| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993 | /* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015  ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program.  If not, see <http://www.gnu.org/licenses/>. * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */#include <stdio.h>#include <stdlib.h>#include <stdarg.h>#include <string.h>#include <stdint.h>#include "../version.h"#include "Constants.hpp"#include "Node.hpp"#include "RuntimeEnvironment.hpp"#include "NetworkController.hpp"#include "Switch.hpp"#include "Multicaster.hpp"#include "AntiRecursion.hpp"#include "Topology.hpp"#include "Buffer.hpp"#include "Packet.hpp"#include "Address.hpp"#include "Identity.hpp"#include "SelfAwareness.hpp"#include "Cluster.hpp"const struct sockaddr_storage ZT_SOCKADDR_NULL = {0};namespace ZeroTier {/****************************************************************************//* Public Node interface (C++, exposed via CAPI bindings)                   *//****************************************************************************/Node::Node(	uint64_t now,	void *uptr,	ZT_DataStoreGetFunction dataStoreGetFunction,	ZT_DataStorePutFunction dataStorePutFunction,	ZT_WirePacketSendFunction wirePacketSendFunction,	ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction,	ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction,	ZT_EventCallback eventCallback) :	_RR(this),	RR(&_RR),	_uPtr(uptr),	_dataStoreGetFunction(dataStoreGetFunction),	_dataStorePutFunction(dataStorePutFunction),	_wirePacketSendFunction(wirePacketSendFunction),	_virtualNetworkFrameFunction(virtualNetworkFrameFunction),	_virtualNetworkConfigFunction(virtualNetworkConfigFunction),	_eventCallback(eventCallback),	_networks(),	_networks_m(),	_prngStreamPtr(0),	_now(now),	_lastPingCheck(0),	_lastHousekeepingRun(0){	_online = false;	// Use Salsa20 alone as a high-quality non-crypto PRNG	{		char foo[32];		Utils::getSecureRandom(foo,32);		_prng.init(foo,256,foo);		memset(_prngStream,0,sizeof(_prngStream));		_prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream));	}	std::string idtmp(dataStoreGet("identity.secret"));	if ((!idtmp.length())||(!RR->identity.fromString(idtmp))||(!RR->identity.hasPrivate())) {		TRACE("identity.secret not found, generating...");		RR->identity.generate();		idtmp = RR->identity.toString(true);		if (!dataStorePut("identity.secret",idtmp,true))			throw std::runtime_error("unable to write identity.secret");	}	RR->publicIdentityStr = RR->identity.toString(false);	RR->secretIdentityStr = RR->identity.toString(true);	idtmp = dataStoreGet("identity.public");	if (idtmp != RR->publicIdentityStr) {		if (!dataStorePut("identity.public",RR->publicIdentityStr,false))			throw std::runtime_error("unable to write identity.public");	}	try {		RR->sw = new Switch(RR);		RR->mc = new Multicaster(RR);		RR->antiRec = new AntiRecursion();		RR->topology = new Topology(RR);		RR->sa = new SelfAwareness(RR);	} catch ( ... ) {		delete RR->sa;		delete RR->topology;		delete RR->antiRec;		delete RR->mc;		delete RR->sw;		throw;	}	postEvent(ZT_EVENT_UP);}Node::~Node(){	Mutex::Lock _l(_networks_m);	_networks.clear(); // ensure that networks are destroyed before shutdown	delete RR->sa;	delete RR->topology;	delete RR->antiRec;	delete RR->mc;	delete RR->sw;#ifdef ZT_ENABLE_CLUSTER	delete RR->cluster;#endif}ZT_ResultCode Node::processWirePacket(	uint64_t now,	const struct sockaddr_storage *localAddress,	const struct sockaddr_storage *remoteAddress,	const void *packetData,	unsigned int packetLength,	volatile uint64_t *nextBackgroundTaskDeadline){	_now = now;	RR->sw->onRemotePacket(*(reinterpret_cast<const InetAddress *>(localAddress)),*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);	return ZT_RESULT_OK;}ZT_ResultCode Node::processVirtualNetworkFrame(	uint64_t now,	uint64_t nwid,	uint64_t sourceMac,	uint64_t destMac,	unsigned int etherType,	unsigned int vlanId,	const void *frameData,	unsigned int frameLength,	volatile uint64_t *nextBackgroundTaskDeadline){	_now = now;	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		RR->sw->onLocalEthernet(nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);		return ZT_RESULT_OK;	} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;}class _PingPeersThatNeedPing{public:	_PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now,const std::vector< std::pair<Address,InetAddress> > &relays) :		lastReceiveFromUpstream(0),		RR(renv),		_now(now),		_relays(relays),		_world(RR->topology->world())	{	}	uint64_t lastReceiveFromUpstream; // tracks last time we got a packet from an 'upstream' peer like a root or a relay	inline void operator()(Topology &t,const SharedPtr<Peer> &p)	{		bool upstream = false;		InetAddress stableEndpoint4,stableEndpoint6;		// If this is a world root, pick (if possible) both an IPv4 and an IPv6 stable endpoint to use if link isn't currently alive.		for(std::vector<World::Root>::const_iterator r(_world.roots().begin());r!