Utils.hpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_UTILS_HPP
  14. #define ZT_UTILS_HPP
  15. #include <stdio.h>
  16. #include <stdlib.h>
  17. #include <stdint.h>
  18. #include <string.h>
  19. #include <time.h>
  20. #include <string>
  21. #include <stdexcept>
  22. #include <vector>
  23. #include <map>
  24. #if defined(__FreeBSD__)
  25. #include <sys/endian.h>
  26. #endif
  27. #include "Constants.hpp"
  28. #if __BYTE_ORDER == __LITTLE_ENDIAN
  29. #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U)))
  30. #define ZT_CONST_TO_BE_UINT64(x) ( \
  31. (((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | \
  32. (((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | \
  33. (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | \
  34. (((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) | \
  35. (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | \
  36. (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | \
  37. (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | \
  38. (((uint64_t)(x) & 0xff00000000000000ULL) >> 56U))
  39. #else
  40. #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x))
  41. #define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
  42. #endif
  43. #define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
  44. #define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
  45. #define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
  46. #define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
  47. namespace ZeroTier {
  48. /**
  49. * Miscellaneous utility functions and global constants
  50. */
  51. class Utils
  52. {
  53. public:
  54. static const uint64_t ZERO256[4];
  55. #ifdef ZT_ARCH_ARM_HAS_NEON
  56. struct ARMCapabilities
  57. {
  58. ARMCapabilities() noexcept;
  59. bool aes;
  60. bool crc32;
  61. bool pmull;
  62. bool sha1;
  63. bool sha2;
  64. };
  65. static const ARMCapabilities ARMCAP;
  66. #endif
  67. #ifdef ZT_ARCH_X64
  68. struct CPUIDRegisters
  69. {
  70. CPUIDRegisters() noexcept;
  71. bool rdrand;
  72. bool aes;
  73. bool avx;
  74. bool vaes; // implies AVX
  75. bool vpclmulqdq; // implies AVX
  76. bool avx2;
  77. bool avx512f;
  78. bool sha;
  79. bool fsrm;
  80. };
  81. static const CPUIDRegisters CPUID;
  82. #endif
  83. /**
  84. * Perform a time-invariant binary comparison
  85. *
  86. * @param a First binary string
  87. * @param b Second binary string
  88. * @param len Length of strings
  89. * @return True if strings are equal
  90. */
  91. static inline bool secureEq(const void *a,const void *b,unsigned int len)
  92. {
  93. uint8_t diff = 0;
  94. for(unsigned int i=0;i<len;++i)
  95. diff |= ( (reinterpret_cast<const uint8_t *>(a))[i] ^ (reinterpret_cast<const uint8_t *>(b))[i] );
  96. return (diff == 0);
  97. }
  98. /**
  99. * Securely zero memory, avoiding compiler optimizations and such
  100. */
  101. static void burn(void *ptr,unsigned int len);
  102. /**
  103. * @param n Number to convert
  104. * @param s Buffer, at least 24 bytes in size
  105. * @return String containing 'n' in base 10 form
  106. */
  107. static char *decimal(unsigned long n,char s[24]);
  108. static inline char *hex(uint64_t i,char s[17])
  109. {
  110. s[0] = HEXCHARS[(i >> 60) & 0xf];
  111. s[1] = HEXCHARS[(i >> 56) & 0xf];
  112. s[2] = HEXCHARS[(i >> 52) & 0xf];
  113. s[3] = HEXCHARS[(i >> 48) & 0xf];
  114. s[4] = HEXCHARS[(i >> 44) & 0xf];
  115. s[5] = HEXCHARS[(i >> 40) & 0xf];
