common.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * comm.cpp
  3. *
  4. * Created on: Jul 29, 2017
  5. * Author: wangyu
  6. */
  7. #include "common.h"
  8. #include "log.h"
  9. #include <random>
  10. #include <cmath>
  11. int about_to_exit=0;
  12. raw_mode_t raw_mode=mode_faketcp;
  13. unordered_map<int, const char*> raw_mode_tostring = {{mode_faketcp, "faketcp"}, {mode_udp, "udp"}, {mode_icmp, "icmp"}};
  14. //static int random_number_fd=-1;
  15. char iptables_rule[200]="";
  16. //int is_client = 0, is_server = 0;
  17. program_mode_t client_or_server=unset_mode;//0 unset; 1client 2server
  18. working_mode_t working_mode=tunnel_mode;
  19. int socket_buf_size=1024*1024;
  20. struct my_random_t
  21. {
  22. std::random_device rd;
  23. std::mt19937 gen;
  24. std::uniform_int_distribution<u64_t> dis64;
  25. std::uniform_int_distribution<u32_t> dis32;
  26. std::uniform_int_distribution<unsigned char> dis8;
  27. my_random_t()
  28. {
  29. std::mt19937 gen_tmp(rd());
  30. gen=gen_tmp;
  31. gen.discard(700000); //magic
  32. }
  33. u64_t gen64()
  34. {
  35. return dis64(gen);
  36. }
  37. u32_t gen32()
  38. {
  39. return dis32(gen);
  40. }
  41. unsigned char gen8()
  42. {
  43. return dis8(gen);
  44. }
  45. /*int random_number_fd;
  46. random_fd_t()
  47. {
  48. random_number_fd=open("/dev/urandom",O_RDONLY);
  49. if(random_number_fd==-1)
  50. {
  51. mylog(log_fatal,"error open /dev/urandom\n");
  52. myexit(-1);
  53. }
  54. setnonblocking(random_number_fd);
  55. }
  56. int get_fd()
  57. {
  58. return random_number_fd;
  59. }*/
  60. }my_random;
  61. void get_fake_random_chars(char * s,int len)
  62. {
  63. char *p=s;
  64. int left=len;
  65. while(left>=(int)sizeof(u64_t))
  66. {
  67. *((u64_t*)p)=my_random.gen64(); //no endianess problem here , but may break strict-alias?
  68. p+=sizeof(u64_t);
  69. left-=sizeof(u64_t);
  70. }
  71. if(left)
  72. {
  73. u64_t tmp=my_random.gen64();
  74. memcpy(p,&tmp,left);
  75. }
  76. }
  77. int random_between(u32_t a,u32_t b)
  78. {
  79. if(a>b)
  80. {
  81. mylog(log_fatal,"min >max?? %d %d\n",a ,b);
  82. myexit(1);
  83. }
  84. if(a==b)return a;
  85. else return a+get_fake_random_number()%(b+1-a);
  86. }
  87. /*
  88. u64_t get_current_time()//ms
  89. {
  90. timespec tmp_time;
  91. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  92. return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  93. }
  94. u64_t get_current_time_us()
  95. {
  96. timespec tmp_time;
  97. clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  98. return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  99. }*/
  100. u64_t get_current_time()//ms
  101. {
  102. //timespec tmp_time;
  103. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  104. //return ((u64_t)tmp_time.tv_sec)*1000llu+((u64_t)tmp_time.tv_nsec)/(1000*1000llu);
  105. return (u64_t)(ev_time()*1000);
  106. }
  107. u64_t get_current_time_us()
  108. {
  109. //timespec tmp_time;
  110. //clock_gettime(CLOCK_MONOTONIC, &tmp_time);
  111. //return (uint64_t(tmp_time.tv_sec))*1000llu*1000llu+ (uint64_t(tmp_time.tv_nsec))/1000llu;
  112. return (u64_t)(ev_time()*1000*1000);
  113. }
  114. u64_t pack_u64(u32_t a,u32_t b)
