Cluster.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Identity.hpp"
  43. #include "Topology.hpp"
  44. #include "Packet.hpp"
  45. #include "Switch.hpp"
  46. #include "Node.hpp"
  47. namespace ZeroTier {
  48. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  49. throw()
  50. {
  51. double dx = ((double)x2 - (double)x1);
  52. double dy = ((double)y2 - (double)y1);
  53. double dz = ((double)z2 - (double)z1);
  54. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  55. }
  56. Cluster::Cluster(
  57. const RuntimeEnvironment *renv,
  58. uint16_t id,
  59. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  60. int32_t x,
  61. int32_t y,
  62. int32_t z,
  63. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  64. void *sendFunctionArg,
  65. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  66. void *addressToLocationFunctionArg) :
  67. RR(renv),
  68. _sendFunction(sendFunction),
  69. _sendFunctionArg(sendFunctionArg),
  70. _addressToLocationFunction(addressToLocationFunction),
  71. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  72. _x(x),
  73. _y(y),
  74. _z(z),
  75. _id(id),
  76. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  77. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  78. _peerAffinities(65536),
  79. _lastCleanedPeerAffinities(0)
  80. {
  81. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  82. // Generate master secret by hashing the secret from our Identity key pair
  83. RR->identity.sha512PrivateKey(_masterSecret);
  84. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  85. memcpy(stmp,_masterSecret,sizeof(stmp));
  86. stmp[0] ^= Utils::hton(id);
  87. SHA512::hash(stmp,stmp,sizeof(stmp));
  88. SHA512::hash(stmp,stmp,sizeof(stmp));
  89. memcpy(_key,stmp,sizeof(_key));
  90. Utils::burn(stmp,sizeof(stmp));
  91. }
  92. Cluster::~Cluster()
  93. {
  94. Utils::burn(_masterSecret,sizeof(_masterSecret));
  95. Utils::burn(_key,sizeof(_key));
  96. delete [] _members;
  97. }
  98. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  99. {
  100. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  101. {
  102. // FORMAT: <[16] iv><[8] MAC><... data>
  103. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  104. return;
  105. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  106. char keytmp[32];
  107. memcpy(keytmp,_key,32);
  108. for(int i=0;i<8;++i)
  109. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  110. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  111. Utils::burn(keytmp,sizeof(keytmp));
  112. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  113. char polykey[ZT_POLY1305_KEY_LEN];
  114. memset(polykey,0,sizeof(polykey));
  115. s20.encrypt12(polykey,polykey,sizeof(polykey));
  116. // Compute 16-byte MAC
  117. char mac[ZT_POLY1305_MAC_LEN];
  118. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  119. // Check first 8 bytes of MAC against 64-bit MAC in stream
  120. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  121. return;
  122. // Decrypt!
  123. dmsg.setSize(len - 24);
  124. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  125. }
  126. if (dmsg.size() < 4)
  127. return;
  128. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  129. unsigned int ptr = 2;
  130. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  131. return;
  132. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  133. ptr += 2;
  134. if (toMemberId != _id) // sanity check: message not for us?
