/*
 * ZeroTier One - Network Virtualization Everywhere
 * Copyright (C) 2011-2016  ZeroTier, Inc.  https://www.zerotier.com/
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see .
 */
#include 
#include 
#include 
#include "../version.h"
#include "../include/ZeroTierOne.h"
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "IncomingPacket.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
#include "Peer.hpp"
#include "NetworkController.hpp"
#include "SelfAwareness.hpp"
#include "Salsa20.hpp"
#include "SHA512.hpp"
#include "World.hpp"
#include "Cluster.hpp"
#include "Node.hpp"
#include "DeferredPackets.hpp"
namespace ZeroTier {
bool IncomingPacket::tryDecode(const RuntimeEnvironment *RR,bool deferred)
{
	const Address sourceAddress(source());
	try {
		if ((cipher() == ZT_PROTO_CIPHER_SUITE__C25519_POLY1305_NONE)&&(verb() == Packet::VERB_HELLO)) {
			// Unencrypted HELLOs require some potentially expensive verification, so
			// do this in the background if background processing is enabled.
			if ((RR->dpEnabled > 0)&&(!deferred)) {
				RR->dp->enqueue(this);
				return true; // 'handled' via deferring to background thread(s)
			} else {
				// A null pointer for peer to _doHELLO() tells it to run its own
				// special internal authentication logic. This is done for unencrypted
				// HELLOs to learn new identities, etc.
				SharedPtr tmp;
				return _doHELLO(RR,tmp);
			}
		}
		SharedPtr peer(RR->topology->getPeer(sourceAddress));
		if (peer) {
			if (!dearmor(peer->key())) {
				TRACE("dropped packet from %s(%s), MAC authentication failed (size: %u)",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),size());
				return true;
			}
			if (!uncompress()) {
				TRACE("dropped packet from %s(%s), compressed data invalid",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
				return true;
			}
			//TRACE("<< %s from %s(%s)",Packet::verbString(v),sourceAddress.toString().c_str(),_remoteAddress.toString().c_str());
			const Packet::Verb v = verb();
			switch(v) {
				//case Packet::VERB_NOP:
				default: // ignore unknown verbs, but if they pass auth check they are "received"
					peer->received(_localAddress,_remoteAddress,hops(),packetId(),v,0,Packet::VERB_NOP);
					return true;
				case Packet::VERB_HELLO:                          return _doHELLO(RR,peer);
				case Packet::VERB_ERROR:                          return _doERROR(RR,peer);
				case Packet::VERB_OK:                             return _doOK(RR,peer);
				case Packet::VERB_WHOIS:                          return _doWHOIS(RR,peer);
				case Packet::VERB_RENDEZVOUS:                     return _doRENDEZVOUS(RR,peer);
				case Packet::VERB_FRAME:                          return _doFRAME(RR,peer);
				case Packet::VERB_EXT_FRAME:                      return _doEXT_FRAME(RR,peer);
				case Packet::VERB_ECHO:                           return _doECHO(RR,peer);
				case Packet::VERB_MULTICAST_LIKE:                 return _doMULTICAST_LIKE(RR,peer);
				case Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE: return _doNETWORK_MEMBERSHIP_CERTIFICATE(RR,peer);
				case Packet::VERB_NETWORK_CONFIG_REQUEST:         return _doNETWORK_CONFIG_REQUEST(RR,peer);
				case Packet::VERB_NETWORK_CONFIG_REFRESH:         return _doNETWORK_CONFIG_REFRESH(RR,peer);
				case Packet::VERB_MULTICAST_GATHER:               return _doMULTICAST_GATHER(RR,peer);
				case Packet::VERB_MULTICAST_FRAME:                return _doMULTICAST_FRAME(RR,peer);
				case Packet::VERB_PUSH_DIRECT_PATHS:              return _doPUSH_DIRECT_PATHS(RR,peer);
				case Packet::VERB_CIRCUIT_TEST:                   return _doCIRCUIT_TEST(RR,peer);
				case Packet::VERB_CIRCUIT_TEST_REPORT:            return _doCIRCUIT_TEST_REPORT(RR,peer);
				case Packet::VERB_REQUEST_PROOF_OF_WORK:          return _doREQUEST_PROOF_OF_WORK(RR,peer);
			}
		} else {
			RR->sw->requestWhois(sourceAddress);
			return false;
		}
	} catch ( ... ) {
		// Exceptions are more informatively caught in _do...() handlers but
		// this outer try/catch will catch anything else odd.