  116. s[6] = HEXCHARS[(i >> 36) & 0xf];
  117. s[7] = HEXCHARS[(i >> 32) & 0xf];
  118. s[8] = HEXCHARS[(i >> 28) & 0xf];
  119. s[9] = HEXCHARS[(i >> 24) & 0xf];
  120. s[10] = HEXCHARS[(i >> 20) & 0xf];
  121. s[11] = HEXCHARS[(i >> 16) & 0xf];
  122. s[12] = HEXCHARS[(i >> 12) & 0xf];
  123. s[13] = HEXCHARS[(i >> 8) & 0xf];
  124. s[14] = HEXCHARS[(i >> 4) & 0xf];
  125. s[15] = HEXCHARS[i & 0xf];
  126. s[16] = (char)0;
  127. return s;
  128. }
  129. static inline char *hex10(uint64_t i,char s[11])
  130. {
  131. s[0] = HEXCHARS[(i >> 36) & 0xf];
  132. s[1] = HEXCHARS[(i >> 32) & 0xf];
  133. s[2] = HEXCHARS[(i >> 28) & 0xf];
  134. s[3] = HEXCHARS[(i >> 24) & 0xf];
  135. s[4] = HEXCHARS[(i >> 20) & 0xf];
  136. s[5] = HEXCHARS[(i >> 16) & 0xf];
  137. s[6] = HEXCHARS[(i >> 12) & 0xf];
  138. s[7] = HEXCHARS[(i >> 8) & 0xf];
  139. s[8] = HEXCHARS[(i >> 4) & 0xf];
  140. s[9] = HEXCHARS[i & 0xf];
  141. s[10] = (char)0;
  142. return s;
  143. }
  144. static inline char *hex(uint32_t i,char s[9])
  145. {
  146. s[0] = HEXCHARS[(i >> 28) & 0xf];
  147. s[1] = HEXCHARS[(i >> 24) & 0xf];
  148. s[2] = HEXCHARS[(i >> 20) & 0xf];
  149. s[3] = HEXCHARS[(i >> 16) & 0xf];
  150. s[4] = HEXCHARS[(i >> 12) & 0xf];
  151. s[5] = HEXCHARS[(i >> 8) & 0xf];
  152. s[6] = HEXCHARS[(i >> 4) & 0xf];
  153. s[7] = HEXCHARS[i & 0xf];
  154. s[8] = (char)0;
  155. return s;
  156. }
  157. static inline char *hex(uint16_t i,char s[5])
  158. {
  159. s[0] = HEXCHARS[(i >> 12) & 0xf];
  160. s[1] = HEXCHARS[(i >> 8) & 0xf];
  161. s[2] = HEXCHARS[(i >> 4) & 0xf];
  162. s[3] = HEXCHARS[i & 0xf];
  163. s[4] = (char)0;
  164. return s;
  165. }
  166. static inline char *hex(uint8_t i,char s[3])
  167. {
  168. s[0] = HEXCHARS[(i >> 4) & 0xf];
  169. s[1] = HEXCHARS[i & 0xf];
  170. s[2] = (char)0;
  171. return s;
  172. }
  173. static inline char *hex(const void *d,unsigned int l,char *s)
  174. {
  175. char *const save = s;
  176. for(unsigned int i=0;i<l;++i) {
  177. const unsigned int b = reinterpret_cast<const uint8_t *>(d)[i];
  178. *(s++) = HEXCHARS[b >> 4];
  179. *(s++) = HEXCHARS[b & 0xf];
  180. }
  181. *s = (char)0;
  182. return save;
  183. }
  184. static inline unsigned int unhex(const char *h,void *buf,unsigned int buflen)
  185. {
  186. unsigned int l = 0;
  187. while (l < buflen) {
  188. uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
  189. if (!hc) break;
  190. uint8_t c = 0;
  191. if ((hc >= 48)&&(hc <= 57)) // 0..9
  192. c = hc - 48;
  193. else if ((hc >= 97)&&(hc <= 102)) // a..f
  194. c = hc - 87;
  195. else if ((hc >= 65)&&(hc <= 70)) // A..F
  196. c = hc - 55;
  197. hc = *(reinterpret_cast<const uint8_t *>(h++));
  198. if (!hc) break;
  199. c <<= 4;
  200. if ((hc >= 48)&&(hc <= 57))
  201. c |= hc - 48;
  202. else if ((hc >= 97)&&(hc <= 102))
  203. c |= hc - 87;
  204. else if ((hc >= 65)&&(hc <= 70))
  205. c |= hc - 55;
  206. reinterpret_cast<uint8_t *>(buf)[l++] = c;
  207. }
  208. return l;
  209. }
  210. static inline unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen)
  211. {
  212. unsigned int l = 0;
  213. const char *hend = h + hlen;
  214. while (l < buflen) {
  215. if (h == hend) break;
  216. uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
  217. if (!hc) break;
  218. uint8_t c = 0;
  219. if ((hc >= 48)&&(hc <= 57))
  220. c = hc - 48;
  221. else if ((hc >= 97)&&(hc <= 102))
  222. c = hc - 87;
  223. else if ((hc >= 65)&&(hc <= 70))
  224. c = hc - 55;