  135. return;
  136. { // make sure sender is actually considered a member
  137. Mutex::Lock _l3(_memberIds_m);
  138. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  139. return;
  140. }
  141. {
  142. _Member &m = _members[fromMemberId];
  143. Mutex::Lock mlck(m.lock);
  144. try {
  145. while (ptr < dmsg.size()) {
  146. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  147. const unsigned int nextPtr = ptr + mlen;
  148. if (nextPtr > dmsg.size())
  149. break;
  150. int mtype = -1;
  151. try {
  152. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  153. default:
  154. break;
  155. case STATE_MESSAGE_ALIVE: {
  156. ptr += 7; // skip version stuff, not used yet
  157. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  158. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  159. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  160. ptr += 8; // skip local clock, not used
  161. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  162. ptr += 8; // skip flags, unused
  163. #ifdef ZT_TRACE
  164. std::string addrs;
  165. #endif
  166. unsigned int physicalAddressCount = dmsg[ptr++];
  167. m.zeroTierPhysicalEndpoints.clear();
  168. for(unsigned int i=0;i<physicalAddressCount;++i) {
  169. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  170. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  171. if (!(m.zeroTierPhysicalEndpoints.back())) {
  172. m.zeroTierPhysicalEndpoints.pop_back();
  173. }
  174. #ifdef ZT_TRACE
  175. else {
  176. if (addrs.length() > 0)
  177. addrs.push_back(',');
  178. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  179. }
  180. #endif
  181. }
  182. #ifdef ZT_TRACE
  183. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  184. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  185. }
  186. #endif
  187. m.lastReceivedAliveAnnouncement = RR->node->now();
  188. } break;
  189. case STATE_MESSAGE_HAVE_PEER: {
  190. const uint64_t now = RR->node->now();
  191. Identity id;
  192. InetAddress physicalAddress;
  193. ptr += id.deserialize(dmsg,ptr);
  194. ptr += physicalAddress.deserialize(dmsg,ptr);
  195. if (id) {
  196. // Forget any paths that we have to this peer at its address
  197. if (physicalAddress) {
  198. SharedPtr<Peer> myPeerRecord(RR->topology->getPeerNoCache(id.address(),now));
  199. if (myPeerRecord)
  200. myPeerRecord->removePathByAddress(physicalAddress);
  201. }
  202. // Always save identity to update file time
  203. RR->topology->saveIdentity(id);
  204. // Set peer affinity to its new home
  205. {
  206. Mutex::Lock _l2(_peerAffinities_m);
  207. _PA &pa = _peerAffinities[id.address()];
  208. pa.ts = now;
  209. pa.mid = fromMemberId;
  210. }
  211. TRACE("[%u] has %s @ %s",(unsigned int)fromMemberId,id.address().toString().c_str(),physicalAddress.toString().c_str());
  212. }
  213. } break;
  214. case STATE_MESSAGE_MULTICAST_LIKE: {
  215. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  216. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  217. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  218. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  219. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  220. TRACE("[%u] %s likes %s/%.8x on %.16llx",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  221. } break;
  222. case STATE_MESSAGE_COM: {
  223. /* not currently used so not decoded yet
  224. CertificateOfMembership com;
  225. ptr += com.deserialize(dmsg,ptr);
  226. if (com) {
  227. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  228. }
  229. */
  230. } break;
  231. case STATE_MESSAGE_PROXY_UNITE: {
  232. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  233. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  234. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  235. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  236. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  237. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  238. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  239. const uint64_t now = RR->node->now();
  240. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress,now));
  241. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  242. InetAddress bestLocalV4,bestLocalV6;
  243. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  244. InetAddress bestRemoteV4,bestRemoteV6;
  245. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  246. if ((bestRemoteV4)&&(bestRemoteV6))
  247. break;
  248. switch(remotePeerPaths[i].ss_family) {
  249. case AF_INET:
  250. if (!bestRemoteV4)
  251. bestRemoteV4 = remotePeerPaths[i];
  252. break;
  253. case AF_INET6:
  254. if (!bestRemoteV6)
  255. bestRemoteV6 = remotePeerPaths[i];
  256. break;
  257. }
  258. }
  259. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  260. rendezvousForLocal.append((uint8_t)0);
  261. remotePeerAddress.appendTo(rendezvousForLocal);
  262. Buffer<2048> rendezvousForRemote;
  263. remotePeerAddress.appendTo(rendezvousForRemote);
  264. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  265. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForRemote.size();
  266. rendezvousForRemote.addSize(2); // space for actual packet payload length
  267. rendezvousForRemote.append((uint8_t)0); // flags == 0
  268. localPeerAddress.appendTo(rendezvousForRemote);
  269. bool haveMatch = false;
  270. if ((bestLocalV6)&&(bestRemoteV6)) {
  271. haveMatch = true;
  272. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  273. rendezvousForLocal.append((uint8_t)16);
  274. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  275. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  276. rendezvousForRemote.append((uint8_t)16);
  277. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  278. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  279. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  280. haveMatch = true;
  281. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  282. rendezvousForLocal.append((uint8_t)4);
  283. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  284. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  285. rendezvousForRemote.append((uint8_t)4);
  286. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  287. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  288. }
  289. if (haveMatch) {
  290. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  291. RR->sw->send(rendezvousForLocal,true,0);
  292. }
  293. }
  294. } break;
  295. case STATE_MESSAGE_PROXY_SEND: {
  296. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  297. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  298. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  299. Packet outp(rcpt,RR->identity.address(),verb);
  300. outp.append(dmsg.field(ptr,len),len); ptr += len;
  301. RR->sw->send(outp,true,0);
  302. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  303. } break;
  304. }
  305. } catch ( ... ) {
  306. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  307. // drop invalids
  308. }
  309. ptr = nextPtr;
  310. }
  311. } catch ( ... ) {
  312. TRACE("invalid message (outer loop), discarding");
  313. // drop invalids
  314. }
  315. }
  316. }
  317. bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  318. {
  319. if (len > 16384) // sanity check
  320. return false;
  321. const uint64_t now = RR->node->now();
  322. unsigned int canHasPeer = 0;
  323. { // Anyone got this peer?