=_world.roots().end();++r) {			if (r->identity.address() == p->address()) {				upstream = true;				for(unsigned long k=0,ptr=RR->node->prng();k<r->stableEndpoints.size();++k) {					const InetAddress &addr = r->stableEndpoints[ptr++ % r->stableEndpoints.size()];					if (!stableEndpoint4) {						if (addr.ss_family == AF_INET)							stableEndpoint4 = addr;					}					if (!stableEndpoint6) {						if (addr.ss_family == AF_INET6)							stableEndpoint6 = addr;					}				}				break;			}		}		if (!upstream) {			// If I am a root server, only ping other root servers -- roots don't ping "down"			// since that would just be a waste of bandwidth and could potentially cause route			// flapping in Cluster mode.			if (RR->topology->amRoot())				return;			// Check for network preferred relays, also considered 'upstream' and thus always			// pinged to keep links up. If they have stable addresses we will try them there.			for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(_relays.begin());r!=_relays.end();++r) {				if (r->first == p->address()) {					if (r->second.ss_family == AF_INET)						stableEndpoint4 = r->second;					else if (r->second.ss_family == AF_INET6)						stableEndpoint6 = r->second;					upstream = true;					break;				}			}		}		if (upstream) {			// "Upstream" devices are roots and relays and get special treatment -- they stay alive			// forever and we try to keep (if available) both IPv4 and IPv6 channels open to them.			bool needToContactIndirect = true;			if (p->doPingAndKeepalive(RR,_now,AF_INET)) {				needToContactIndirect = false;			} else {				if (stableEndpoint4) {					needToContactIndirect = false;					p->attemptToContactAt(RR,InetAddress(),stableEndpoint4,_now);				}			}			if (p->doPingAndKeepalive(RR,_now,AF_INET6)) {				needToContactIndirect = false;			} else {				if (stableEndpoint6) {					needToContactIndirect = false;					p->attemptToContactAt(RR,InetAddress(),stableEndpoint6,_now);				}			}			if (needToContactIndirect) {				// If this is an upstream and we have no stable endpoint for either IPv4 or IPv6,				// send a NOP indirectly if possible to see if we can get to this peer in any				// way whatsoever. This will e.g. find network preferred relays that lack				// stable endpoints by using root servers.				Packet outp(p->address(),RR->identity.address(),Packet::VERB_NOP);				RR->sw->send(outp,true,0);			}			lastReceiveFromUpstream = std::max(p->lastReceive(),lastReceiveFromUpstream);		} else if (p->activelyTransferringFrames(_now)) {			// Normal nodes get their preferred link kept alive if the node has generated frame traffic recently			p->doPingAndKeepalive(RR,_now,0);		}	}private:	const RuntimeEnvironment *RR;	uint64_t _now;	const std::vector< std::pair<Address,InetAddress> > &_relays;	World _world;};ZT_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline){	_now = now;	Mutex::Lock bl(_backgroundTasksLock);	unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;	const uint64_t timeSinceLastPingCheck = now - _lastPingCheck;	if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) {		try {			_lastPingCheck = now;			// Get relays and networks that need config without leaving the mutex locked			std::vector< std::pair<Address,InetAddress> > networkRelays;			std::vector< SharedPtr<Network> > needConfig;			{				Mutex::Lock _l(_networks_m);				for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n) {					SharedPtr<NetworkConfig> nc(n->second->config2());					if (((now - n->second->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!nc))						needConfig.push_back(n->second);					if (nc)						networkRelays.insert(networkRelays.end(),nc->relays().begin(),nc->relays().end());				}			}			// Request updated configuration for networks that need it			for(std::vector< SharedPtr<Network> >::const_iterator n(needConfig.begin());n!=needConfig.end();++n)				(*n)->requestConfiguration();			// Do pings and keepalives			_PingPeersThatNeedPing pfunc(RR,now,networkRelays);			RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);			// Update online status, post status change as event			const bool oldOnline = _online;			_online = (((now - pfunc.lastReceiveFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amRoot()));			if (oldOnline != _online)				postEvent(_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);		} catch ( ... ) {			return ZT_RESULT_FATAL_ERROR_INTERNAL;		}	} else {		timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;	}	if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {		try {			_lastHousekeepingRun = now;			RR->topology->clean(now);			RR->sa->clean(now);			RR->mc->clean(now);		} catch ( ... ) {			return ZT_RESULT_FATAL_ERROR_INTERNAL;		}	}	try {#ifdef ZT_ENABLE_CLUSTER		// If clustering is enabled we have to call cluster->doPeriodicTasks() very often, so we override normal timer deadline behavior		if (RR->cluster) {			RR->sw->doTimerTasks(now);			