		TRACE("dropped ??? from %s(%s): unexpected exception in tryDecode()",sourceAddress.toString().c_str(),_remoteAddress.toString().c_str());
		return true;
	}
}
bool IncomingPacket::_doERROR(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
		const uint64_t inRePacketId = at(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID);
		const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
		//TRACE("ERROR %s from %s(%s) in-re %s",Packet::errorString(errorCode),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
		switch(errorCode) {
			case Packet::ERROR_OBJ_NOT_FOUND:
				if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
					SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
					if ((network)&&(network->controller() == peer->address()))
						network->setNotFound();
				}
				break;
			case Packet::ERROR_UNSUPPORTED_OPERATION:
				if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
					SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
					if ((network)&&(network->controller() == peer->address()))
						network->setNotFound();
				}
				break;
			case Packet::ERROR_IDENTITY_COLLISION:
				if (RR->topology->isRoot(peer->identity()))
					RR->node->postEvent(ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION);
				break;
			case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: {
				/* Note: certificates are public so it's safe to push them to anyone
				 * who asks. We won't communicate unless we also get a certificate
				 * from the remote that agrees. */
				SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
				if (network) {
					SharedPtr nconf(network->config2());
					if (nconf) {
						Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
						nconf->com().serialize(outp);
						outp.armor(peer->key(),true);
						RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
					}
				}
			}	break;
			case Packet::ERROR_NETWORK_ACCESS_DENIED_: {
				SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
				if ((network)&&(network->controller() == peer->address()))
					network->setAccessDenied();
			}	break;
			case Packet::ERROR_UNWANTED_MULTICAST: {
				uint64_t nwid = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
				MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8,6),6),at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14));
				TRACE("%.16llx: peer %s unsubscrubed from multicast group %s",nwid,peer->address().toString().c_str(),mg.toString().c_str());
				RR->mc->remove(nwid,mg,peer->address());
			}	break;
			default: break;
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_ERROR,inRePacketId,inReVerb);
	} catch ( ... ) {
		TRACE("dropped ERROR from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,SharedPtr &peer)
{
	/* Note: this is the only packet ever sent in the clear, and it's also
	 * the only packet that we authenticate via a different path. Authentication
	 * occurs here and is based on the validity of the identity and the
	 * integrity of the packet's MAC, but it must be done after we check
	 * the identity since HELLO is a mechanism for learning new identities
	 * in the first place. */
	try {
		const uint64_t pid = packetId();
		const Address fromAddress(source());
		const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
		const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
		const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
		const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION);
		const uint64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
		Identity id;
		InetAddress externalSurfaceAddress;
		uint64_t worldId = ZT_WORLD_ID_NULL;
		uint64_t worldTimestamp = 0;
		{
			unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
			if (ptr < size()) // ZeroTier One < 1.0.3 did not include physical destination address info
				ptr += externalSurfaceAddress.deserialize(*this,ptr);
			if ((ptr + 16) <= size()) { // older versions also did not include World IDs or timestamps
				worldId = at(ptr); ptr += 8;
				worldTimestamp = at(ptr);
			}
		}
		if (protoVersion < ZT_PROTO_VERSION_MIN) {
			TRACE("dropped HELLO from %s(%s): protocol version too old",id.address().toString().c_str(),_remoteAddress.toString().c_str());
			return true;
		}
		if (fromAddress != id.address()) {
			TRACE("dropped HELLO from %s(%s): identity not for sending address",fromAddress.toString().c_str(),_remoteAddress.toString().c_str());
			return true;
		}
		if (!peer) { // peer == NULL is the normal case here
			peer = RR->topology->getPeer(id.address());
			if (peer) {
				// We already have an identity with this address -- check for collisions
				if (peer->identity() != id) {
					// Identity is different from the one we already have -- address collision
					unsigned char key[ZT_PEER_SECRET_KEY_LENGTH];
					if (RR->identity.agree(id,key,ZT_PEER_SECRET_KEY_LENGTH)) {
						if (dearmor(key)) { // ensure packet is authentic, otherwise drop
							TRACE("rejected HELLO from %s(%s): address already claimed",id.address().toString().c_str(),_remoteAddress.toString().c_str());
							Packet outp(id.address(),RR->identity.address(),Packet::VERB_ERROR);
							outp.append((unsigned char)Packet::VERB_HELLO);
							outp.append((uint64_t)pid);
							outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION);
							outp.armor(key,true);
							RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
						} else {
							TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
						}
					} else {
						TRACE("rejected HELLO from %s(%s): key agreement failed",id.address().toString().c_str(),_remoteAddress.toString().c_str());
					}
					return true;
				} else {
					// Identity is the same as the one we already have -- check packet integrity
					if (!dearmor(peer->key())) {
						TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
						return true;
					}
					// Continue at // VALID
				}
			} else {
				// We don't already have an identity with this address -- validate and learn it
				// Check identity proof of work
				if (!id.locallyValidate()) {
					TRACE("dropped HELLO from %s(%s): identity invalid",id.address().toString().c_str(),_remoteAddress.toString().c_str());
					return true;
				}
				// Check packet integrity and authentication
				SharedPtr newPeer(new Peer(RR,RR->identity,id));
				if (!dearmor(newPeer->key())) {
					TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_remoteAddress.toString().c_str());
					return true;
				}
				peer = RR->topology->addPeer(newPeer);
				// Continue at // VALID
			}
			// VALID -- if we made it here, packet passed identity and authenticity checks!
		}
		if (externalSurfaceAddress)
			RR->sa->iam(id.address(),_localAddress,_remoteAddress,externalSurfaceAddress,RR->topology->isRoot(id),RR->node->now());
		Packet outp(id.address(),RR->identity.address(),Packet::VERB_OK);
		outp.append((unsigned char)Packet::VERB_HELLO);
		outp.append((uint64_t)pid);
		outp.append((uint64_t)timestamp);
		outp.append((unsigned char)ZT_PROTO_VERSION);
		outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
		outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
		outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
		if (protoVersion >= 5) {
			_remoteAddress.serialize(outp);
		} else {
			/* LEGACY COMPATIBILITY HACK:
			 *
			 * For a while now (since 1.0.3), ZeroTier has recognized changes in
			 * its network environment empirically by examining its external network
			 * address as reported by trusted peers. In versions prior to 1.1.0
			 * (protocol version < 5), they did this by saving a snapshot of this
			 * information (in SelfAwareness.hpp) keyed by reporting device ID and
			 * address type.
			 *
			 * This causes problems when clustering is combined with symmetric NAT.
			 * Symmetric NAT remaps ports, so different endpoints in a cluster will
			 * report back different exterior addresses. Since the old code keys
			 * this by device ID and not sending physical address and compares the
			 * entire address including port, it constantly thinks its external
			 * surface is changing and resets connections when talking to a cluster.
			 *
			 * In new code we key by sending physical address and device and we also
			 * take the more conservative position of only interpreting changes in
			 * IP address (neglecting port) as a change in network topology that
			 * necessitates a reset. But we can make older clients work here by
			 * nulling out the port field. Since this info is only used for empirical
			 * detection of link changes, it doesn't break anything else.