  324. Mutex::Lock _l2(_peerAffinities_m);
  325. _PA *pa = _peerAffinities.get(toPeerAddress);
  326. if ((pa)&&(pa->mid != _id)&&((now - pa->ts) < ZT_PEER_ACTIVITY_TIMEOUT))
  327. canHasPeer = pa->mid;
  328. else return false;
  329. }
  330. Buffer<1024> buf;
  331. if (unite) {
  332. InetAddress v4,v6;
  333. if (fromPeerAddress) {
  334. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress,now));
  335. if (fromPeer)
  336. fromPeer->getBestActiveAddresses(now,v4,v6);
  337. }
  338. uint8_t addrCount = 0;
  339. if (v4)
  340. ++addrCount;
  341. if (v6)
  342. ++addrCount;
  343. if (addrCount) {
  344. toPeerAddress.appendTo(buf);
  345. fromPeerAddress.appendTo(buf);
  346. buf.append(addrCount);
  347. if (v4)
  348. v4.serialize(buf);
  349. if (v6)
  350. v6.serialize(buf);
  351. }
  352. }
  353. {
  354. Mutex::Lock _l2(_members[canHasPeer].lock);
  355. if (buf.size() > 0)
  356. _send(canHasPeer,STATE_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  357. if (_members[canHasPeer].zeroTierPhysicalEndpoints.size() > 0)
  358. RR->node->putPacket(InetAddress(),_members[canHasPeer].zeroTierPhysicalEndpoints.front(),data,len);
  359. }
  360. TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
  361. return true;
  362. }
  363. void Cluster::replicateHavePeer(const Identity &peerId,const InetAddress &physicalAddress)
  364. {
  365. const uint64_t now = RR->node->now();
  366. {
  367. Mutex::Lock _l2(_peerAffinities_m);
  368. _PA &pa = _peerAffinities[peerId.address()];
  369. if (pa.mid != _id) {
  370. pa.ts = now;
  371. pa.mid = _id;
  372. } else if ((now - pa.ts) < ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
  373. return;
  374. } else {
  375. pa.ts = now;
  376. }
  377. }
  378. // announcement
  379. Buffer<4096> buf;
  380. peerId.serialize(buf,false);
  381. physicalAddress.serialize(buf);
  382. {
  383. Mutex::Lock _l(_memberIds_m);
  384. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  385. Mutex::Lock _l2(_members[*mid].lock);
  386. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  387. }
  388. }
  389. }
  390. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  391. {
  392. Buffer<1024> buf;
  393. buf.append((uint64_t)nwid);
  394. peerAddress.appendTo(buf);
  395. group.mac().appendTo(buf);
  396. buf.append((uint32_t)group.adi());
  397. TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
  398. {
  399. Mutex::Lock _l(_memberIds_m);
  400. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  401. Mutex::Lock _l2(_members[*mid].lock);
  402. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  403. }
  404. }
  405. }
  406. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  407. {
  408. Buffer<4096> buf;
  409. com.serialize(buf);
  410. TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
  411. {
  412. Mutex::Lock _l(_memberIds_m);
  413. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  414. Mutex::Lock _l2(_members[*mid].lock);
  415. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  416. }
  417. }
  418. }
  419. void Cluster::doPeriodicTasks()
  420. {
  421. const uint64_t now = RR->node->now();
  422. {
  423. Mutex::Lock _l(_memberIds_m);
  424. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  425. Mutex::Lock _l2(_members[*mid].lock);
  426. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  427. Buffer<2048> alive;
  428. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  429. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  430. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  431. alive.append((uint8_t)ZT_PROTO_VERSION);
  432. if (_addressToLocationFunction) {
  433. alive.append((int32_t)_x);
  434. alive.append((int32_t)_y);
  435. alive.append((int32_t)_z);
  436. } else {
  437. alive.append((int32_t)0);
  438. alive.append((int32_t)0);
  439. alive.append((int32_t)0);
  440. }
  441. alive.append((uint64_t)now);
  442. alive.append((uint64_t)0); // TODO: compute and send load average
