| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- package router
- import (
- "context"
- "math"
- "sort"
- "time"
- "github.com/xtls/xray-core/app/observatory"
- "github.com/xtls/xray-core/common"
- "github.com/xtls/xray-core/common/dice"
- "github.com/xtls/xray-core/core"
- "github.com/xtls/xray-core/features/extension"
- )
- // LeastLoadStrategy represents a least load balancing strategy
- type LeastLoadStrategy struct {
- settings *StrategyLeastLoadConfig
- costs *WeightManager
- observer extension.Observatory
- ctx context.Context
- }
- func (l *LeastLoadStrategy) GetPrincipleTarget(strings []string) []string {
- var ret []string
- nodes := l.pickOutbounds(strings)
- for _, v := range nodes {
- ret = append(ret, v.Tag)
- }
- return ret
- }
- // NewLeastLoadStrategy creates a new LeastLoadStrategy with settings
- func NewLeastLoadStrategy(settings *StrategyLeastLoadConfig) *LeastLoadStrategy {
- return &LeastLoadStrategy{
- settings: settings,
- costs: NewWeightManager(
- settings.Costs, 1,
- func(value, cost float64) float64 {
- return value * math.Pow(cost, 0.5)
- },
- ),
- }
- }
- // node is a minimal copy of HealthCheckResult
- // we don't use HealthCheckResult directly because
- // it may change by health checker during routing
- type node struct {
- Tag string
- CountAll int
- CountFail int
- RTTAverage time.Duration
- RTTDeviation time.Duration
- RTTDeviationCost time.Duration
- }
- func (l *LeastLoadStrategy) InjectContext(ctx context.Context) {
- l.ctx = ctx
- }
- func (s *LeastLoadStrategy) PickOutbound(candidates []string) string {
- selects := s.pickOutbounds(candidates)
- count := len(selects)
- if count == 0 {
- // goes to fallbackTag
- return ""
- }
- return selects[dice.Roll(count)].Tag
- }
- func (s *LeastLoadStrategy) pickOutbounds(candidates []string) []*node {
- qualified := s.getNodes(candidates, time.Duration(s.settings.MaxRTT))
- selects := s.selectLeastLoad(qualified)
- return selects
- }
- // selectLeastLoad selects nodes according to Baselines and Expected Count.
- //
- // The strategy always improves network response speed, not matter which mode below is configured.
- // But they can still have different priorities.
- //
- // 1. Bandwidth priority: no Baseline + Expected Count > 0.: selects `Expected Count` of nodes.
- // (one if Expected Count <= 0)
- //
- // 2. Bandwidth priority advanced: Baselines + Expected Count > 0.
- // Select `Expected Count` amount of nodes, and also those near them according to baselines.
- // In other words, it selects according to different Baselines, until one of them matches
- // the Expected Count, if no Baseline matches, Expected Count applied.
- //
- // 3. Speed priority: Baselines + `Expected Count <= 0`.
- // go through all baselines until find selects, if not, select none. Used in combination
- // with 'balancer.fallbackTag', it means: selects qualified nodes or use the fallback.
- func (s *LeastLoadStrategy) selectLeastLoad(nodes []*node) []*node {
- if len(nodes) == 0 {
- newError("least load: no qualified outbound").AtInfo().WriteToLog()
- return nil
- }
- expected := int(s.settings.Expected)
- availableCount := len(nodes)
- if expected > availableCount {
- return nodes
- }
- if expected <= 0 {
- expected = 1
- }
- if len(s.settings.Baselines) == 0 {
- return nodes[:expected]
- }
- count := 0
- // go through all base line until find expected selects
- for _, b := range s.settings.Baselines {
- baseline := time.Duration(b)
- for i := count; i < availableCount; i++ {
- if nodes[i].RTTDeviationCost >= baseline {
- break
- }
- count = i + 1
- }
- // don't continue if find expected selects
- if count >= expected {
- newError("applied baseline: ", baseline).AtDebug().WriteToLog()
- break
- }
- }
- if s.settings.Expected > 0 && count < expected {
- count = expected
- }
- return nodes[:count]
- }
- func (s *LeastLoadStrategy) getNodes(candidates []string, maxRTT time.Duration) []*node {
- if s.observer == nil {
- common.Must(core.RequireFeatures(s.ctx, func(observatory extension.Observatory) error {
- s.observer = observatory
- return nil
- }))
- }
- observeResult, err := s.observer.GetObservation(s.ctx)
- if err != nil {
- newError("cannot get observation").Base(err).WriteToLog()
- return make([]*node, 0)
- }
- results := observeResult.(*observatory.ObservationResult)
- outboundlist := outboundList(candidates)
- var ret []*node
- for _, v := range results.Status {
- if v.Alive && (v.Delay < maxRTT.Milliseconds() || maxRTT == 0) && outboundlist.contains(v.OutboundTag) {
- record := &node{
- Tag: v.OutboundTag,
- CountAll: 1,
- CountFail: 1,
- RTTAverage: time.Duration(v.Delay) * time.Millisecond,
- RTTDeviation: time.Duration(v.Delay) * time.Millisecond,
- RTTDeviationCost: time.Duration(s.costs.Apply(v.OutboundTag, float64(time.Duration(v.Delay)*time.Millisecond))),
- }
- if v.HealthPing != nil {
- record.RTTAverage = time.Duration(v.HealthPing.Average)
- record.RTTDeviation = time.Duration(v.HealthPing.Deviation)
- record.RTTDeviationCost = time.Duration(s.costs.Apply(v.OutboundTag, float64(v.HealthPing.Deviation)))
- record.CountAll = int(v.HealthPing.All)
- record.CountFail = int(v.HealthPing.Fail)
- }
- ret = append(ret, record)
- }
- }
- leastloadSort(ret)
- return ret
- }
- func leastloadSort(nodes []*node) {
- sort.Slice(nodes, func(i, j int) bool {
- left := nodes[i]
- right := nodes[j]
- if left.RTTDeviationCost != right.RTTDeviationCost {
- return left.RTTDeviationCost < right.RTTDeviationCost
- }
- if left.RTTAverage != right.RTTAverage {
- return left.RTTAverage < right.RTTAverage
- }
- if left.CountFail != right.CountFail {
- return left.CountFail < right.CountFail
- }
- if left.CountAll != right.CountAll {
- return left.CountAll > right.CountAll
- }
- return left.Tag < right.Tag
- })
- }
|