  225. if (h == hend) break;
  226. hc = *(reinterpret_cast<const uint8_t *>(h++));
  227. if (!hc) break;
  228. c <<= 4;
  229. if ((hc >= 48)&&(hc <= 57))
  230. c |= hc - 48;
  231. else if ((hc >= 97)&&(hc <= 102))
  232. c |= hc - 87;
  233. else if ((hc >= 65)&&(hc <= 70))
  234. c |= hc - 55;
  235. reinterpret_cast<uint8_t *>(buf)[l++] = c;
  236. }
  237. return l;
  238. }
  239. static inline float normalize(float value, float bigMin, float bigMax, float targetMin, float targetMax)
  240. {
  241. float bigSpan = bigMax - bigMin;
  242. float smallSpan = targetMax - targetMin;
  243. float valueScaled = (value - bigMin) / bigSpan;
  244. return targetMin + valueScaled * smallSpan;
  245. }
  246. /**
  247. * Generate secure random bytes
  248. *
  249. * This will try to use whatever OS sources of entropy are available. It's
  250. * guarded by an internal mutex so it's thread-safe.
  251. *
  252. * @param buf Buffer to fill
  253. * @param bytes Number of random bytes to generate
  254. */
  255. static void getSecureRandom(void *buf,unsigned int bytes);
  256. /**
  257. * Tokenize a string (alias for strtok_r or strtok_s depending on platform)
  258. *
  259. * @param str String to split
  260. * @param delim Delimiters
  261. * @param saveptr Pointer to a char * for temporary reentrant storage
  262. */
  263. static inline char *stok(char *str,const char *delim,char **saveptr)
  264. {
  265. #ifdef __WINDOWS__
  266. return strtok_s(str,delim,saveptr);
  267. #else
  268. return strtok_r(str,delim,saveptr);
  269. #endif
  270. }
  271. static inline unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); }
  272. static inline int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); }
  273. static inline unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); }
  274. static inline long strToLong(const char *s) { return strtol(s,(char **)0,10); }
  275. static inline double strToDouble(const char *s) { return strtod(s,NULL); }
  276. static inline unsigned long long strToU64(const char *s)
  277. {
  278. #ifdef __WINDOWS__
  279. return (unsigned long long)_strtoui64(s,(char **)0,10);
  280. #else
  281. return strtoull(s,(char **)0,10);
  282. #endif
  283. }
  284. static inline long long strTo64(const char *s)
  285. {
  286. #ifdef __WINDOWS__
  287. return (long long)_strtoi64(s,(char **)0,10);
  288. #else
  289. return strtoll(s,(char **)0,10);
  290. #endif
  291. }
  292. static inline unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); }
  293. static inline int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); }
  294. static inline unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); }
  295. static inline long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); }
  296. static inline unsigned long long hexStrToU64(const char *s)
  297. {
  298. #ifdef __WINDOWS__
  299. return (unsigned long long)_strtoui64(s,(char **)0,16);
  300. #else
  301. return strtoull(s,(char **)0,16);
  302. #endif
  303. }
  304. static inline long long hexStrTo64(const char *s)
  305. {
  306. #ifdef __WINDOWS__
  307. return (long long)_strtoi64(s,(char **)0,16);
  308. #else
  309. return strtoll(s,(char **)0,16);
  310. #endif
  311. }
  312. /**
  313. * Perform a safe C string copy, ALWAYS null-terminating the result
  314. *
  315. * This will never ever EVER result in dest[] not being null-terminated
  316. * regardless of any input parameter (other than len==0 which is invalid).