  443. alive.append((uint64_t)0); // unused/reserved flags
  444. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  445. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  446. pe->serialize(alive);
  447. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  448. _members[*mid].lastAnnouncedAliveTo = now;
  449. }
  450. _flush(*mid); // does nothing if nothing to flush
  451. }
  452. }
  453. {
  454. if ((now - _lastCleanedPeerAffinities) >= (ZT_PEER_ACTIVITY_TIMEOUT * 10)) {
  455. _lastCleanedPeerAffinities = now;
  456. Address *k = (Address *)0;
  457. _PA *v = (_PA *)0;
  458. Mutex::Lock _l(_peerAffinities_m);
  459. Hashtable< Address,_PA >::Iterator i(_peerAffinities);
  460. while (i.next(k,v)) {
  461. if ((now - v->ts) >= (ZT_PEER_ACTIVITY_TIMEOUT * 10))
  462. _peerAffinities.erase(*k);
  463. }
  464. }
  465. }
  466. }
  467. void Cluster::addMember(uint16_t memberId)
  468. {
  469. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  470. return;
  471. Mutex::Lock _l2(_members[memberId].lock);
  472. {
  473. Mutex::Lock _l(_memberIds_m);
  474. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  475. return;
  476. _memberIds.push_back(memberId);
  477. std::sort(_memberIds.begin(),_memberIds.end());
  478. }
  479. _members[memberId].clear();
  480. // Generate this member's message key from the master and its ID
  481. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  482. memcpy(stmp,_masterSecret,sizeof(stmp));
  483. stmp[0] ^= Utils::hton(memberId);
  484. SHA512::hash(stmp,stmp,sizeof(stmp));
  485. SHA512::hash(stmp,stmp,sizeof(stmp));
  486. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  487. Utils::burn(stmp,sizeof(stmp));
  488. // Prepare q
  489. _members[memberId].q.clear();
  490. char iv[16];
  491. Utils::getSecureRandom(iv,16);
  492. _members[memberId].q.append(iv,16);
  493. _members[memberId].q.addSize(8); // room for MAC
  494. _members[memberId].q.append((uint16_t)_id);
  495. _members[memberId].q.append((uint16_t)memberId);
  496. }
  497. void Cluster::removeMember(uint16_t memberId)
  498. {
  499. Mutex::Lock _l(_memberIds_m);
  500. std::vector<uint16_t> newMemberIds;
  501. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  502. if (*mid != memberId)
  503. newMemberIds.push_back(*mid);
  504. }
  505. _memberIds = newMemberIds;
  506. }
  507. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  508. {
  509. if (_addressToLocationFunction) {
  510. // Pick based on location if it can be determined
  511. int px = 0,py = 0,pz = 0;
  512. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  513. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  514. return false;
  515. }
  516. // Find member closest to this peer
  517. const uint64_t now = RR->node->now();
  518. std::vector<InetAddress> best;
  519. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  520. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  521. unsigned int bestMember = _id;
  522. {
  523. Mutex::Lock _l(_memberIds_m);
  524. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  525. _Member &m = _members[*mid];
  526. Mutex::Lock _ml(m.lock);
  527. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  528. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  529. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  530. if (mdist < bestDistance) {
  531. bestDistance = mdist;
  532. bestMember = *mid;
  533. best = m.zeroTierPhysicalEndpoints;
  534. }
  535. }
  536. }
  537. }
  538. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  539. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  540. if (a->ss_family == peerPhysicalAddress.ss_family) {
  541. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  542. redirectTo = *a;
  543. return true;
  544. }
  545. }
  546. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  547. return false;
  548. } else {
  549. // TODO: pick based on load if no location info?
