Switch.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv)
  47. {
  48. }
  49. Switch::~Switch()
  50. {
  51. }
  52. void Switch::onRemotePacket(const InetAddress &fromAddr,const void *data,unsigned int len)
  53. {
  54. try {
  55. if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  56. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  57. _handleRemotePacketFragment(fromAddr,data,len);
  58. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  59. _handleRemotePacketHead(fromAddr,data,len);
  60. }
  61. }
  62. } catch (std::exception &ex) {
  63. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  64. } catch ( ... ) {
  65. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  66. }
  67. }
  68. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  69. {
  70. SharedPtr<NetworkConfig> nconf(network->config2());
  71. if (!nconf)
  72. return;
  73. // Sanity check -- bridge loop? OS problem?
  74. if (to == network->mac())
  75. return;
  76. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  77. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  78. * still happen because Windows likes to send broadcasts over interfaces that have little
  79. * to do with their intended target audience. :P */
  80. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  81. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  82. return;
  83. }
  84. // Check to make sure this protocol is allowed on this network
  85. if (!nconf->permitsEtherType(etherType)) {
  86. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  87. return;
  88. }
  89. // Check if this packet is from someone other than the tap -- i.e. bridged in
  90. bool fromBridged = false;
  91. if (from != network->mac()) {
  92. if (!network->permitsBridging(RR->identity.address())) {
  93. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  94. return;
  95. }
  96. fromBridged = true;
  97. }
  98. if (to.isMulticast()) {
  99. // Destination is a multicast address (including broadcast)
  100. MulticastGroup mg(to,0);
  101. if (to.isBroadcast()) {
  102. if (
  103. (etherType == ZT_ETHERTYPE_ARP)&&
  104. (len >= 28)&&
  105. (
  106. (((const unsigned char *)data)[2] == 0x08)&&
  107. (((const unsigned char *)data)[3] == 0x00)&&
  108. (((const unsigned char *)data)[4] == 6)&&
  109. (((const unsigned char *)data)[5] == 4)&&
  110. (((const unsigned char *)data)[7] == 0x01)
  111. )
  112. ) {
  113. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  114. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  115. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  116. } else if (!nconf->enableBroadcast()) {
  117. // Don't transmit broadcasts if this network doesn't want them
  118. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  119. return;
  120. }
  121. }
  122. /* Learn multicast groups for bridged-in hosts.
  123. * Note that some OSes, most notably Linux, do this for you by learning
  124. * multicast addresses on bridge interfaces and subscribing each slave.
  125. * But in that case this does no harm, as the sets are just merged. */
  126. if (fromBridged)
  127. network->learnBridgedMulticastGroup(mg,RR->node->now());
  128. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  129. RR->mc->send(
  130. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  131. nconf->multicastLimit(),
  132. RR->node->now(),
  133. network->id(),
  134. nconf->activeBridges(),
  135. mg,
  136. (fromBridged) ? from : MAC(),
  137. etherType,
  138. data,
  139. len);
  140. return;
  141. }
  142. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  143. // Destination is another ZeroTier peer on the same network
  144. Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
  145. const bool includeCom = network->peerNeedsOurMembershipCertificate(toZT,RR->node->now());
  146. if ((fromBridged)||(includeCom)) {
  147. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  148. outp.append(network->id());
  149. if (includeCom) {
  150. outp.append((unsigned char)0x01); // 0x01 -- COM included
  151. nconf->com().serialize(outp);
  152. } else {
  153. outp.append((unsigned char)0x00);
  154. }
  155. to.appendTo(outp);
  156. from.appendTo(outp);
  157. outp.append((uint16_t)etherType);
  158. outp.append(data,len);
  159. outp.compress();
  160. send(outp,true,network->id());
  161. } else {
  162. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  163. outp.append(network->id());
  164. outp.append((uint16_t)etherType);
  165. outp.append(data,len);
  166. outp.compress();
  167. send(outp,true,network->id());
  168. }
  169. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
  170. return;
  171. }
  172. {
  173. // Destination is bridged behind a remote peer
  174. Address bridges[ZT_MAX_BRIDGE_SPAM];