			 */
			InetAddress tmpa(_remoteAddress);
			tmpa.setPort(0);
			tmpa.serialize(outp);
		}
		if ((worldId != ZT_WORLD_ID_NULL)&&(RR->topology->worldTimestamp() > worldTimestamp)&&(worldId == RR->topology->worldId())) {
			World w(RR->topology->world());
			const unsigned int sizeAt = outp.size();
			outp.addSize(2); // make room for 16-bit size field
			w.serialize(outp,false);
			outp.setAt(sizeAt,(uint16_t)(outp.size() - (sizeAt + 2)));
		} else {
			outp.append((uint16_t)0); // no world update needed
		}
		outp.armor(peer->key(),true);
		RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
		peer->setRemoteVersion(protoVersion,vMajor,vMinor,vRevision); // important for this to go first so received() knows the version
		peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_HELLO,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped HELLO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
		const uint64_t inRePacketId = at(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID);
		//TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
		switch(inReVerb) {
			case Packet::VERB_HELLO: {
				const unsigned int latency = std::min((unsigned int)(RR->node->now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff);
				const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION];
				const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION];
				const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION];
				const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION);
				if (vProto < ZT_PROTO_VERSION_MIN) {
					TRACE("%s(%s): OK(HELLO) dropped, protocol version too old",source().toString().c_str(),_remoteAddress.toString().c_str());
					return true;
				}
				const bool trusted = RR->topology->isRoot(peer->identity());
				InetAddress externalSurfaceAddress;
				unsigned int ptr = ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2;
				if (ptr < size()) // ZeroTier One < 1.0.3 did not include this field
					ptr += externalSurfaceAddress.deserialize(*this,ptr);
				if ((trusted)&&((ptr + 2) <= size())) { // older versions also did not include this field, and right now we only use if from a root
					World worldUpdate;
					const unsigned int worldLen = at(ptr); ptr += 2;
					if (worldLen > 0) {
						World w;
						w.deserialize(*this,ptr);
						RR->topology->worldUpdateIfValid(w);
					}
				}
				TRACE("%s(%s): OK(HELLO), version %u.%u.%u, latency %u, reported external address %s",source().toString().c_str(),_remoteAddress.toString().c_str(),vMajor,vMinor,vRevision,latency,((externalSurfaceAddress) ? externalSurfaceAddress.toString().c_str() : "(none)"));
				peer->addDirectLatencyMeasurment(latency);
				peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision);
				if (externalSurfaceAddress)
					RR->sa->iam(peer->address(),_localAddress,_remoteAddress,externalSurfaceAddress,trusted,RR->node->now());
			}	break;
			case Packet::VERB_WHOIS: {
				if (RR->topology->isRoot(peer->identity())) {
					const Identity id(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY);
					// Right now we can skip this since OK(WHOIS) is only accepted from
					// roots. In the future it should be done if we query less trusted
					// sources.
					//if (id.locallyValidate())
						RR->sw->doAnythingWaitingForPeer(RR->topology->addPeer(SharedPtr(new Peer(RR,RR->identity,id))));
				}
			} break;
			case Packet::VERB_NETWORK_CONFIG_REQUEST: {
				const SharedPtr nw(RR->node->network(at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_NETWORK_ID)));
				if ((nw)&&(nw->controller() == peer->address())) {
					const unsigned int dictlen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN);
					const std::string dict((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,dictlen),dictlen);
					if (dict.length()) {
						nw->setConfiguration(Dictionary(dict));
						TRACE("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str());
					}
				}
			}	break;
			//case Packet::VERB_ECHO: {
			//}	break;
			case Packet::VERB_MULTICAST_GATHER: {
				const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID);
				const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC,6),6),at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI));
				TRACE("%s(%s): OK(MULTICAST_GATHER) %.16llx/%s length %u",source().toString().c_str(),_remoteAddress.toString().c_str(),nwid,mg.toString().c_str(),size());
				const unsigned int count = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4);
				RR->mc->addMultiple(RR->node->now(),nwid,mg,field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6,count * 5),count,at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS));
			}	break;
			case Packet::VERB_MULTICAST_FRAME: {
				const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS];
				const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_NETWORK_ID);
				const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_MAC,6),6),at(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI));
				//TRACE("%s(%s): OK(MULTICAST_FRAME) %.16llx/%s flags %.2x",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),nwid,mg.toString().c_str(),flags);
				unsigned int offset = 0;
				if ((flags & 0x01) != 0) {
					// OK(MULTICAST_FRAME) includes certificate of membership update
					CertificateOfMembership com;
					offset += com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS);
					peer->validateAndSetNetworkMembershipCertificate(nwid,com);
				}
				if ((flags & 0x02) != 0) {
					// OK(MULTICAST_FRAME) includes implicit gather results
					offset += ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS;
					unsigned int totalKnown = at(offset); offset += 4;
					unsigned int count = at(offset); offset += 2;
					RR->mc->addMultiple(RR->node->now(),nwid,mg,field(offset,count * 5),count,totalKnown);
				}
			}	break;
			default: break;
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_OK,inRePacketId,inReVerb);
	} catch ( ... ) {
		TRACE("dropped OK from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		if (payloadLength() == ZT_ADDRESS_LENGTH) {
			Identity queried(RR->topology->getIdentity(Address(payload(),ZT_ADDRESS_LENGTH)));
			if (queried) {
				Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
				outp.append((unsigned char)Packet::VERB_WHOIS);
				outp.append(packetId());
				queried.serialize(outp,false);
				outp.armor(peer->key(),true);
				RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
			} else {
#ifdef ZT_ENABLE_CLUSTER
				if (RR->cluster)
					RR->cluster->sendDistributedQuery(*this);
#endif
			}
		} else {
			TRACE("dropped WHOIS from %s(%s): missing or invalid address",source().toString().c_str(),_remoteAddress.toString().c_str());
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_WHOIS,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped WHOIS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		if (RR->topology->isUpstream(peer->identity())) {
			const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
			const SharedPtr withPeer(RR->topology->getPeer(with));
			if (withPeer) {
				const unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
				const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
				if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
					peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_RENDEZVOUS,0,Packet::VERB_NOP);
					InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
					TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",peer->address().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str());
					if (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,atAddr))
						RR->sw->rendezvous(withPeer,_localAddress,atAddr);
				} else {
					TRACE("dropped corrupt RENDEZVOUS from %s(%s) (bad address or port)",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
				}
			} else {
				RR->sw->requestWhois(with);
				TRACE("ignored RENDEZVOUS from %s(%s) to meet unknown peer %s",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),with.toString().c_str());
			}
		} else {
			TRACE("ignored RENDEZVOUS from %s(%s): not a root server or a network relay",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
		}
	} catch ( ... ) {
		TRACE("dropped RENDEZVOUS from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doFRAME(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)));
		if (network) {
			if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
				if (!network->isAllowed(peer)) {
					TRACE("dropped FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id());
					_sendErrorNeedCertificate(RR,peer,network->id());
					return true;
				}
				const unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
				if (!network->config()->permitsEtherType(etherType)) {
					TRACE("dropped FRAME from %s(%s): ethertype %.4x not allowed on %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned int)etherType,(unsigned long long)network->id());
					return true;
				}
				const unsigned int payloadLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
				RR->node->putFrame(network->id(),network->userPtr(),MAC(peer->address(),network->id()),network->mac(),etherType,0,field(ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,payloadLen),payloadLen);
			}
			peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_FRAME,0,Packet::VERB_NOP);
		} else {
			TRACE("dropped FRAME from %s(%s): we are not connected to network %.16llx",source().toString().c_str(),_remoteAddress.toString().c_str(),at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
		}
	} catch ( ... ) {
		TRACE("dropped FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID)));
		if (network) {
			if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
				const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS];
				unsigned int comLen = 0;
				if ((flags & 0x01) != 0) {
					CertificateOfMembership com;
					comLen = com.deserialize(*this,ZT_PROTO_VERB_EXT_FRAME_IDX_COM);
					peer->validateAndSetNetworkMembershipCertificate(network->id(),com);
				}
				if (!network->isAllowed(peer)) {
					TRACE("dropped EXT_FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),network->id());
					_sendErrorNeedCertificate(RR,peer,network->id());
					return true;
				}
				// Everything after flags must be adjusted based on the length
				// of the certificate, if there was one...