  550. return false;
  551. }
  552. }
  553. void Cluster::status(ZT_ClusterStatus &status) const
  554. {
  555. const uint64_t now = RR->node->now();
  556. memset(&status,0,sizeof(ZT_ClusterStatus));
  557. ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS];
  558. memset(ms,0,sizeof(ms));
  559. status.myId = _id;
  560. ms[_id] = &(status.members[status.clusterSize++]);
  561. ms[_id]->id = _id;
  562. ms[_id]->alive = 1;
  563. ms[_id]->x = _x;
  564. ms[_id]->y = _y;
  565. ms[_id]->z = _z;
  566. ms[_id]->peers = RR->topology->countActive();
  567. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  568. if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  569. break;
  570. memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  571. }
  572. {
  573. Mutex::Lock _l1(_memberIds_m);
  574. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  575. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  576. break;
  577. ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]);
  578. _Member &m = _members[*mid];
  579. Mutex::Lock ml(m.lock);
  580. s->id = *mid;
  581. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  582. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  583. s->x = m.x;
  584. s->y = m.y;
  585. s->z = m.z;
  586. s->load = m.load;
  587. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  588. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  589. break;
  590. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  591. }
  592. }
  593. }
  594. {
  595. Mutex::Lock _l2(_peerAffinities_m);
  596. Address *k = (Address *)0;
  597. _PA *v = (_PA *)0;
  598. Hashtable< Address,_PA >::Iterator i(const_cast<Cluster *>(this)->_peerAffinities);
  599. while (i.next(k,v)) {
  600. if ( (ms[v->mid]) && (v->mid != _id) && ((now - v->ts) < ZT_PEER_ACTIVITY_TIMEOUT) )
  601. ++ms[v->mid]->peers;
  602. }
  603. }
  604. }
  605. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  606. {
  607. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  608. return;
  609. _Member &m = _members[memberId];
  610. // assumes m.lock is locked!
  611. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  612. _flush(memberId);
  613. m.q.append((uint16_t)(len + 1));
  614. m.q.append((uint8_t)type);
  615. m.q.append(msg,len);
  616. }
  617. void Cluster::_flush(uint16_t memberId)
  618. {
  619. _Member &m = _members[memberId];
  620. // assumes m.lock is locked!
  621. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  622. // Create key from member's key and IV
  623. char keytmp[32];
  624. memcpy(keytmp,m.key,32);
  625. for(int i=0;i<8;++i)
  626. keytmp[i] ^= m.q[i];
  627. Salsa20 s20(keytmp,256,m.q.field(8,8));
  628. Utils::burn(keytmp,sizeof(keytmp));
  629. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  630. char polykey[ZT_POLY1305_KEY_LEN];
  631. memset(polykey,0,sizeof(polykey));
  632. s20.encrypt12(polykey,polykey,sizeof(polykey));
  633. // Encrypt m.q in place
  634. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  635. // Add MAC for authentication (encrypt-then-MAC)
  636. char mac[ZT_POLY1305_MAC_LEN];
  637. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  638. memcpy(m.q.field(16,8),mac,8);
  639. // Send!
  640. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  641. // Prepare for more
  642. m.q.clear();
  643. char iv[16];
  644. Utils::getSecureRandom(iv,16);
  645. m.q.append(iv,16);
  646. m.q.addSize(8); // room for MAC
  647. m.q.append((uint16_t)_id); // from member ID
  648. m.q.append((uint16_t)memberId); // to member ID
  649. }
  650. }
  651. } // namespace ZeroTier
  652. #endif // ZT_ENABLE_CLUSTER