| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 | package quicimport (	"context"	"crypto"	"crypto/aes"	"crypto/tls"	"encoding/binary"	"io"	"github.com/quic-go/quic-go/quicvarint"	"github.com/xtls/xray-core/common"	"github.com/xtls/xray-core/common/buf"	"github.com/xtls/xray-core/common/bytespool"	"github.com/xtls/xray-core/common/errors"	ptls "github.com/xtls/xray-core/common/protocol/tls"	"golang.org/x/crypto/hkdf")type SniffHeader struct {	domain string}func (s SniffHeader) Protocol() string {	return "quic"}func (s SniffHeader) Domain() string {	return s.domain}const (	versionDraft29 uint32 = 0xff00001d	version1       uint32 = 0x1)var (	quicSaltOld  = []byte{0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99}	quicSalt     = []byte{0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a}	initialSuite = &CipherSuiteTLS13{		ID:     tls.TLS_AES_128_GCM_SHA256,		KeyLen: 16,		AEAD:   AEADAESGCMTLS13,		Hash:   crypto.SHA256,	}	errNotQuic        = errors.New("not quic")	errNotQuicInitial = errors.New("not initial packet"))func SniffQUIC(b []byte) (resultReturn *SniffHeader, errorReturn error) {	// In extremely rare cases, this sniffer may cause slice error	// and we set recover() here to prevent crash.	// TODO: Thoroughly fix this panic	defer func() {		if r := recover(); r != nil {			errors.LogError(context.Background(), "Failed to sniff QUIC: ", r)			resultReturn = nil			errorReturn = common.ErrNoClue		}	}()	// Crypto data separated across packets	cryptoLen := 0	cryptoData := bytespool.Alloc(int32(len(b)))	defer bytespool.Free(cryptoData)	// Parse QUIC packets	for len(b) > 0 {		buffer := buf.FromBytes(b)		typeByte, err := buffer.ReadByte()		if err != nil {			return nil, errNotQuic		}		isLongHeader := typeByte&0x80 > 0		if !isLongHeader || typeByte&0x40 == 0 {			return nil, errNotQuicInitial		}		vb, err := buffer.ReadBytes(4)		if err != nil {			return nil, errNotQuic		}		versionNumber := binary.BigEndian.Uint32(vb)		if versionNumber != 0 && typeByte&0x40 == 0 {			return nil, errNotQuic		} else if versionNumber != versionDraft29 && versionNumber != version1 {			return nil, errNotQuic		}		packetType := (typeByte & 0x30) >> 4		isQuicInitial := packetType == 0x0		var destConnID []byte		if l, err := buffer.ReadByte(); err != nil {			return nil, errNotQuic		} else if destConnID, err = buffer.ReadBytes(int32(l)); err != nil {			return nil, errNotQuic		}		if l, err := buffer.ReadByte(); err != nil {			return nil, errNotQuic		} else if common.Error2(buffer.ReadBytes(int32(l))) != nil {			return nil, errNotQuic		}		tokenLen, err := quicvarint.Read(buffer)		if err != nil || tokenLen > uint64(len(b)) {			return nil, errNotQuic		}		if _, err = buffer.ReadBytes(int32(tokenLen)); err != nil {			return nil, errNotQuic		}		packetLen, err := quicvarint.Read(buffer)		if err != nil {			return nil, errNotQuic		}		hdrLen := len(b) - int(buffer.Len())		if len(b) < hdrLen+int(packetLen) {			return nil, common.ErrNoClue // Not enough data to read as a QUIC packet. QUIC is UDP-based, so this is unlikely to happen.		}		restPayload := b[hdrLen+int(packetLen):]		if !isQuicInitial { // Skip this packet if it's not initial packet			b = restPayload			continue		}		origPNBytes := make([]byte, 4)		copy(origPNBytes, b[hdrLen:hdrLen+4])		var salt []byte		if versionNumber == version1 {			salt = quicSalt		} else {			salt = quicSaltOld		}		initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt)		secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())		hpKey := hkdfExpandLabel(initialSuite.Hash, secret, []byte{}, "quic hp", initialSuite.KeyLen)		block, err := aes.NewCipher(hpKey)		if err != nil {			return nil, err		}		cache := buf.New()		defer cache.Release()		mask := cache.Extend(int32(block.BlockSize()))		block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16])		b[0] ^= mask[0] & 0xf		for i := range b[hdrLen : hdrLen+4] {			b[hdrLen+i] ^= mask[i+1]		}		packetNumberLength := b[0]&0x3 + 1		if packetNumberLength != 1 {			return nil, errNotQuicInitial		}		var packetNumber uint32		{			n, err := buffer.ReadByte()			if err != nil {				return nil, err			}			packetNumber = uint32(n)		}		extHdrLen := hdrLen + int(packetNumberLength)		copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:])		data := b[extHdrLen : int(packetLen)+hdrLen]		key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16)		iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12)		cipher := AEADAESGCMTLS13(key, iv)		nonce := cache.Extend(int32(cipher.NonceSize()))		binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber))		decrypted, err := cipher.Open(b[extHdrLen:extHdrLen], nonce, data, b[:extHdrLen])		if err != nil {			return nil, err		}		buffer = buf.FromBytes(decrypted)		for i := 0; !buffer.IsEmpty(); i++ {			frameType := byte(0x0) // Default to PADDING frame			for frameType == 0x0 && !buffer.IsEmpty() {				frameType, _ = buffer.ReadByte()			}			switch frameType {			case 0x00: // PADDING frame			case 0x01: // PING frame			case 0x02, 0x03: // ACK frame				if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged					return nil, io.ErrUnexpectedEOF				}				if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay					return nil, io.ErrUnexpectedEOF				}				ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count				if err != nil {					return nil, io.ErrUnexpectedEOF				}				if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range					return nil, io.ErrUnexpectedEOF				}				for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range					if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap						return nil, io.ErrUnexpectedEOF					}					if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length						return nil, io.ErrUnexpectedEOF					}				}				if frameType == 0x03 {					if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count						return nil, io.ErrUnexpectedEOF					}					if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count						return nil, io.ErrUnexpectedEOF					}					if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count						return nil, io.ErrUnexpectedEOF					}				}			case 0x06: // CRYPTO frame, we will use this frame				offset, err := quicvarint.Read(buffer) // Field: Offset				if err != nil {					return nil, io.ErrUnexpectedEOF				}				length, err := quicvarint.Read(buffer) // Field: Length				if err != nil || length > uint64(buffer.Len()) {					return nil, io.ErrUnexpectedEOF				}				if cryptoLen < int(offset+length) {					cryptoLen = int(offset + length)					if len(cryptoData) < cryptoLen {						newCryptoData := bytespool.Alloc(int32(cryptoLen))						copy(newCryptoData, cryptoData)						bytespool.Free(cryptoData)						cryptoData = newCryptoData					}				}				if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data					return nil, io.ErrUnexpectedEOF				}			case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet				if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code					return nil, io.ErrUnexpectedEOF				}				if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type					return nil, io.ErrUnexpectedEOF				}				length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length				if err != nil {					return nil, io.ErrUnexpectedEOF				}				if _, err := buffer.ReadBytes(int32(length)); err != nil { // Field: Reason Phrase					return nil, io.ErrUnexpectedEOF				}			default:				// Only above frame types are permitted in initial packet.				// See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8				return nil, errNotQuicInitial			}		}		tlsHdr := &ptls.SniffHeader{}		err = ptls.ReadClientHello(cryptoData[:cryptoLen], tlsHdr)		if err != nil {			// The crypto data may have not been fully recovered in current packets,			// So we continue to sniff rest packets.			b = restPayload			continue		}		return &SniffHeader{domain: tlsHdr.Domain()}, nil	}	return nil, common.ErrNoClue}func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {	b := make([]byte, 3, 3+6+len(label)+1+len(context))	binary.BigEndian.PutUint16(b, uint16(length))	b[2] = uint8(6 + len(label))	b = append(b, []byte("tls13 ")...)	b = append(b, []byte(label)...)	b = b[:3+6+len(label)+1]	b[3+6+len(label)] = uint8(len(context))	b = append(b, context...)	out := make([]byte, length)	n, err := hkdf.Expand(hash.New, secret, b).Read(out)	if err != nil || n != length {		panic("quic: HKDF-Expand-Label invocation failed unexpectedly")	}	return out}
 |