  175. unsigned int numBridges = 0;
  176. /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
  177. bridges[0] = network->findBridgeTo(to);
  178. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->permitsBridging(bridges[0]))) {
  179. /* We have a known bridge route for this MAC, send it there. */
  180. ++numBridges;
  181. } else if (!nconf->activeBridges().empty()) {
  182. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  183. * bridges. If someone responds, we'll learn the route. */
  184. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  185. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  186. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  187. while (ab != nconf->activeBridges().end()) {
  188. bridges[numBridges++] = *ab;
  189. ++ab;
  190. }
  191. } else {
  192. // Otherwise pick a random set of them
  193. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  194. if (ab == nconf->activeBridges().end())
  195. ab = nconf->activeBridges().begin();
  196. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  197. bridges[numBridges++] = *ab;
  198. ++ab;
  199. } else ++ab;
  200. }
  201. }
  202. }
  203. for(unsigned int b=0;b<numBridges;++b) {
  204. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  205. outp.append(network->id());
  206. if (network->peerNeedsOurMembershipCertificate(bridges[b],RR->node->now())) {
  207. outp.append((unsigned char)0x01); // 0x01 -- COM included
  208. nconf->com().serialize(outp);
  209. } else {
  210. outp.append((unsigned char)0);
  211. }
  212. to.appendTo(outp);
  213. from.appendTo(outp);
  214. outp.append((uint16_t)etherType);
  215. outp.append(data,len);
  216. outp.compress();
  217. send(outp,true,network->id());
  218. }
  219. }
  220. }
  221. void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
  222. {
  223. if (packet.destination() == RR->identity.address()) {
  224. TRACE("BUG: caught attempt to send() to self, ignored");
  225. return;
  226. }
  227. if (!_trySend(packet,encrypt,nwid)) {
  228. Mutex::Lock _l(_txQueue_m);
  229. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt,nwid)));
  230. }
  231. }
  232. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  233. {
  234. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  235. return false;
  236. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  237. if (!p1p)
  238. return false;
  239. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  240. if (!p2p)
  241. return false;
  242. const uint64_t now = RR->node->now();
  243. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  244. if (!(cg.first))
  245. return false;
  246. if (cg.first.ipScope() != cg.second.ipScope())
  247. return false;
  248. // Addresses are sorted in key for last unite attempt map for order
  249. // invariant lookup: (p1,p2) == (p2,p1)
  250. Array<Address,2> uniteKey;
  251. if (p1 >= p2) {
  252. uniteKey[0] = p2;
  253. uniteKey[1] = p1;
  254. } else {
  255. uniteKey[0] = p1;
  256. uniteKey[1] = p2;
  257. }
  258. {
  259. Mutex::Lock _l(_lastUniteAttempt_m);
  260. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  261. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  262. return false;
  263. else _lastUniteAttempt[uniteKey] = now;
  264. }
  265. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  266. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  267. * P2 in randomized order in terms of which gets sent first. This is done
  268. * since in a few cases NAT-t can be sensitive to slight timing differences
  269. * in terms of when the two peers initiate. Normally this is accounted for
  270. * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
  271. * given that relay are hosted on cloud providers this can in some
  272. * cases have a few ms of latency between packet departures. By randomizing
  273. * the order we make each attempted NAT-t favor one or the other going
  274. * first, meaning if it doesn't succeed the first time it might the second
  275. * and so forth. */
  276. unsigned int alt = RR->prng->next32() & 1;
  277. unsigned int completed = alt + 2;
  278. while (alt != completed) {
  279. if ((alt & 1) == 0) {
  280. // Tell p1 where to find p2.
  281. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  282. outp.append((unsigned char)0);
  283. p2.appendTo(outp);
  284. outp.append((uint16_t)cg.first.port());
  285. if (cg.first.isV6()) {
  286. outp.append((unsigned char)16);
  287. outp.append(cg.first.rawIpData(),16);
  288. } else {
  289. outp.append((unsigned char)4);
  290. outp.append(cg.first.rawIpData(),4);
  291. }
  292. outp.armor(p1p->key(),true);
  293. p1p->send(RR,outp.data(),outp.size(),now);
  294. } else {
  295. // Tell p2 where to find p1.