  115. {
  116. u64_t ret=a;
  117. ret<<=32u;
  118. ret+=b;
  119. return ret;
  120. }
  121. u32_t get_u64_h(u64_t a)
  122. {
  123. return a>>32u;
  124. }
  125. u32_t get_u64_l(u64_t a)
  126. {
  127. return (a<<32u)>>32u;
  128. }
  129. void write_u16(char * p,u16_t w)
  130. {
  131. *(unsigned char*)(p + 1) = (w & 0xff);
  132. *(unsigned char*)(p + 0) = (w >> 8);
  133. }
  134. u16_t read_u16(char * p)
  135. {
  136. u16_t res;
  137. res = *(const unsigned char*)(p + 0);
  138. res = *(const unsigned char*)(p + 1) + (res << 8);
  139. return res;
  140. }
  141. void write_u32(char * p,u32_t l)
  142. {
  143. *(unsigned char*)(p + 3) = (unsigned char)((l >> 0) & 0xff);
  144. *(unsigned char*)(p + 2) = (unsigned char)((l >> 8) & 0xff);
  145. *(unsigned char*)(p + 1) = (unsigned char)((l >> 16) & 0xff);
  146. *(unsigned char*)(p + 0) = (unsigned char)((l >> 24) & 0xff);
  147. }
  148. u32_t read_u32(char * p)
  149. {
  150. u32_t res;
  151. res = *(const unsigned char*)(p + 0);
  152. res = *(const unsigned char*)(p + 1) + (res << 8);
  153. res = *(const unsigned char*)(p + 2) + (res << 8);
  154. res = *(const unsigned char*)(p + 3) + (res << 8);
  155. return res;
  156. }
  157. void write_u64(char * s,u64_t a)
  158. {
  159. assert(0==1);
  160. }
  161. u64_t read_u64(char * s)
  162. {
  163. assert(0==1);
  164. return 0;
  165. }
  166. char * my_ntoa(u32_t ip)
  167. {
  168. in_addr a;
  169. a.s_addr=ip;
  170. return inet_ntoa(a);
  171. }
  172. int add_iptables_rule(char * s)
  173. {
  174. strcpy(iptables_rule,s);
  175. char buf[300]="iptables -I ";
  176. strcat(buf,s);
  177. if(system(buf)==0)
  178. {
  179. mylog(log_warn,"auto added iptables rule by: %s\n",buf);
  180. }
  181. else
  182. {
  183. mylog(log_fatal,"auto added iptables failed by: %s\n",buf);
  184. myexit(-1);
  185. }
  186. return 0;
  187. }
  188. int clear_iptables_rule()
  189. {
  190. if(iptables_rule[0]!=0)
  191. {
  192. char buf[300]="iptables -D ";
  193. strcat(buf,iptables_rule);
  194. if(system(buf)==0)
  195. {
  196. mylog(log_warn,"iptables rule cleared by: %s \n",buf);
  197. }
  198. else
  199. {
  200. mylog(log_error,"clear iptables failed by: %s\n",buf);
  201. }
  202. }
  203. return 0;
  204. }
  205. u64_t get_fake_random_number_64()
  206. {
  207. //u64_t ret;
  208. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  209. //if(size!=sizeof(ret))
  210. //{
  211. // mylog(log_fatal,"get random number failed %d\n",size);
  212. // myexit(-1);
  213. //}
  214. return my_random.gen64();
  215. }
  216. u32_t get_fake_random_number()
  217. {
  218. //u32_t ret;
  219. //int size=read(random_fd.get_fd(),&ret,sizeof(ret));
  220. //if(size!=sizeof(ret))
  221. //{
  222. // mylog(log_fatal,"get random number failed %d\n",size);
  223. // myexit(-1);
  224. //}
  225. return my_random.gen32();
  226. }
  227. u32_t get_fake_random_number_nz() //nz for non-zero
  228. {
  229. u32_t ret=0;
  230. while(ret==0)
  231. {
  232. ret=get_fake_random_number();
  233. }
  234. return ret;
  235. }
  236. /*
  237. u64_t ntoh64(u64_t a)
  238. {
  239. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  240. {
  241. return __bswap_64( a);