				const unsigned int etherType = at(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE);
				if (!network->config()->permitsEtherType(etherType)) {
					TRACE("dropped EXT_FRAME from %s(%s): ethertype %.4x not allowed on network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned int)etherType,(unsigned long long)network->id());
					return true;
				}
				const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO,ZT_PROTO_VERB_EXT_FRAME_LEN_TO),ZT_PROTO_VERB_EXT_FRAME_LEN_TO);
				const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM,ZT_PROTO_VERB_EXT_FRAME_LEN_FROM),ZT_PROTO_VERB_EXT_FRAME_LEN_FROM);
				if (to.isMulticast()) {
					TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: destination is multicast, must use MULTICAST_FRAME",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
					return true;
				}
				if ((!from)||(from.isMulticast())||(from == network->mac())) {
					TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: invalid source MAC",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
					return true;
				}
				if (from != MAC(peer->address(),network->id())) {
					if (network->permitsBridging(peer->address())) {
						network->learnBridgeRoute(from,peer->address());
					} else {
						TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: sender not allowed to bridge into %.16llx",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
						return true;
					}
				} else if (to != network->mac()) {
					if (!network->permitsBridging(RR->identity.address())) {
						TRACE("dropped EXT_FRAME from %s@%s(%s) to %s: I cannot bridge to %.16llx or bridging disabled on network",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
						return true;
					}
				}
				const unsigned int payloadLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD);
				RR->node->putFrame(network->id(),network->userPtr(),from,to,etherType,0,field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD,payloadLen),payloadLen);
			}
			peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP);
		} else {
			TRACE("dropped EXT_FRAME from %s(%s): we are not connected to network %.16llx",source().toString().c_str(),_remoteAddress.toString().c_str(),at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
		}
	} catch ( ... ) {
		TRACE("dropped EXT_FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doECHO(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t pid = packetId();
		Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
		outp.append((unsigned char)Packet::VERB_ECHO);
		outp.append((uint64_t)pid);
		if (size() > ZT_PACKET_IDX_PAYLOAD)
			outp.append(reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD,size() - ZT_PACKET_IDX_PAYLOAD);
		outp.armor(peer->key(),true);
		RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
		peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_ECHO,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped ECHO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t now = RR->node->now();
		// Iterate through 18-byte network,MAC,ADI tuples
		for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;ptr(ptr);
			const MulticastGroup group(MAC(field(ptr + 8,6),6),at(ptr + 14));
			RR->mc->add(now,nwid,group,peer->address());
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_LIKE,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doNETWORK_MEMBERSHIP_CERTIFICATE(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		CertificateOfMembership com;
		unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
		while (ptr < size()) {
			ptr += com.deserialize(*this,ptr);
			peer->validateAndSetNetworkMembershipCertificate(com.networkId(),com);
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped NETWORK_MEMBERSHIP_CERTIFICATE from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
		const unsigned int metaDataLength = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN);
		const Dictionary metaData((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength),metaDataLength);
		//const uint64_t haveRevision = ((ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT + metaDataLength + 8) <= size()) ? at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT + metaDataLength) : 0ULL;
		const unsigned int h = hops();
		const uint64_t pid = packetId();
		peer->received(_localAddress,_remoteAddress,h,pid,Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP);
		if (RR->localNetworkController) {
			Dictionary netconf;
			switch(RR->localNetworkController->doNetworkConfigRequest((h > 0) ? InetAddress() : _remoteAddress,RR->identity,peer->identity(),nwid,metaData,netconf)) {
				case NetworkController::NETCONF_QUERY_OK: {
					const std::string netconfStr(netconf.toString());
					if (netconfStr.length() > 0xffff) { // sanity check since field ix 16-bit
						TRACE("NETWORK_CONFIG_REQUEST failed: internal error: netconf size %u is too large",(unsigned int)netconfStr.length());
					} else {
						Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
						outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
						outp.append(pid);
						outp.append(nwid);
						outp.append((uint16_t)netconfStr.length());
						outp.append(netconfStr.data(),(unsigned int)netconfStr.length());
						outp.compress();
						outp.armor(peer->key(),true);
						if (outp.size() > ZT_PROTO_MAX_PACKET_LENGTH) { // sanity check
							TRACE("NETWORK_CONFIG_REQUEST failed: internal error: netconf size %u is too large",(unsigned int)netconfStr.length());
						} else {
							RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
						}
					}
				}	break;
				case NetworkController::NETCONF_QUERY_OBJECT_NOT_FOUND: {
					Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
					outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
					outp.append(pid);
					outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
					outp.append(nwid);
					outp.armor(peer->key(),true);
					RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
				}	break;
				case NetworkController::NETCONF_QUERY_ACCESS_DENIED: {
					Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
					outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
					outp.append(pid);
					outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
					outp.append(nwid);
					outp.armor(peer->key(),true);
					RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
				} break;
				case NetworkController::NETCONF_QUERY_INTERNAL_SERVER_ERROR:
					TRACE("NETWORK_CONFIG_REQUEST failed: internal error: %s",netconf.get("error","(unknown)").c_str());
					break;
				case NetworkController::NETCONF_QUERY_IGNORE:
					break;
				default:
					TRACE("NETWORK_CONFIG_REQUEST failed: invalid return value from NetworkController::doNetworkConfigRequest()");
					break;
			}
		} else {
			Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
			outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
			outp.append(pid);
			outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
			outp.append(nwid);
			outp.armor(peer->key(),true);
			RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
		}
	} catch ( ... ) {
		TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REFRESH(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
		while ((ptr + 8) <= size()) {
			uint64_t nwid = at(ptr);
			SharedPtr nw(RR->node->network(nwid));
			if ((nw)&&(peer->address() == nw->controller()))
				nw->requestConfiguration();
			ptr += 8;
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_NETWORK_CONFIG_REFRESH,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
		const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
		const unsigned int gatherLimit = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
		//TRACE("<address(),RR->identity.address(),Packet::VERB_OK);
			outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
			outp.append(packetId());
			outp.append(nwid);
			mg.mac().appendTo(outp);
			outp.append((uint32_t)mg.adi());
			const unsigned int gatheredLocally = RR->mc->gather(peer->address(),nwid,mg,outp,gatherLimit);
			if (gatheredLocally) {
				outp.armor(peer->key(),true);
				RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
			}
#ifdef ZT_ENABLE_CLUSTER
			if ((RR->cluster)&&(gatheredLocally < gatherLimit))
				RR->cluster->sendDistributedQuery(*this);
#endif
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_GATHER,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped MULTICAST_GATHER from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID);
		const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FLAGS];
		const SharedPtr network(RR->node->network(nwid));
		if (network) {
			// Offset -- size of optional fields added to position of later fields
			unsigned int offset = 0;
			if ((flags & 0x01) != 0) {
				CertificateOfMembership com;
				offset += com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_FRAME_IDX_COM);
				peer->validateAndSetNetworkMembershipCertificate(nwid,com);
			}
			// Check membership after we've read any included COM, since
			// that cert might be what we needed.
			if (!network->isAllowed(peer)) {
				TRACE("dropped MULTICAST_FRAME from %s(%s): not a member of private network %.16llx",peer->address().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id());
				_sendErrorNeedCertificate(RR,peer,network->id());
				return true;
			}
			unsigned int gatherLimit = 0;
			if ((flags & 0x02) != 0) {
				gatherLimit = at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_GATHER_LIMIT);
				offset += 4;
			}
			MAC from;
			if ((flags & 0x04) != 0) {
				from.setTo(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC,6),6);
				offset += 6;
			} else {
				from.fromAddress(peer->address(),nwid);
			}
			const MulticastGroup to(MAC(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_MAC,6),6),at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_ADI));
			const unsigned int etherType = at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
			const unsigned int payloadLen = size() - (offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME);
			//TRACE("<address().toString().c_str(),flags,payloadLen);
			if ((payloadLen > 0)&&(payloadLen <= ZT_IF_MTU)) {
				if (!to.mac().isMulticast()) {
					TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: destination is unicast, must use FRAME or EXT_FRAME",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
					return true;
				}
				if ((!from)||(from.isMulticast())||(from == network->mac())) {
					TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: invalid source MAC",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str());
					return true;
				}
				if (from != MAC(peer->address(),network->id())) {
					if (network->permitsBridging(peer->address())) {
						network->learnBridgeRoute(from,peer->address());
					} else {
						TRACE("dropped MULTICAST_FRAME from %s@%s(%s) to %s: sender not allowed to bridge into %.16llx",from.toString().c_str(),peer->address().toString().c_str(),_remoteAddress.toString().c_str(),to.toString().c_str(),network->id());
						return true;
					}
				}
				RR->node->putFrame(network->id(),network->userPtr(),from,to.mac(),etherType,0,field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME,payloadLen),payloadLen);
			}
			if (gatherLimit) {
				Packet outp(source(),RR->identity.address(),Packet::VERB_OK);
				outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME);
				outp.append(packetId());
				outp.append(nwid);
				to.mac().appendTo(outp);
				outp.append((uint32_t)to.adi());
				outp.append((unsigned char)0x02); // flag 0x02 = contains gather results
				if (RR->mc->gather(peer->address(),nwid,to,outp,gatherLimit)) {
					outp.armor(peer->key(),true);
					RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
				}
			}
		} // else ignore -- not a member of this network
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const uint64_t now = RR->node->now();
		// First, subject this to a rate limit
		if (!peer->shouldRespondToDirectPathPush(now)) {
			TRACE("dropped PUSH_DIRECT_PATHS from %s(%s): circuit breaker tripped",source().toString().c_str(),_remoteAddress.toString().c_str());
			return true;