  317. *
  318. * @param dest Destination buffer (must not be NULL)
  319. * @param len Length of dest[] (if zero, false is returned and nothing happens)
  320. * @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
  321. * @return True on success, false on overflow (buffer will still be 0-terminated)
  322. */
  323. static inline bool scopy(char *dest,unsigned int len,const char *src)
  324. {
  325. if (!len)
  326. return false; // sanity check
  327. if (!src) {
  328. *dest = (char)0;
  329. return true;
  330. }
  331. char *end = dest + len;
  332. while ((*dest++ = *src++)) {
  333. if (dest == end) {
  334. *(--dest) = (char)0;
  335. return false;
  336. }
  337. }
  338. return true;
  339. }
  340. /**
  341. * Count the number of bits set in an integer
  342. *
  343. * @param v 32-bit integer
  344. * @return Number of bits set in this integer (0-32)
  345. */
  346. static inline uint32_t countBits(uint32_t v)
  347. {
  348. v = v - ((v >> 1) & (uint32_t)0x55555555);
  349. v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
  350. return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24);
  351. }
  352. /**
  353. * Count the number of bits set in an integer
  354. *
  355. * @param v 64-bit integer
  356. * @return Number of bits set in this integer (0-64)
  357. */
  358. static inline uint64_t countBits(uint64_t v)
  359. {
  360. v = v - ((v >> 1) & (uint64_t)~(uint64_t)0/3);
  361. v = (v & (uint64_t)~(uint64_t)0/15*3) + ((v >> 2) & (uint64_t)~(uint64_t)0/15*3);
  362. v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0/255*15;
  363. return (uint64_t)(v * ((uint64_t)~(uint64_t)0/255)) >> 56;
  364. }
  365. /**
  366. * Check if a memory buffer is all-zero
  367. *
  368. * @param p Memory to scan
  369. * @param len Length of memory
  370. * @return True if memory is all zero
  371. */
  372. static inline bool isZero(const void *p,unsigned int len)
  373. {
  374. for(unsigned int i=0;i<len;++i) {
  375. if (((const unsigned char *)p)[i])
  376. return false;
  377. }
  378. return true;
  379. }
  380. /**
  381. * Unconditionally swap bytes regardless of host byte order
  382. *
  383. * @param n Integer to swap
  384. * @return Integer with bytes reversed
  385. */
  386. static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept
  387. {
  388. #if defined(__GNUC__)
  389. return __builtin_bswap16(n);
  390. #else
  391. #ifdef _MSC_VER
  392. return (uint16_t)_byteswap_ushort((unsigned short)n);
  393. #else
  394. return htons(n);
  395. #endif
  396. #endif
  397. }
  398. // These are helper adapters to load and swap integer types special cased by size
  399. // to work with all typedef'd variants, signed/unsigned, etc.
  400. template< typename I, unsigned int S >
  401. class _swap_bytes_bysize;
  402. template< typename I >
  403. class _swap_bytes_bysize< I, 1 >
  404. {
  405. public:
  406. static ZT_INLINE I s(const I n) noexcept
  407. { return n; }
  408. };
  409. template< typename I >
  410. class _swap_bytes_bysize< I, 2 >
  411. {
  412. public:
  413. static ZT_INLINE I s(const I n) noexcept
  414. { return (I)swapBytes((uint16_t)n); }
  415. };
  416. template< typename I >
  417. class _swap_bytes_bysize< I, 4 >
  418. {
  419. public:
  420. static ZT_INLINE I s(const I n) noexcept
  421. { return (I)swapBytes((uint32_t)n); }
  422. };
  423. template< typename I >
  424. class _swap_bytes_bysize< I, 8 >
  425. {
  426. public:
  427. static ZT_INLINE I s(const I n) noexcept
  428. { return (I)swapBytes((uint64_t)n); }
  429. };
  430. template< typename I, unsigned int S >
  431. class _load_be_bysize;
  432. template< typename I >
  433. class _load_be_bysize< I, 1 >
  434. {
  435. public:
  436. static ZT_INLINE I l(const uint8_t *const p) noexcept
  437. { return p[0]; }
  438. };
  439. template< typename I >
  440. class _load_be_bysize< I, 2 >
  441. {
  442. public:
  443. static ZT_INLINE I l(const uint8_t *const p) noexcept
  444. { return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]); }