  242. }
  243. else return a;
  244. }
  245. u64_t hton64(u64_t a)
  246. {
  247. if(__BYTE_ORDER == __LITTLE_ENDIAN)
  248. {
  249. return __bswap_64( a);
  250. }
  251. else return a;
  252. }*/
  253. void setnonblocking(int sock) {
  254. int opts;
  255. opts = fcntl(sock, F_GETFL);
  256. if (opts < 0) {
  257. mylog(log_fatal,"fcntl(sock,GETFL)\n");
  258. //perror("fcntl(sock,GETFL)");
  259. myexit(1);
  260. }
  261. opts = opts | O_NONBLOCK;
  262. if (fcntl(sock, F_SETFL, opts) < 0) {
  263. mylog(log_fatal,"fcntl(sock,SETFL,opts)\n");
  264. //perror("fcntl(sock,SETFL,opts)");
  265. myexit(1);
  266. }
  267. }
  268. /*
  269. Generic checksum calculation function
  270. */
  271. unsigned short csum(const unsigned short *ptr,int nbytes) {
  272. register long sum;
  273. unsigned short oddbyte;
  274. register short answer;
  275. sum=0;
  276. while(nbytes>1) {
  277. sum+=*ptr++;
  278. nbytes-=2;
  279. }
  280. if(nbytes==1) {
  281. oddbyte=0;
  282. *((u_char*)&oddbyte)=*(u_char*)ptr;
  283. sum+=oddbyte;
  284. }
  285. sum = (sum>>16)+(sum & 0xffff);
  286. sum = sum + (sum>>16);
  287. answer=(short)~sum;
  288. return(answer);
  289. }
  290. unsigned short tcp_csum(const pseudo_header & ph,const unsigned short *ptr,int nbytes) {//works both for big and little endian
  291. register long sum;
  292. unsigned short oddbyte;
  293. register short answer;
  294. sum=0;
  295. unsigned short * tmp= (unsigned short *)&ph;
  296. for(int i=0;i<6;i++)
  297. {
  298. sum+=*tmp++;
  299. }
  300. while(nbytes>1) {
  301. sum+=*ptr++;
  302. nbytes-=2;
  303. }
  304. if(nbytes==1) {
  305. oddbyte=0;
  306. *((u_char*)&oddbyte)=*(u_char*)ptr;
  307. sum+=oddbyte;
  308. }
  309. sum = (sum>>16)+(sum & 0xffff);
  310. sum = sum + (sum>>16);
  311. answer=(short)~sum;
  312. return(answer);
  313. }
  314. int set_buf_size(int fd,int socket_buf_size,int force_socket_buf)
  315. {
  316. if(0)
  317. {
  318. /*
  319. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  320. {
  321. mylog(log_fatal,"SO_SNDBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  322. myexit(1);
  323. }
  324. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &socket_buf_size, sizeof(socket_buf_size))<0)
  325. {
  326. mylog(log_fatal,"SO_RCVBUFFORCE fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  327. myexit(1);
  328. }
  329. */
  330. }
  331. else
  332. {
  333. if(setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  334. {
  335. mylog(log_fatal,"SO_SNDBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  336. myexit(1);
  337. }
  338. if(setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &socket_buf_size, sizeof(socket_buf_size))<0)
  339. {
  340. mylog(log_fatal,"SO_RCVBUF fail socket_buf_size=%d errno=%s\n",socket_buf_size,strerror(errno));
  341. myexit(1);
  342. }
  343. }
  344. return 0;
  345. }
  346. void myexit(int a)
  347. {
  348. if(enable_log_color)
  349. printf("%s\n",RESET);
  350. // clear_iptables_rule();
  351. exit(a);
  352. }
  353. void signal_handler(int sig)
  354. {
  355. about_to_exit=1;
  356. // myexit(0);
  357. }
  358. int numbers_to_char(id_t id1,id_t id2,id_t id3,char * &data,int &len)
  359. {