		}
		// Second, limit addresses by scope and type
		uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE+1][2]; // [][0] is v4, [][1] is v6
		memset(countPerScope,0,sizeof(countPerScope));
		unsigned int count = at(ZT_PACKET_IDX_PAYLOAD);
		unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2;
		while (count--) { // if ptr overflows Buffer will throw
			// TODO: some flags are not yet implemented
			unsigned int flags = (*this)[ptr++];
			unsigned int extLen = at(ptr); ptr += 2;
			ptr += extLen; // unused right now
			unsigned int addrType = (*this)[ptr++];
			unsigned int addrLen = (*this)[ptr++];
			switch(addrType) {
				case 4: {
					InetAddress a(field(ptr,4),4,at(ptr + 4));
					if ( ((flags & 0x01) == 0) && (Path::isAddressValidForPath(a)) && (!peer->hasActivePathTo(now,a)) && (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,a)) ) {
						if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
							TRACE("attempting to contact %s at pushed direct path %s",peer->address().toString().c_str(),a.toString().c_str());
							peer->sendHELLO(_localAddress,a,now);
						} else {
							TRACE("ignoring contact for %s at %s -- too many per scope",peer->address().toString().c_str(),a.toString().c_str());
						}
					}
				}	break;
				case 6: {
					InetAddress a(field(ptr,16),16,at(ptr + 16));
					if ( ((flags & 0x01) == 0) && (Path::isAddressValidForPath(a)) && (!peer->hasActivePathTo(now,a)) && (RR->node->shouldUsePathForZeroTierTraffic(_localAddress,a)) ) {
						if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
							TRACE("attempting to contact %s at pushed direct path %s",peer->address().toString().c_str(),a.toString().c_str());
							peer->sendHELLO(_localAddress,a,now);
						} else {
							TRACE("ignoring contact for %s at %s -- too many per scope",peer->address().toString().c_str(),a.toString().c_str());
						}
					}
				}	break;
			}
			ptr += addrLen;
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped PUSH_DIRECT_PATHS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doCIRCUIT_TEST(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		const Address originatorAddress(field(ZT_PACKET_IDX_PAYLOAD,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
		SharedPtr originator(RR->topology->getPeer(originatorAddress));
		if (!originator) {
			RR->sw->requestWhois(originatorAddress);
			return false;
		}
		const unsigned int flags = at(ZT_PACKET_IDX_PAYLOAD + 5);
		const uint64_t timestamp = at(ZT_PACKET_IDX_PAYLOAD + 7);
		const uint64_t testId = at(ZT_PACKET_IDX_PAYLOAD + 15);
		// Tracks total length of variable length fields, initialized to originator credential length below
		unsigned int vlf;
		// Originator credentials
		const unsigned int originatorCredentialLength = vlf = at(ZT_PACKET_IDX_PAYLOAD + 23);
		uint64_t originatorCredentialNetworkId = 0;
		if (originatorCredentialLength >= 1) {
			switch((*this)[ZT_PACKET_IDX_PAYLOAD + 25]) {
				case 0x01: { // 64-bit network ID, originator must be controller
					if (originatorCredentialLength >= 9)
						originatorCredentialNetworkId = at(ZT_PACKET_IDX_PAYLOAD + 26);
				}	break;
				default: break;
			}
		}
		// Add length of "additional fields," which are currently unused
		vlf += at(ZT_PACKET_IDX_PAYLOAD + 25 + vlf);
		// Verify signature -- only tests signed by their originators are allowed
		const unsigned int signatureLength = at(ZT_PACKET_IDX_PAYLOAD + 27 + vlf);
		if (!originator->identity().verify(field(ZT_PACKET_IDX_PAYLOAD,27 + vlf),27 + vlf,field(ZT_PACKET_IDX_PAYLOAD + 29 + vlf,signatureLength),signatureLength)) {
			TRACE("dropped CIRCUIT_TEST from %s(%s): signature by originator %s invalid",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str());
			return true;
		}
		vlf += signatureLength;
		// Save this length so we can copy the immutable parts of this test
		// into the one we send along to next hops.
		const unsigned int lengthOfSignedPortionAndSignature = 29 + vlf;
		// Get previous hop's credential, if any
		const unsigned int previousHopCredentialLength = at(ZT_PACKET_IDX_PAYLOAD + 29 + vlf);
		CertificateOfMembership previousHopCom;
		if (previousHopCredentialLength >= 1) {
			switch((*this)[ZT_PACKET_IDX_PAYLOAD + 31 + vlf]) {
				case 0x01: { // network certificate of membership for previous hop
					if (previousHopCom.deserialize(*this,ZT_PACKET_IDX_PAYLOAD + 32 + vlf) != (previousHopCredentialLength - 1)) {
						TRACE("dropped CIRCUIT_TEST from %s(%s): previous hop COM invalid",source().toString().c_str(),_remoteAddress.toString().c_str());
						return true;
					}
				}	break;
				default: break;
			}
		}
		vlf += previousHopCredentialLength;
		// Check credentials (signature already verified)
		SharedPtr originatorCredentialNetworkConfig;
		if (originatorCredentialNetworkId) {
			if (Network::controllerFor(originatorCredentialNetworkId) == originatorAddress) {
				SharedPtr nw(RR->node->network(originatorCredentialNetworkId));
				if (nw) {
					originatorCredentialNetworkConfig = nw->config2();
					if ( (originatorCredentialNetworkConfig) && ((originatorCredentialNetworkConfig->isPublic())||(peer->address() == originatorAddress)||((originatorCredentialNetworkConfig->com())&&(previousHopCom)&&(originatorCredentialNetworkConfig->com().agreesWith(previousHopCom)))) ) {
						TRACE("CIRCUIT_TEST %.16llx received from hop %s(%s) and originator %s with valid network ID credential %.16llx (verified from originator and next hop)",testId,source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str(),originatorCredentialNetworkId);
					} else {
						TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s specified network ID %.16llx as credential, and previous hop %s did not supply a valid COM",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str(),originatorCredentialNetworkId,peer->address().toString().c_str());
						return true;
					}
				} else {
					TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s specified network ID %.16llx as credential, and we are not a member",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str(),originatorCredentialNetworkId);