  296. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  297. outp.append((unsigned char)0);
  298. p1.appendTo(outp);
  299. outp.append((uint16_t)cg.second.port());
  300. if (cg.second.isV6()) {
  301. outp.append((unsigned char)16);
  302. outp.append(cg.second.rawIpData(),16);
  303. } else {
  304. outp.append((unsigned char)4);
  305. outp.append(cg.second.rawIpData(),4);
  306. }
  307. outp.armor(p2p->key(),true);
  308. p2p->send(RR,outp.data(),outp.size(),now);
  309. }
  310. ++alt; // counts up and also flips LSB
  311. }
  312. return true;
  313. }
  314. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  315. {
  316. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  317. const uint64_t now = RR->node->now();
  318. // Attempt to contact directly
  319. peer->attemptToContactAt(RR,atAddr,now);
  320. // If we have not punched through after this timeout, open refreshing can of whupass
  321. {
  322. Mutex::Lock _l(_contactQueue_m);
  323. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr));
  324. }
  325. }
  326. void Switch::requestWhois(const Address &addr)
  327. {
  328. bool inserted = false;
  329. {
  330. Mutex::Lock _l(_outstandingWhoisRequests_m);
  331. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  332. if ((inserted = entry.second))
  333. entry.first->second.lastSent = RR->node->now();
  334. entry.first->second.retries = 0; // reset retry count if entry already existed
  335. }
  336. if (inserted)
  337. _sendWhoisRequest(addr,(const Address *)0,0);
  338. }
  339. void Switch::cancelWhoisRequest(const Address &addr)
  340. {
  341. Mutex::Lock _l(_outstandingWhoisRequests_m);
  342. _outstandingWhoisRequests.erase(addr);
  343. }
  344. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  345. {
  346. { // cancel pending WHOIS since we now know this peer
  347. Mutex::Lock _l(_outstandingWhoisRequests_m);
  348. _outstandingWhoisRequests.erase(peer->address());
  349. }
  350. { // finish processing any packets waiting on peer's public key / identity
  351. Mutex::Lock _l(_rxQueue_m);
  352. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  353. if ((*rxi)->tryDecode(RR))
  354. _rxQueue.erase(rxi++);
  355. else ++rxi;
  356. }
  357. }
  358. { // finish sending any packets waiting on peer's public key / identity
  359. Mutex::Lock _l(_txQueue_m);
  360. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  361. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  362. if (_trySend(txi->second.packet,txi->second.encrypt,txi->second.nwid))
  363. _txQueue.erase(txi++);
  364. else ++txi;
  365. }
  366. }
  367. }
  368. unsigned long Switch::doTimerTasks(uint64_t now)
  369. {
  370. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  371. { // Aggressive NAT traversal time!
  372. Mutex::Lock _l(_contactQueue_m);
  373. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  374. if (now >= qi->fireAtTime) {
  375. if (qi->peer->hasActiveDirectPath(now)) {
  376. // We've successfully NAT-t'd, so cancel attempt
  377. _contactQueue.erase(qi++);
  378. continue;
  379. } else {
  380. // Nope, nothing yet. Time to kill some kittens.
  381. if (qi->strategyIteration == 0) {
  382. // First strategy: send packet directly (we already tried this but try again)
  383. qi->peer->attemptToContactAt(RR,qi->inaddr,now);
  384. } else if (qi->strategyIteration <= 9) {
  385. // Strategies 1-9: try escalating ports
  386. InetAddress tmpaddr(qi->inaddr);
  387. int p = (int)qi->inaddr.port() + qi->strategyIteration;
  388. if (p < 0xffff) {
  389. tmpaddr.setPort((unsigned int)p);
  390. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  391. } else qi->strategyIteration = 9;
  392. } else if (qi->strategyIteration <= 18) {
  393. // Strategies 10-18: try ports below
  394. InetAddress tmpaddr(qi->inaddr);
  395. int p = (int)qi->inaddr.port() - (qi->strategyIteration - 9);
  396. if (p >= 1024) {
  397. tmpaddr.setPort((unsigned int)p);
  398. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  399. } else qi->strategyIteration = 18;
  400. } else {
  401. // All strategies tried, expire entry
  402. _contactQueue.erase(qi++);
  403. continue;
  404. }
  405. ++qi->strategyIteration;
  406. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  407. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  408. }
  409. } else {
  410. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  411. }
  412. ++qi; // if qi was erased, loop will have continued before here
  413. }
  414. }
  415. { // Retry outstanding WHOIS requests
  416. Mutex::Lock _l(_outstandingWhoisRequests_m);
  417. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  418. unsigned long since = (unsigned long)(now - i->second.lastSent);
  419. if (since >= ZT_WHOIS_RETRY_DELAY) {
  420. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  421. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  422. _outstandingWhoisRequests.erase(i++);
  423. continue;
  424. } else {
  425. i->second.lastSent = now;
  426. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  427. ++i->second.retries;
  428. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  429. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  430. }
  431. } else {
  432. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  433. }
  434. ++i;
  435. }
  436. }
  437. { // Time out TX queue packets that never got WHOIS lookups or other info.
