| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 | /* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015  ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program.  If not, see <http://www.gnu.org/licenses/>. * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <time.h>#include <stdint.h>#include <unistd.h>#include <signal.h>#include <map>#include <set>#include <string>#include <algorithm>#include <vector>#include "../osdep/Phy.hpp"#define ZT_TCP_PROXY_UDP_POOL_SIZE 1024#define ZT_TCP_PROXY_UDP_POOL_START_PORT 10000#define ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS 300using namespace ZeroTier;/* * ZeroTier TCP Proxy Server * * This implements a simple packet encapsulation that is designed to look like * a TLS connection. It's not a TLS connection, but it sends TLS format record * headers. It could be extended in the future to implement a fake TLS * handshake. * * At the moment, each packet is just made to look like TLS application data: *   <[1] TLS content type> - currently 0x17 for "application data" *   <[1] TLS major version> - currently 0x03 for TLS 1.2 *   <[1] TLS minor version> - currently 0x03 for TLS 1.2 *   <[2] payload length> - 16-bit length of payload in bytes *   <[...] payload> - Message payload * * TCP is inherently inefficient for encapsulating Ethernet, since TCP and TCP * like protocols over TCP lead to double-ACKs. So this transport is only used * to enable access when UDP or other datagram protocols are not available. * * Clients send a greeting, which is a four-byte message that contains: *   <[1] ZeroTier major version> *   <[1] minor version> *   <[2] revision> * * If a client has sent a greeting, it uses the new version of this protocol * in which every encapsulated ZT packet is prepended by an IP address where * it should be forwarded (or where it came from for replies). This causes * this proxy to act as a remote UDP socket similar to a socks proxy, which * will allow us to move this function off the supernodes and onto dedicated * proxy nodes. * * Older ZT clients that do not send this message get their packets relayed * to/from 127.0.0.1:9993, which will allow them to talk to and relay via * the ZT node on the same machine as the proxy. We'll only support this for * as long as such nodes appear to be in the wild. */struct TcpProxyService;struct TcpProxyService{	Phy<TcpProxyService *> *phy;	PhySocket *udpPool[ZT_TCP_PROXY_UDP_POOL_SIZE];	struct Client	{		char tcpReadBuf[131072];		char tcpWriteBuf[131072];		unsigned long tcpWritePtr;		unsigned long tcpReadPtr;		PhySocket *tcp;		PhySocket *assignedUdp;		time_t lastActivity;		bool newVersion;	};	std::map< PhySocket *,Client > clients;	struct ReverseMappingKey	{		uint64_t sourceZTAddress;		PhySocket *sendingUdpSocket;		uint32_t destIp;		unsigned int destPort;		ReverseMappingKey() {}		ReverseMappingKey(uint64_t zt,PhySocket *s,uint32_t ip,unsigned int port) : sourceZTAddress(zt),sendingUdpSocket(s),destIp(ip),destPort(port) {}		inline bool operator<(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) < 0); }		inline bool operator==(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) == 0); }	};	std::map< ReverseMappingKey,Client * > reverseMappings;	void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)	{		if ((from->sa_family == AF_INET)&&(len > 16)&&(len < 2048)) {			const uint64_t destZt = (				(((uint64_t)(((const unsigned char *)data)[8])) << 32) |				(((uint64_t)(((const unsigned char *)data)[9])) << 24) |				(((uint64_t)(((const unsigned char *)data)[10])) << 16) |				(((uint64_t)(((const unsigned char *)data)[11])) << 8) |				((uint64_t)(((const unsigned char *)data)[12])) );			const uint32_t fromIp = ((const struct sockaddr_in *)from)->sin_addr.s_addr;			const unsigned int fromPort = ntohs(((const struct sockaddr_in *)from)->sin_port);			std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.find(ReverseMappingKey(destZt,sock,fromIp,fromPort)));			if (rm != reverseMappings.end()) {				Client &c = *(rm->second);				unsigned long mlen = len;				if (c.newVersion)					mlen += 7; // new clients get IP info				if ((c.tcpWritePtr + 5 + mlen) <= sizeof(c.tcpWriteBuf)) {					if (!c.tcpWritePtr)						phy->tcpSetNotifyWritable(c.tcp,true);					c.tcpWriteBuf[c.tcpWritePtr++] = 0x17; // look like TLS data					c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2					c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2					c.tcpWriteBuf[c.tcpWritePtr++] = (char)((mlen >> 8) & 0xff);					c.tcpWriteBuf[c.tcpWritePtr++] = (char)(mlen & 0xff);					if (c.newVersion) {						c.tcpWriteBuf[c.tcpWritePtr++] = (char)4; // IPv4						*((uint32_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = fromIp;						c.tcpWritePtr += 4;						c.tcpWriteBuf[c.tcpWritePtr++] = (char)((fromPort >> 8) & 0xff);						c.tcpWriteBuf[c.tcpWritePtr++] = (char)(fromPort & 0xff);					}					for(unsigned long i=0;i<len;++i)						c.tcpWriteBuf[c.tcpWritePtr++] = ((const char *)data)[i];				}			}		}	}	void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)	{		// unused, we don't initiate	}	void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)	{		Client &c = clients[sockN];		c.tcpWritePtr = 0;		c.tcpReadPtr = 0;		c.tcp = sockN;		c.assignedUdp = udpPool[rand() % ZT_TCP_PROXY_UDP_POOL_SIZE];		c.lastActivity = time((time_t *)0);		c.newVersion = false;		*uptrN = (void *)&c;	}	void phyOnTcpClose(PhySocket *sock,void **uptr)	{		for(std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.begin());rm!