(nbytes>1) {
  616. sum+=*ptr++;
  617. nbytes-=2;
  618. }
  619. if(nbytes==1) {
  620. oddbyte=0;
  621. *((u_char*)&oddbyte)=*(u_char*)ptr;
  622. sum+=oddbyte;
  623. }
  624. sum = (sum>>16)+(sum & 0xffff);
  625. sum = sum + (sum>>16);
  626. answer=(short)~sum;
  627. return(answer);
  628. }
  629. int set_buf_size(int fd,int socket_buf_size)
  630. {
  631. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  632. {
  633. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  634. myexit(1);
  635. }
  636. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  637. {
  638. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,get_sock_error());
  639. myexit(1);
  640. }
  641. return 0;
  642. }
  643. void myexit(int a)
  644. {
  645. if(enable_log_color)
  646. printf("%s\n",RESET);
  647. // clear_iptables_rule();
  648. exit(a);
  649. }
  650. void signal_handler(int sig)
  651. {
  652. about_to_exit=1;
  653. // myexit(0);
  654. }
  655. /*
  656. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  657. {
  658. static char buf[buf_len];
  659. data=buf;
  660. id_t tmp=htonl(id1);
  661. memcpy(buf,&tmp,sizeof(tmp));
  662. tmp=htonl(id2);
  663. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  664. tmp=htonl(id3);
  665. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  666. len=sizeof(id_t)*3;
  667. return 0;
  668. }
  669. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  670. {
  671. if(len<int(sizeof(id_t)*3)) return -1;
  672. id1=ntohl( *((id_t*)(data+0)) );
  673. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  674. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  675. return 0;
  676. }
  677. */
  678. /*
  679. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  680. {
  681. int ret;
  682. epoll_event ev;
  683. itimerspec its;
  684. memset(&its,0,sizeof(its));
  685. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  686. {
  687. mylog(log_fatal,"timer_fd create error\n");
  688. myexit(1);
  689. }
  690. its.it_interval.tv_sec=(timer_interval/1000);
  691. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  692. its.it_value.tv_nsec=1; //imidiately
  693. timerfd_settime(timer_fd,0,&its,0);
  694. ev.events = EPOLLIN;
  695. ev.data.fd = timer_fd;
  696. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  697. if (ret < 0) {
  698. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  699. myexit(-1);
  700. }
  701. return 0;
  702. }*/
  703. /*
  704. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  705. {
  706. struct sockaddr_in remote_addr_in;
  707. socklen_t slen = sizeof(sockaddr_in);
  708. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  709. remote_addr_in.sin_family = AF_INET;
  710. remote_addr_in.sin_port = htons(remote_port);
  711. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  712. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  713. if (new_udp_fd < 0) {
  714. mylog(log_warn, "create udp_fd error\n");
  715. return -1;
  716. }
  717. setnonblocking(new_udp_fd);
  718. set_buf_size(new_udp_fd);
  719. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  720. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  721. if (ret != 0) {
  722. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  723. close(new_udp_fd);
  724. return -1;
  725. }
  726. return 0;
  727. }*/
  728. int round_up_div(int a,int b)
  729. {
  730. return (a+b-1)/b;
  731. }
  732. int create_fifo(char * file)
  733. {
  734. #if !defined(__MINGW32__)
  735. if(mkfifo (file, 0666)!=0)
  736. {
  737. if(errno==EEXIST)
  738. {
  739. mylog(log_warn,"warning fifo file %s exist\n",file);
  740. }
  741. else
  742. {
  743. mylog(log_fatal,"create fifo file %s failed\n",file);
  744. myexit(-1);
  745. }
  746. }
  747. int fifo_fd=open (file, O_RDWR);
  748. if(fifo_fd<0)
  749. {
  750. mylog(log_fatal,"create fifo file %s failed\n",file);