  445. };
  446. template< typename I >
  447. class _load_be_bysize< I, 4 >
  448. {
  449. public:
  450. static ZT_INLINE I l(const uint8_t *const p) noexcept
  451. { return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]); }
  452. };
  453. template< typename I >
  454. class _load_be_bysize< I, 8 >
  455. {
  456. public:
  457. static ZT_INLINE I l(const uint8_t *const p) noexcept
  458. { return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]); }
  459. };
  460. template< typename I, unsigned int S >
  461. class _load_le_bysize;
  462. template< typename I >
  463. class _load_le_bysize< I, 1 >
  464. {
  465. public:
  466. static ZT_INLINE I l(const uint8_t *const p) noexcept
  467. { return p[0]; }
  468. };
  469. template< typename I >
  470. class _load_le_bysize< I, 2 >
  471. {
  472. public:
  473. static ZT_INLINE I l(const uint8_t *const p) noexcept
  474. { return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U)); }
  475. };
  476. template< typename I >
  477. class _load_le_bysize< I, 4 >
  478. {
  479. public:
  480. static ZT_INLINE I l(const uint8_t *const p) noexcept
  481. { return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U)); }
  482. };
  483. template< typename I >
  484. class _load_le_bysize< I, 8 >
  485. {
  486. public:
  487. static ZT_INLINE I l(const uint8_t *const p) noexcept
  488. { return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U); }
  489. };
  490. /**
  491. * Convert any signed or unsigned integer type to big-endian ("network") byte order
  492. *
  493. * @tparam I Integer type (usually inferred)
  494. * @param n Value to convert
  495. * @return Value in big-endian order
  496. */
  497. template< typename I >
  498. static ZT_INLINE I hton(const I n) noexcept
  499. {
  500. #if __BYTE_ORDER == __LITTLE_ENDIAN
  501. return _swap_bytes_bysize< I, sizeof(I) >::s(n);
  502. #else
  503. return n;
  504. #endif
  505. }
  506. /**
  507. * Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order
  508. *
  509. * @tparam I Integer type (usually inferred)
  510. * @param n Value to convert
  511. * @return Value in host byte order
  512. */
  513. template< typename I >
  514. static ZT_INLINE I ntoh(const I n) noexcept
  515. {
  516. #if __BYTE_ORDER == __LITTLE_ENDIAN
  517. return _swap_bytes_bysize< I, sizeof(I) >::s(n);
  518. #else
  519. return n;
  520. #endif
  521. }
  522. /**
  523. * Copy bits from memory into an integer type without modifying their order
  524. *
  525. * @tparam I Type to load
  526. * @param p Byte stream, must be at least sizeof(I) in size
  527. * @return Loaded raw integer
  528. */
  529. template< typename I >
  530. static ZT_INLINE I loadMachineEndian(const void *const p) noexcept
  531. {
  532. #ifdef ZT_NO_UNALIGNED_ACCESS
  533. I tmp;
  534. for(int i=0;i<(int)sizeof(I);++i)
  535. reinterpret_cast<uint8_t *>(&tmp)[i] = reinterpret_cast<const uint8_t *>(p)[i];
  536. return tmp;
  537. #else
  538. return *reinterpret_cast<const I *>(p);
  539. #endif
  540. }
  541. /**
  542. * Copy bits from memory into an integer type without modifying their order
  543. *
  544. * @tparam I Type to store
  545. * @param p Byte array (must be at least sizeof(I))
  546. * @param i Integer to store
  547. */
  548. template< typename I >
  549. static ZT_INLINE void storeMachineEndian(void *const p, const I i) noexcept
  550. {
  551. #ifdef ZT_NO_UNALIGNED_ACCESS
  552. for(unsigned int k=0;k<sizeof(I);++k)
  553. reinterpret_cast<uint8_t *>(p)[k] = reinterpret_cast<const uint8_t *>(&i)[k];
  554. #else
  555. *reinterpret_cast<I *>(p) = i;
  556. #endif
  557. }
  558. /**
  559. * Decode a big-endian value from a byte stream
  560. *
  561. * @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t)
  562. * @param p Byte stream, must be at least sizeof(I) in size
  563. * @return Decoded integer
  564. */
  565. template< typename I >
  566. static ZT_INLINE I loadBigEndian(const void *const p) noexcept
  567. {
  568. #ifdef ZT_NO_UNALIGNED_ACCESS