  438. Mutex::Lock _l(_txQueue_m);
  439. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  440. if (_trySend(i->second.packet,i->second.encrypt,i->second.nwid))
  441. _txQueue.erase(i++);
  442. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  443. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  444. _txQueue.erase(i++);
  445. } else ++i;
  446. }
  447. }
  448. { // Time out RX queue packets that never got WHOIS lookups or other info.
  449. Mutex::Lock _l(_rxQueue_m);
  450. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  451. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  452. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  453. _rxQueue.erase(i++);
  454. } else ++i;
  455. }
  456. }
  457. { // Time out packets that didn't get all their fragments.
  458. Mutex::Lock _l(_defragQueue_m);
  459. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  460. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  461. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  462. _defragQueue.erase(i++);
  463. } else ++i;
  464. }
  465. }
  466. return nextDelay;
  467. }
  468. const char *Switch::etherTypeName(const unsigned int etherType)
  469. throw()
  470. {
  471. switch(etherType) {
  472. case ZT_ETHERTYPE_IPV4: return "IPV4";
  473. case ZT_ETHERTYPE_ARP: return "ARP";
  474. case ZT_ETHERTYPE_RARP: return "RARP";
  475. case ZT_ETHERTYPE_ATALK: return "ATALK";
  476. case ZT_ETHERTYPE_AARP: return "AARP";
  477. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  478. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  479. case ZT_ETHERTYPE_IPV6: return "IPV6";
  480. }
  481. return "UNKNOWN";
  482. }
  483. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,const void *data,unsigned int len)
  484. {
  485. Packet::Fragment fragment(data,len);
  486. Address destination(fragment.destination());
  487. if (destination != RR->identity.address()) {
  488. // Fragment is not for us, so try to relay it
  489. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  490. fragment.incrementHops();
  491. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  492. // It wouldn't hurt anything, just redundant and unnecessary.
  493. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  494. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  495. // Don't know peer or no direct path -- so relay via root server
  496. relayTo = RR->topology->getBestRoot();
  497. if (relayTo)
  498. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  499. }
  500. } else {
  501. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  502. }
  503. } else {
  504. // Fragment looks like ours
  505. uint64_t pid = fragment.packetId();
  506. unsigned int fno = fragment.fragmentNumber();
  507. unsigned int tf = fragment.totalFragments();
  508. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  509. // Fragment appears basically sane. Its fragment number must be
  510. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  511. // Total fragments must be more than 1, otherwise why are we
  512. // seeing a Packet::Fragment?
  513. Mutex::Lock _l(_defragQueue_m);
  514. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  515. if (dqe == _defragQueue.end()) {
  516. // We received a Packet::Fragment without its head, so queue it and wait
  517. DefragQueueEntry &dq = _defragQueue[pid];
  518. dq.creationTime = RR->node->now();
  519. dq.frags[fno - 1] = fragment;
  520. dq.totalFragments = tf; // total fragment count is known
  521. dq.haveFragments = 1 << fno; // we have only this fragment
  522. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  523. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  524. // We have other fragments and maybe the head, so add this one and check
  525. dqe->second.frags[fno - 1] = fragment;
  526. dqe->second.totalFragments = tf;
  527. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  528. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  529. // We have all fragments -- assemble and process full Packet
  530. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  531. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  532. for(unsigned int f=1;f<tf;++f)
  533. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  534. _defragQueue.erase(dqe);
  535. if (!packet->tryDecode(RR)) {
  536. Mutex::Lock _l(_rxQueue_m);
  537. _rxQueue.push_back(packet);
  538. }
  539. }
  540. } // else this is a duplicate fragment, ignore
  541. }
  542. }
  543. }
  544. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,const void *data,unsigned int len)
  545. {
  546. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,RR->node->now()));
  547. Address source(packet->source());
  548. Address destination(packet->destination());
  549. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  550. if (destination != RR->identity.address()) {
  551. // Packet is not for us, so try to relay it
  552. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  553. packet->incrementHops();
  554. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  555. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  556. unite(source,destination,false);