  360. static char buf[buf_len];
  361. data=buf;
  362. id_t tmp=htonl(id1);
  363. memcpy(buf,&tmp,sizeof(tmp));
  364. tmp=htonl(id2);
  365. memcpy(buf+sizeof(tmp),&tmp,sizeof(tmp));
  366. tmp=htonl(id3);
  367. memcpy(buf+sizeof(tmp)*2,&tmp,sizeof(tmp));
  368. len=sizeof(id_t)*3;
  369. return 0;
  370. }
  371. int char_to_numbers(const char * data,int len,id_t &id1,id_t &id2,id_t &id3)
  372. {
  373. if(len<int(sizeof(id_t)*3)) return -1;
  374. id1=ntohl( *((id_t*)(data+0)) );
  375. id2=ntohl( *((id_t*)(data+sizeof(id_t))) );
  376. id3=ntohl( *((id_t*)(data+sizeof(id_t)*2)) );
  377. return 0;
  378. }
  379. bool larger_than_u32(u32_t a,u32_t b)
  380. {
  381. u32_t smaller,bigger;
  382. smaller=min(a,b);//smaller in normal sense
  383. bigger=max(a,b);
  384. u32_t distance=min(bigger-smaller,smaller+(0xffffffff-bigger+1));
  385. if(distance==bigger-smaller)
  386. {
  387. if(bigger==a)
  388. {
  389. return 1;
  390. }
  391. else
  392. {
  393. return 0;
  394. }
  395. }
  396. else
  397. {
  398. if(smaller==b)
  399. {
  400. return 0;
  401. }
  402. else
  403. {
  404. return 1;
  405. }
  406. }
  407. }
  408. bool larger_than_u16(uint16_t a,uint16_t b)
  409. {
  410. uint16_t smaller,bigger;
  411. smaller=min(a,b);//smaller in normal sense
  412. bigger=max(a,b);
  413. uint16_t distance=min(bigger-smaller,smaller+(0xffff-bigger+1));
  414. if(distance==bigger-smaller)
  415. {
  416. if(bigger==a)
  417. {
  418. return 1;
  419. }
  420. else
  421. {
  422. return 0;
  423. }
  424. }
  425. else
  426. {
  427. if(smaller==b)
  428. {
  429. return 0;
  430. }
  431. else
  432. {
  433. return 1;
  434. }
  435. }
  436. }
  437. /*
  438. int set_timer_ms(int epollfd,int &timer_fd,u32_t timer_interval)
  439. {
  440. int ret;
  441. epoll_event ev;
  442. itimerspec its;
  443. memset(&its,0,sizeof(its));
  444. if((timer_fd=timerfd_create(CLOCK_MONOTONIC,TFD_NONBLOCK)) < 0)
  445. {
  446. mylog(log_fatal,"timer_fd create error\n");
  447. myexit(1);
  448. }
  449. its.it_interval.tv_sec=(timer_interval/1000);
  450. its.it_interval.tv_nsec=(timer_interval%1000)*1000ll*1000ll;
  451. its.it_value.tv_nsec=1; //imidiately
  452. timerfd_settime(timer_fd,0,&its,0);
  453. ev.events = EPOLLIN;
  454. ev.data.fd = timer_fd;
  455. ret=epoll_ctl(epollfd, EPOLL_CTL_ADD, timer_fd, &ev);
  456. if (ret < 0) {
  457. mylog(log_fatal,"epoll_ctl return %d\n", ret);
  458. myexit(-1);
  459. }
  460. return 0;
  461. }*/
  462. /*
  463. int create_new_udp(int &new_udp_fd,int remote_address_uint32,int remote_port)
  464. {
  465. struct sockaddr_in remote_addr_in;
  466. socklen_t slen = sizeof(sockaddr_in);
  467. memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  468. remote_addr_in.sin_family = AF_INET;
  469. remote_addr_in.sin_port = htons(remote_port);
  470. remote_addr_in.sin_addr.s_addr = remote_address_uint32;
  471. new_udp_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  472. if (new_udp_fd < 0) {
  473. mylog(log_warn, "create udp_fd error\n");
  474. return -1;
  475. }
  476. setnonblocking(new_udp_fd);
  477. set_buf_size(new_udp_fd);
  478. mylog(log_debug, "created new udp_fd %d\n", new_udp_fd);