  751. myexit(-1);
  752. }
  753. struct stat st;
  754. if (fstat(fifo_fd, &st)!=0)
  755. {
  756. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  757. myexit(-1);
  758. }
  759. if(!S_ISFIFO(st.st_mode))
  760. {
  761. mylog(log_fatal,"%s is not a fifo\n",file);
  762. myexit(-1);
  763. }
  764. setnonblocking(fifo_fd);
  765. return fifo_fd;
  766. #else
  767. assert(0==1&&"not supported\n");
  768. return 0;
  769. #endif
  770. }
  771. /*
  772. int new_listen_socket(int &fd,u32_t ip,int port)
  773. {
  774. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  775. int yes = 1;
  776. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  777. struct sockaddr_in local_me={0};
  778. socklen_t slen = sizeof(sockaddr_in);
  779. //memset(&local_me, 0, sizeof(local_me));
  780. local_me.sin_family = AF_INET;
  781. local_me.sin_port = htons(port);
  782. local_me.sin_addr.s_addr = ip;
  783. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  784. mylog(log_fatal,"socket bind error\n");
  785. //perror("socket bind error");
  786. myexit(1);
  787. }
  788. setnonblocking(fd);
  789. set_buf_size(fd,socket_buf_size);
  790. mylog(log_debug,"local_listen_fd=%d\n",fd);
  791. return 0;
  792. }
  793. int new_connected_socket(int &fd,u32_t ip,int port)
  794. {
  795. char ip_port[40];
  796. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  797. struct sockaddr_in remote_addr_in = { 0 };
  798. socklen_t slen = sizeof(sockaddr_in);
  799. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  800. remote_addr_in.sin_family = AF_INET;
  801. remote_addr_in.sin_port = htons(port);
  802. remote_addr_in.sin_addr.s_addr = ip;
  803. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  804. if (fd < 0) {
  805. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  806. return -1;
  807. }
  808. setnonblocking(fd);
  809. set_buf_size(fd, socket_buf_size);
  810. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  811. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  812. if (ret != 0) {
  813. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  814. sock_close(fd);
  815. return -1;
  816. }
  817. return 0;
  818. }
  819. */
  820. int new_listen_socket2(int &fd,address_t &addr)
  821. {
  822. fd =socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  823. int yes = 1;
  824. if (::bind(fd, (struct sockaddr*) &addr.inner, addr.get_len()) == -1) {
  825. mylog(log_fatal,"socket bind error\n");
  826. //perror("socket bind error");
  827. myexit(1);
  828. }
  829. setnonblocking(fd);
  830. set_buf_size(fd,socket_buf_size);
  831. mylog(log_debug,"local_listen_fd=%d\n",fd);
  832. return 0;
  833. }
  834. int new_connected_socket2(int &fd,address_t &addr)
  835. {
  836. fd = socket(addr.get_type(), SOCK_DGRAM, IPPROTO_UDP);
  837. if (fd < 0) {
  838. mylog(log_warn, "[%s]create udp_fd error\n", addr.get_str());
  839. return -1;
  840. }
  841. setnonblocking(fd);
  842. set_buf_size(fd, socket_buf_size);
  843. mylog(log_debug, "[%s]created new udp_fd %d\n", addr.get_str(), fd);
  844. int ret = connect(fd, (struct sockaddr *) &addr.inner, addr.get_len());
  845. if (ret != 0) {
  846. mylog(log_warn, "[%s]fd connect fail\n",addr.get_str());
  847. sock_close(fd);
  848. return -1;
  849. }
  850. return 0;
  851. }
  852. u32_t djb2(unsigned char *str,int len)
  853. {
  854. u32_t hash = 5381;
  855. int c;
  856. int i=0;
  857. while(c = *str++,i++!=len)
  858. {
  859. hash = ((hash << 5) + hash)^c; /* (hash * 33) ^ c */
  860. }
  861. hash=htonl(hash);
  862. return hash;
  863. }
  864. u32_t sdbm(unsigned char *str,int len)
  865. {
  866. u32_t hash = 0;
  867. int c;
  868. int i=0;
  869. while(c = *str++,i++!=len)
  870. {
  871. hash = c + (hash << 6) + (hash << 16) - hash;
  872. }
  873. //hash=htonl(hash);
  874. return hash;
  875. }