  557. } else {
  558. // Don't know peer or no direct path -- so relay via root server
  559. relayTo = RR->topology->getBestRoot(&source,1,true);
  560. if (relayTo)
  561. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  562. }
  563. } else {
  564. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  565. }
  566. } else if (packet->fragmented()) {
  567. // Packet is the head of a fragmented packet series
  568. uint64_t pid = packet->packetId();
  569. Mutex::Lock _l(_defragQueue_m);
  570. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  571. if (dqe == _defragQueue.end()) {
  572. // If we have no other fragments yet, create an entry and save the head
  573. DefragQueueEntry &dq = _defragQueue[pid];
  574. dq.creationTime = RR->node->now();
  575. dq.frag0 = packet;
  576. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  577. dq.haveFragments = 1; // head is first bit (left to right)
  578. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  579. } else if (!(dqe->second.haveFragments & 1)) {
  580. // If we have other fragments but no head, see if we are complete with the head
  581. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  582. // We have all fragments -- assemble and process full Packet
  583. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  584. // packet already contains head, so append fragments
  585. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  586. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  587. _defragQueue.erase(dqe);
  588. if (!packet->tryDecode(RR)) {
  589. Mutex::Lock _l(_rxQueue_m);
  590. _rxQueue.push_back(packet);
  591. }
  592. } else {
  593. // Still waiting on more fragments, so queue the head
  594. dqe->second.frag0 = packet;
  595. }
  596. } // else this is a duplicate head, ignore
  597. } else {
  598. // Packet is unfragmented, so just process it
  599. if (!packet->tryDecode(RR)) {
  600. Mutex::Lock _l(_rxQueue_m);
  601. _rxQueue.push_back(packet);
  602. }
  603. }
  604. }
  605. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  606. {
  607. SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  608. if (root) {
  609. Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
  610. addr.appendTo(outp);
  611. outp.armor(root->key(),true);
  612. if (root->send(RR,outp.data(),outp.size(),RR->node->now()))
  613. return root->address();
  614. }
  615. return Address();
  616. }
  617. bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
  618. {
  619. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  620. if (peer) {
  621. const uint64_t now = RR->node->now();
  622. SharedPtr<Network> network;
  623. SharedPtr<NetworkConfig> nconf;
  624. if (nwid) {
  625. network = RR->node->network(nwid);
  626. if (!network)
  627. return false; // we probably just left this network, let its packets die
  628. nconf = network->config2();
  629. if (!nconf)
  630. return false; // sanity check: unconfigured network? why are we trying to talk to it?
  631. }
  632. RemotePath *viaPath = peer->getBestPath(now);
  633. SharedPtr<Peer> relay;
  634. if (!viaPath) {
  635. // See if this network has a preferred relay (if packet has an associated network)
  636. if (nconf) {
  637. unsigned int latency = ~((unsigned int)0);
  638. for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) {
  639. if (r->first != peer->address()) {
  640. SharedPtr<Peer> rp(RR->topology->getPeer(r->first));
  641. if ((rp)&&(rp->hasActiveDirectPath(now))&&(rp->latency() <= latency))
  642. rp.swap(relay);
  643. }
  644. }
  645. }
  646. // Otherwise relay off a root server
  647. if (!relay)
  648. relay = RR->topology->getBestRoot();
  649. if (!(relay)||(!(viaPath = relay->getBestPath(now))))
  650. return false; // no paths, no root servers?
  651. }
  652. if ((network)&&(relay)&&(network->isAllowed(peer->address()))) {
  653. // Push hints for direct connectivity to this peer if we are relaying
  654. peer->pushDirectPaths(RR,viaPath,now,false);
  655. }
  656. Packet tmp(packet);
  657. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  658. tmp.setFragmented(chunkSize < tmp.size());
  659. tmp.armor(peer->key(),encrypt);
  660. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  661. if (chunkSize < tmp.size()) {
  662. // Too big for one packet, fragment the rest
  663. unsigned int fragStart = chunkSize;
  664. unsigned int remaining = tmp.size() - chunkSize;
  665. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  666. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  667. ++fragsRemaining;
  668. unsigned int totalFragments = fragsRemaining + 1;
  669. for(unsigned int fno=1;fno<totalFragments;++fno) {
  670. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  671. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  672. viaPath->send(RR,frag.data(),frag.size(),now);
  673. fragStart += chunkSize;
  674. remaining -= chunkSize;
  675. }
  676. }
  677. return true;
  678. }
  679. } else {
  680. requestWhois(packet.destination());
  681. }
  682. return false;
  683. }
  684. } // namespace ZeroTier