  479. int ret = connect(new_udp_fd, (struct sockaddr *) &remote_addr_in, slen);
  480. if (ret != 0) {
  481. mylog(log_warn, "udp fd connect fail %d %s\n",ret,strerror(errno));
  482. close(new_udp_fd);
  483. return -1;
  484. }
  485. return 0;
  486. }*/
  487. void ip_port_t::from_u64(u64_t u64)
  488. {
  489. ip=get_u64_h(u64);
  490. port=get_u64_l(u64);
  491. }
  492. u64_t ip_port_t::to_u64()
  493. {
  494. return pack_u64(ip,port);
  495. }
  496. char * ip_port_t::to_s()
  497. {
  498. static char res[40];
  499. sprintf(res,"%s:%d",my_ntoa(ip),port);
  500. return res;
  501. }
  502. int round_up_div(int a,int b)
  503. {
  504. return (a+b-1)/b;
  505. }
  506. int create_fifo(char * file)
  507. {
  508. if(mkfifo (file, 0666)!=0)
  509. {
  510. if(errno==EEXIST)
  511. {
  512. mylog(log_warn,"warning fifo file %s exist\n",file);
  513. }
  514. else
  515. {
  516. mylog(log_fatal,"create fifo file %s failed\n",file);
  517. myexit(-1);
  518. }
  519. }
  520. int fifo_fd=open (file, O_RDWR);
  521. if(fifo_fd<0)
  522. {
  523. mylog(log_fatal,"create fifo file %s failed\n",file);
  524. myexit(-1);
  525. }
  526. struct stat st;
  527. if (fstat(fifo_fd, &st)!=0)
  528. {
  529. mylog(log_fatal,"fstat failed for fifo file %s\n",file);
  530. myexit(-1);
  531. }
  532. if(!S_ISFIFO(st.st_mode))
  533. {
  534. mylog(log_fatal,"%s is not a fifo\n",file);
  535. myexit(-1);
  536. }
  537. setnonblocking(fifo_fd);
  538. return fifo_fd;
  539. }
  540. int new_listen_socket(int &fd,u32_t ip,int port)
  541. {
  542. fd =socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  543. int yes = 1;
  544. //setsockopt(udp_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes));
  545. struct sockaddr_in local_me={0};
  546. socklen_t slen = sizeof(sockaddr_in);
  547. //memset(&local_me, 0, sizeof(local_me));
  548. local_me.sin_family = AF_INET;
  549. local_me.sin_port = htons(port);
  550. local_me.sin_addr.s_addr = ip;
  551. if (::bind(fd, (struct sockaddr*) &local_me, slen) == -1) {
  552. mylog(log_fatal,"socket bind error\n");
  553. //perror("socket bind error");
  554. myexit(1);
  555. }
  556. setnonblocking(fd);
  557. set_buf_size(fd,socket_buf_size);
  558. mylog(log_debug,"local_listen_fd=%d\n",fd);
  559. return 0;
  560. }
  561. int new_connected_socket(int &fd,u32_t ip,int port)
  562. {
  563. char ip_port[40];
  564. sprintf(ip_port,"%s:%d",my_ntoa(ip),port);
  565. struct sockaddr_in remote_addr_in = { 0 };
  566. socklen_t slen = sizeof(sockaddr_in);
  567. //memset(&remote_addr_in, 0, sizeof(remote_addr_in));
  568. remote_addr_in.sin_family = AF_INET;
  569. remote_addr_in.sin_port = htons(port);
  570. remote_addr_in.sin_addr.s_addr = ip;
  571. fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
  572. if (fd < 0) {
  573. mylog(log_warn, "[%s]create udp_fd error\n", ip_port);
  574. return -1;
  575. }
  576. setnonblocking(fd);
  577. set_buf_size(fd, socket_buf_size);
  578. mylog(log_debug, "[%s]created new udp_fd %d\n", ip_port, fd);
  579. int ret = connect(fd, (struct sockaddr *) &remote_addr_in, slen);
  580. if (ret != 0) {
  581. mylog(log_warn, "[%s]fd connect fail\n",ip_port);
  582. close(fd);
  583. return -1;
  584. }
  585. return 0;
  586. }