					return true;
				}
			} else {
				TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s specified network ID as credential, is not controller for %.16llx",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str(),originatorCredentialNetworkId);
				return true;
			}
		} else {
			TRACE("dropped CIRCUIT_TEST from %s(%s): originator %s did not specify a credential or credential type",source().toString().c_str(),_remoteAddress.toString().c_str(),originatorAddress.toString().c_str());
			return true;
		}
		const uint64_t now = RR->node->now();
		unsigned int breadth = 0;
		Address nextHop[256]; // breadth is a uin8_t, so this is the max
		InetAddress nextHopBestPathAddress[256];
		unsigned int remainingHopsPtr = ZT_PACKET_IDX_PAYLOAD + 33 + vlf;
		if ((ZT_PACKET_IDX_PAYLOAD + 31 + vlf) < size()) {
			// unsigned int nextHopFlags = (*this)[ZT_PACKET_IDX_PAYLOAD + 31 + vlf]
			breadth = (*this)[ZT_PACKET_IDX_PAYLOAD + 32 + vlf];
			for(unsigned int h=0;h nhp(RR->topology->getPeer(nextHop[h]));
				if (nhp) {
					Path *const rp = nhp->getBestPath(now);
					if (rp)
						nextHopBestPathAddress[h] = rp->address();
				}
			}
		}
		// Report back to originator, depending on flags and whether we are last hop
		if ( ((flags & 0x01) != 0) || ((breadth == 0)&&((flags & 0x02) != 0)) ) {
			Packet outp(originatorAddress,RR->identity.address(),Packet::VERB_CIRCUIT_TEST_REPORT);
			outp.append((uint64_t)timestamp);
			outp.append((uint64_t)testId);
			outp.append((uint64_t)now);
			outp.append((uint8_t)ZT_VENDOR_ZEROTIER);
			outp.append((uint8_t)ZT_PROTO_VERSION);
			outp.append((uint8_t)ZEROTIER_ONE_VERSION_MAJOR);
			outp.append((uint8_t)ZEROTIER_ONE_VERSION_MINOR);
			outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
			outp.append((uint16_t)ZT_PLATFORM_UNSPECIFIED);
			outp.append((uint16_t)ZT_ARCHITECTURE_UNSPECIFIED);
			outp.append((uint16_t)0); // error code, currently unused
			outp.append((uint64_t)0); // flags, currently unused
			outp.append((uint64_t)packetId());
			peer->address().appendTo(outp);
			outp.append((uint8_t)hops());
			_localAddress.serialize(outp);
			_remoteAddress.serialize(outp);
			outp.append((uint16_t)0); // no additional fields
			outp.append((uint8_t)breadth);
			for(unsigned int h=0;hsw->send(outp,true,0);
		}
		// If there are next hops, forward the test along through the graph
		if (breadth > 0) {
			Packet outp(Address(),RR->identity.address(),Packet::VERB_CIRCUIT_TEST);
			outp.append(field(ZT_PACKET_IDX_PAYLOAD,lengthOfSignedPortionAndSignature),lengthOfSignedPortionAndSignature);
			const unsigned int previousHopCredentialPos = outp.size();
			outp.append((uint16_t)0); // no previous hop credentials: default
			if ((originatorCredentialNetworkConfig)&&(!originatorCredentialNetworkConfig->isPublic())&&(originatorCredentialNetworkConfig->com())) {
				outp.append((uint8_t)0x01); // COM
				originatorCredentialNetworkConfig->com().serialize(outp);
				outp.setAt(previousHopCredentialPos,(uint16_t)(size() - previousHopCredentialPos));
			}
			if (remainingHopsPtr < size())
				outp.append(field(remainingHopsPtr,size() - remainingHopsPtr),size() - remainingHopsPtr);
			for(unsigned int h=0;hidentity.address() != nextHop[h]) { // next hops that loop back to the current hop are not valid
					outp.newInitializationVector();
					outp.setDestination(nextHop[h]);
					RR->sw->send(outp,true,originatorCredentialNetworkId);
				}
			}
		}
		peer->received(_localAddress,_remoteAddress,hops(),packetId(),Packet::VERB_CIRCUIT_TEST,0,Packet::VERB_NOP);
	} catch ( ... ) {
		TRACE("dropped CIRCUIT_TEST from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doCIRCUIT_TEST_REPORT(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		ZT_CircuitTestReport report;
		memset(&report,0,sizeof(report));
		report.current = peer->address().toInt();
		report.upstream = Address(field(ZT_PACKET_IDX_PAYLOAD + 52,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
		report.testId = at(ZT_PACKET_IDX_PAYLOAD + 8);
		report.timestamp = at(ZT_PACKET_IDX_PAYLOAD);
		report.remoteTimestamp = at(ZT_PACKET_IDX_PAYLOAD + 16);
		report.sourcePacketId = at(ZT_PACKET_IDX_PAYLOAD + 44);
		report.flags = at(ZT_PACKET_IDX_PAYLOAD + 36);
		report.sourcePacketHopCount = (*this)[ZT_PACKET_IDX_PAYLOAD + 57]; // end of fixed length headers: 58
		report.errorCode = at(ZT_PACKET_IDX_PAYLOAD + 34);
		report.vendor = (enum ZT_Vendor)((*this)[ZT_PACKET_IDX_PAYLOAD + 24]);
		report.protocolVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 25];
		report.majorVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 26];
		report.minorVersion = (*this)[ZT_PACKET_IDX_PAYLOAD + 27];
		report.revision = at(ZT_PACKET_IDX_PAYLOAD + 28);
		report.platform = (enum ZT_Platform)at(ZT_PACKET_IDX_PAYLOAD + 30);
		report.architecture = (enum ZT_Architecture)at(ZT_PACKET_IDX_PAYLOAD + 32);
		const unsigned int receivedOnLocalAddressLen = reinterpret_cast(&(report.receivedOnLocalAddress))->deserialize(*this,ZT_PACKET_IDX_PAYLOAD + 58);
		const unsigned int receivedFromRemoteAddressLen = reinterpret_cast(&(report.receivedFromRemoteAddress))->deserialize(*this,ZT_PACKET_IDX_PAYLOAD + 58 + receivedOnLocalAddressLen);
		unsigned int nhptr = ZT_PACKET_IDX_PAYLOAD + 58 + receivedOnLocalAddressLen + receivedFromRemoteAddressLen;
		nhptr += at(nhptr) + 2; // add "additional field" length, which right now will be zero
		report.nextHopCount = (*this)[nhptr++];
		if (report.nextHopCount > ZT_CIRCUIT_TEST_MAX_HOP_BREADTH) // sanity check, shouldn't be possible
			report.nextHopCount = ZT_CIRCUIT_TEST_MAX_HOP_BREADTH;
		for(unsigned int h=0;h(&(report.nextHops[h].physicalAddress))->deserialize(*this,nhptr);
		}
		RR->node->postCircuitTestReport(&report);
	} catch ( ... ) {
		TRACE("dropped CIRCUIT_TEST_REPORT from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
bool IncomingPacket::_doREQUEST_PROOF_OF_WORK(const RuntimeEnvironment *RR,const SharedPtr &peer)
{
	try {
		// Right now this is only allowed from root servers -- may be allowed from controllers and relays later.