=reverseMappings.end();) {			if (rm->second == (Client *)*uptr)				reverseMappings.erase(rm++);			else ++rm;		}		clients.erase(sock);	}	void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)	{		Client &c = *((Client *)*uptr);		c.lastActivity = time((time_t *)0);		for(unsigned long i=0;i<len;++i) {			if (c.tcpReadPtr >= sizeof(c.tcpReadBuf)) {				phy->close(sock);				return;			}			c.tcpReadBuf[c.tcpReadPtr++] = ((const char *)data)[i];			if (c.tcpReadPtr >= 5) {				unsigned long mlen = ( ((((unsigned long)c.tcpReadBuf[3]) & 0xff) << 8) | (((unsigned long)c.tcpReadBuf[4]) & 0xff) );				if (c.tcpReadPtr >= (mlen + 5)) {					if (mlen == 4) {						// Right now just sending this means the client is 'new enough' for the IP header						c.newVersion = true;					} else if (mlen >= 7) {						char *payload = c.tcpReadBuf + 5;						unsigned long payloadLen = mlen;						struct sockaddr_in dest;						memset(&dest,0,sizeof(dest));						if (c.newVersion) {							if (*payload == (char)4) {								// New clients tell us where their packets go.								++payload;								dest.sin_family = AF_INET;								dest.sin_addr.s_addr = *((uint32_t *)payload);								payload += 4;								dest.sin_port = *((uint16_t *)payload); // will be in network byte order already								payload += 2;								payloadLen -= 7;							}						} else {							// For old clients we will just proxy everything to a local ZT instance. The							// fact that this will come from 127.0.0.1 will in turn prevent that instance							// from doing unite() with us. It'll just forward. There will not be many of							// these.							dest.sin_family = AF_INET;							dest.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1							dest.sin_port = htons(9993);						}						// Note: we do not relay to privileged ports... just an abuse prevention rule.						if ((ntohs(dest.sin_port) > 1024)&&(payloadLen >= 16)) {							if ((payloadLen >= 28)&&(payload[13] != (char)0xff)) {								// Learn reverse mappings -- we will route replies to these packets								// back to their sending TCP socket. They're on a first come first								// served basis.								const uint64_t sourceZt = (									(((uint64_t)(((const unsigned char *)payload)[13])) << 32) |									(((uint64_t)(((const unsigned char *)payload)[14])) << 24) |									(((uint64_t)(((const unsigned char *)payload)[15])) << 16) |									(((uint64_t)(((const unsigned char *)payload)[16])) << 8) |									((uint64_t)(((const unsigned char *)payload)[17])) );								ReverseMappingKey k(sourceZt,c.assignedUdp,dest.sin_addr.s_addr,ntohl(dest.sin_port));								if (reverseMappings.count(k) == 0)									reverseMappings[k] = &c;							}							phy->udpSend(c.assignedUdp,(const struct sockaddr *)&dest,payload,payloadLen);						}					}					memmove(c.tcpReadBuf,c.tcpReadBuf + (mlen + 5),c.tcpReadPtr -= (mlen + 5));				}			}		}	}	void phyOnTcpWritable(PhySocket *sock,void **uptr)	{		Client &c = *((Client *)*uptr);		if (c.tcpWritePtr) {			long n = phy->tcpSend(sock,c.tcpWriteBuf,c.tcpWritePtr);			if (n > 0) {				memmove(c.tcpWriteBuf,c.tcpWriteBuf + n,c.tcpWritePtr -= (unsigned long)n);				if (!c.tcpWritePtr)					phy->tcpSetNotifyWritable(sock,false);			}		} else phy->tcpSetNotifyWritable(sock,false);	}	void doHousekeeping()	{		std::vector<PhySocket *> toClose;		time_t now = time((time_t *)0);		for(std::map< PhySocket *,Client >::iterator c(clients.begin());c!=clients.end();++c) {			if ((now - c->second.lastActivity) >= ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS)				toClose.push_back(c->first);		}		for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)			phy->close(*s); // will call phyOnTcpClose() which does cleanup	}};int main(int argc,char **argv){	signal(SIGPIPE,SIG_IGN);	signal(SIGHUP,SIG_IGN);	srand(time((time_t *)0));	TcpProxyService svc;	Phy<TcpProxyService *> phy(&svc,true);	svc.phy = &phy;	{		int poolSize = 0;		for(unsigned int p=ZT_TCP_PROXY_UDP_POOL_START_PORT;((poolSize<ZT_TCP_PROXY_UDP_POOL_SIZE)&&(p<=65535));++p) {			struct sockaddr_in laddr;			memset(&laddr,0,sizeof(laddr));			laddr.sin_family = AF_INET;			laddr.sin_port = htons((uint16_t)p);			PhySocket *s = phy.udpBind((const struct sockaddr *)&laddr);			if (s)				svc.udpPool[poolSize++] = s;		}		if (poolSize < ZT_TCP_PROXY_UDP_POOL_SIZE) {			fprintf(stderr,"%s: fatal error: cannot bind %d UDP ports\n",argv[0],ZT_TCP_PROXY_UDP_POOL_SIZE);			return 1;		}	}	time_t lastDidHousekeeping = time((time_t *)0);	for(;;) {		phy.poll(120000);		time_t now = time((time_t *)0);		if ((now - lastDidHousekeeping) > 120) {			lastDidHousekeeping = now;			svc.doHousekeeping();		}	}}
 |