  569. return _load_be_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
  570. #else
  571. return ntoh(*reinterpret_cast<const I *>(p));
  572. #endif
  573. }
  574. /**
  575. * Save an integer in big-endian format
  576. *
  577. * @tparam I Integer type to store (usually inferred)
  578. * @param p Byte stream to write (must be at least sizeof(I))
  579. * #param i Integer to write
  580. */
  581. template< typename I >
  582. static ZT_INLINE void storeBigEndian(void *const p, I i) noexcept
  583. {
  584. #ifdef ZT_NO_UNALIGNED_ACCESS
  585. storeMachineEndian(p,hton(i));
  586. #else
  587. *reinterpret_cast<I *>(p) = hton(i);
  588. #endif
  589. }
  590. /**
  591. * Decode a little-endian value from a byte stream
  592. *
  593. * @tparam I Type to decode
  594. * @param p Byte stream, must be at least sizeof(I) in size
  595. * @return Decoded integer
  596. */
  597. template< typename I >
  598. static ZT_INLINE I loadLittleEndian(const void *const p) noexcept
  599. {
  600. #if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
  601. return _load_le_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
  602. #else
  603. return *reinterpret_cast<const I *>(p);
  604. #endif
  605. }
  606. /**
  607. * Save an integer in little-endian format
  608. *
  609. * @tparam I Integer type to store (usually inferred)
  610. * @param p Byte stream to write (must be at least sizeof(I))
  611. * #param i Integer to write
  612. */
  613. template< typename I >
  614. static ZT_INLINE void storeLittleEndian(void *const p, const I i) noexcept
  615. {
  616. #if __BYTE_ORDER == __BIG_ENDIAN
  617. storeMachineEndian(p,_swap_bytes_bysize<I,sizeof(I)>::s(i));
  618. #else
  619. #ifdef ZT_NO_UNALIGNED_ACCESS
  620. storeMachineEndian(p,i);
  621. #else
  622. *reinterpret_cast<I *>(p) = i;
  623. #endif
  624. #endif
  625. }
  626. /**
  627. * Copy memory block whose size is known at compile time.
  628. *
  629. * @tparam L Size of memory
  630. * @param dest Destination memory
  631. * @param src Source memory
  632. */
  633. template< unsigned long L >
  634. static ZT_INLINE void copy(void *dest, const void *src) noexcept
  635. {
  636. #if defined(ZT_ARCH_X64) && defined(__GNUC__)
  637. uintptr_t l = L;
  638. __asm__ __volatile__ ("cld ; rep movsb" : "+c"(l), "+S"(src), "+D"(dest) :: "memory");
  639. #else
  640. memcpy(dest, src, L);
  641. #endif
  642. }
  643. /**
  644. * Copy memory block whose size is known at run time
  645. *
  646. * @param dest Destination memory
  647. * @param src Source memory
  648. * @param len Bytes to copy
  649. */
  650. static ZT_INLINE void copy(void *dest, const void *src, unsigned long len) noexcept
  651. {
  652. #if defined(ZT_ARCH_X64) && defined(__GNUC__)
  653. __asm__ __volatile__ ("cld ; rep movsb" : "+c"(len), "+S"(src), "+D"(dest) :: "memory");
  654. #else
  655. memcpy(dest, src, len);
  656. #endif
  657. }
  658. /**
  659. * Zero memory block whose size is known at compile time
  660. *
  661. * @tparam L Size in bytes
  662. * @param dest Memory to zero
  663. */
  664. template< unsigned long L >
  665. static ZT_INLINE void zero(void *dest) noexcept
  666. {
  667. #if defined(ZT_ARCH_X64) && defined(__GNUC__)
  668. uintptr_t l = L;
  669. __asm__ __volatile__ ("cld ; rep stosb" :"+c" (l), "+D" (dest) : "a" (0) : "memory");
  670. #else
  671. memset(dest, 0, L);
  672. #endif
  673. }
  674. /**
  675. * Zero memory block whose size is known at run time
  676. *
  677. * @param dest Memory to zero
  678. * @param len Size in bytes
  679. */
  680. static ZT_INLINE void zero(void *dest, unsigned long len) noexcept
  681. {
  682. #if defined(ZT_ARCH_X64) && defined(__GNUC__)
  683. __asm__ __volatile__ ("cld ; rep stosb" :"+c" (len), "+D" (dest) : "a" (0) : "memory");
  684. #else
  685. memset(dest, 0, len);
  686. #endif
  687. }
  688. /**
  689. * Hexadecimal characters 0-f
  690. */
  691. static const char HEXCHARS[16];
  692. };
  693. } // namespace ZeroTier
  694. #endif