		if (RR->topology->isRoot(peer->identity())) {
			const uint64_t pid = packetId();
			const unsigned int difficulty = (*this)[ZT_PACKET_IDX_PAYLOAD + 1];
			const unsigned int challengeLength = at(ZT_PACKET_IDX_PAYLOAD + 2);
			if (challengeLength > ZT_PROTO_MAX_PACKET_LENGTH)
				return true; // sanity check, drop invalid size
			const unsigned char *challenge = field(ZT_PACKET_IDX_PAYLOAD + 4,challengeLength);
			switch((*this)[ZT_PACKET_IDX_PAYLOAD]) {
				// Salsa20/12+SHA512 hashcash
				case 0x01: {
					if (difficulty <= 14) {
						unsigned char result[16];
						computeSalsa2012Sha512ProofOfWork(difficulty,challenge,challengeLength,result);
						TRACE("PROOF_OF_WORK computed for %s: difficulty==%u, challengeLength==%u, result: %.16llx%.16llx",peer->address().toString().c_str(),difficulty,challengeLength,Utils::ntoh(*(reinterpret_cast(result))),Utils::ntoh(*(reinterpret_cast(result + 8))));
						Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
						outp.append((unsigned char)Packet::VERB_REQUEST_PROOF_OF_WORK);
						outp.append(pid);
						outp.append((uint16_t)sizeof(result));
						outp.append(result,sizeof(result));
						outp.armor(peer->key(),true);
						RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
					} else {
						Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR);
						outp.append((unsigned char)Packet::VERB_REQUEST_PROOF_OF_WORK);
						outp.append(pid);
						outp.append((unsigned char)Packet::ERROR_INVALID_REQUEST);
						outp.armor(peer->key(),true);
						RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
					}
				}	break;
				default:
					TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): unrecognized proof of work type",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
					break;
			}
			peer->received(_localAddress,_remoteAddress,hops(),pid,Packet::VERB_REQUEST_PROOF_OF_WORK,0,Packet::VERB_NOP);
		} else {
			TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): not trusted enough",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
		}
	} catch ( ... ) {
		TRACE("dropped REQUEST_PROOF_OF_WORK from %s(%s): unexpected exception",peer->address().toString().c_str(),_remoteAddress.toString().c_str());
	}
	return true;
}
void IncomingPacket::computeSalsa2012Sha512ProofOfWork(unsigned int difficulty,const void *challenge,unsigned int challengeLength,unsigned char result[16])
{
	unsigned char salsabuf[131072]; // 131072 == protocol constant, size of memory buffer for this proof of work function
	char candidatebuf[ZT_PROTO_MAX_PACKET_LENGTH + 256];
	unsigned char shabuf[ZT_SHA512_DIGEST_LEN];
	const uint64_t s20iv = 0; // zero IV for Salsa20
	char *const candidate = (char *)(( ((uintptr_t)&(candidatebuf[0])) | 0xf ) + 1); // align to 16-byte boundary to ensure that uint64_t type punning of initial nonce is okay
	Salsa20 s20;
	unsigned int d;
	unsigned char *p;
	Utils::getSecureRandom(candidate,16);
	memcpy(candidate + 16,challenge,challengeLength);
	if (difficulty > 512)
		difficulty = 512; // sanity check
try_salsa2012sha512_again:
	++*(reinterpret_cast(candidate));
	SHA512::hash(shabuf,candidate,16 + challengeLength);
	s20.init(shabuf,256,&s20iv);
	memset(salsabuf,0,sizeof(salsabuf));
	s20.encrypt12(salsabuf,salsabuf,sizeof(salsabuf));
	SHA512::hash(shabuf,salsabuf,sizeof(salsabuf));
	d = difficulty;
	p = shabuf;
	while (d >= 8) {
		if (*(p++))
			goto try_salsa2012sha512_again;
		d -= 8;
	}
	if (d > 0) {
		if ( ((((unsigned int)*p) << d) & 0xff00) != 0 )
			goto try_salsa2012sha512_again;
	}
	memcpy(result,candidate,16);
}
bool IncomingPacket::testSalsa2012Sha512ProofOfWorkResult(unsigned int difficulty,const void *challenge,unsigned int challengeLength,const unsigned char proposedResult[16])
{
	unsigned char salsabuf[131072]; // 131072 == protocol constant, size of memory buffer for this proof of work function
	char candidate[ZT_PROTO_MAX_PACKET_LENGTH + 256];
	unsigned char shabuf[ZT_SHA512_DIGEST_LEN];
	const uint64_t s20iv = 0; // zero IV for Salsa20
	Salsa20 s20;
	unsigned int d;
	unsigned char *p;
	if (difficulty > 512)
		difficulty = 512; // sanity check
	memcpy(candidate,proposedResult,16);
	memcpy(candidate + 16,challenge,challengeLength);
	SHA512::hash(shabuf,candidate,16 + challengeLength);
	s20.init(shabuf,256,&s20iv);
	memset(salsabuf,0,sizeof(salsabuf));
	s20.encrypt12(salsabuf,salsabuf,sizeof(salsabuf));
	SHA512::hash(shabuf,salsabuf,sizeof(salsabuf));
	d = difficulty;
	p = shabuf;
	while (d >= 8) {
		if (*(p++))
			return false;
		d -= 8;
	}
	if (d > 0) {
		if ( ((((unsigned int)*p) << d) & 0xff00) != 0 )
			return false;
	}
	return true;
}
void IncomingPacket::_sendErrorNeedCertificate(const RuntimeEnvironment *RR,const SharedPtr &peer,uint64_t nwid)
{
	Packet outp(source(),RR->identity.address(),Packet::VERB_ERROR);
	outp.append((unsigned char)verb());
	outp.append(packetId());
	outp.append((unsigned char)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE);
	outp.append(nwid);
	outp.armor(peer->key(),true);
	RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
}
} // namespace ZeroTier