RR->cluster->doPeriodicTasks();			*nextBackgroundTaskDeadline = now + ZT_CLUSTER_PERIODIC_TASK_PERIOD; // this is really short so just tick at this rate		} else {#endif			*nextBackgroundTaskDeadline = now + (uint64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);#ifdef ZT_ENABLE_CLUSTER		}#endif	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}	return ZT_RESULT_OK;}ZT_ResultCode Node::join(uint64_t nwid){	Mutex::Lock _l(_networks_m);	SharedPtr<Network> nw = _network(nwid);	if(!nw)		_networks.push_back(std::pair< uint64_t,SharedPtr<Network> >(nwid,SharedPtr<Network>(new Network(RR,nwid))));	std::sort(_networks.begin(),_networks.end()); // will sort by nwid since it's the first in a pair<>	return ZT_RESULT_OK;}ZT_ResultCode Node::leave(uint64_t nwid){	std::vector< std::pair< uint64_t,SharedPtr<Network> > > newn;	Mutex::Lock _l(_networks_m);	for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n) {		if (n->first != nwid)			newn.push_back(*n);		else n->second->destroy();	}	_networks.swap(newn);	return ZT_RESULT_OK;}ZT_ResultCode Node::multicastSubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi){	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		nw->multicastSubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));		return ZT_RESULT_OK;	} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;}ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi){	SharedPtr<Network> nw(this->network(nwid));	if (nw) {		nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));		return ZT_RESULT_OK;	} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;}uint64_t Node::address() const{	return RR->identity.address().toInt();}void Node::status(ZT_NodeStatus *status) const{	status->address = RR->identity.address().toInt();	status->worldId = RR->topology->worldId();	status->worldTimestamp = RR->topology->worldTimestamp();	status->publicIdentity = RR->publicIdentityStr.c_str();	status->secretIdentity = RR->secretIdentityStr.c_str();	status->online = _online ? 1 : 0;}ZT_PeerList *Node::peers() const{	std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());	std::sort(peers.begin(),peers.end());	char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));	if (!buf)		return (ZT_PeerList *)0;	ZT_PeerList *pl = (ZT_PeerList *)buf;	pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));	pl->peerCount = 0;	for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {		ZT_Peer *p = &(pl->peers[pl->peerCount++]);		p->address = pi->second->address().toInt();		p->lastUnicastFrame = pi->second->lastUnicastFrame();		p->lastMulticastFrame = pi->second->lastMulticastFrame();		if (pi->second->remoteVersionKnown()) {			p->versionMajor = pi->second->remoteVersionMajor();			p->versionMinor = pi->second->remoteVersionMinor();			p->versionRev = pi->second->remoteVersionRevision();		} else {			p->versionMajor = -1;			p->versionMinor = -1;			p->versionRev = -1;		}		p->latency = pi->second->latency();		p->role = RR->topology->isRoot(pi->second->identity()) ? ZT_PEER_ROLE_ROOT : ZT_PEER_ROLE_LEAF;		std::vector<Path> paths(pi->second->paths());		Path *bestPath = pi->second->getBestPath(_now);		p->pathCount = 0;		for(std::vector<Path>::iterator path(paths.begin());path!=paths.end();++path) {			memcpy(&(p->paths[p->pathCount].address),&(path->address()),sizeof(struct sockaddr_storage));			p->paths[p->pathCount].lastSend = path->lastSend();			p->paths[p->pathCount].lastReceive = path->lastReceived();			p->paths[p->pathCount].active = path->active(_now) ? 1 : 0;			p->paths[p->pathCount].preferred = ((bestPath)&&(*path == *bestPath)) ? 1 : 0;			++p->pathCount;		}	}	return pl;}ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const{	Mutex::Lock _l(_networks_m);	SharedPtr<Network> nw = _network(nwid);	if(nw) {		ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));		nw->externalConfig(nc);		return nc;	}	return (ZT_VirtualNetworkConfig *)0;}ZT_VirtualNetworkList *Node::networks() const{	Mutex::Lock _l(_networks_m);	char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));	if (!buf)		return (ZT_VirtualNetworkList *)0;	ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;	nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));	nl->networkCount = 0;	for(std::vector< std::pair< uint64_t,SharedPtr<Network> > >::const_iterator n(_networks.begin());n!=_networks.end();++n)		n->second->externalConfig(&(nl->networks[nl->networkCount++]));	return nl;}void Node::freeQueryResult(void *qr){	if (qr)		::free(qr);}int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr){	if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {		Mutex::Lock _l(_directPaths_m);		_directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));		std::sort(_directPaths.begin(),_directPaths.end());		_directPaths.erase(std::unique(_directPaths.begin(),_directPaths.end()),_directPaths.end());		return 1;	}	return 0;}void Node::clearLocalInterfaceAddresses(){	Mutex::Lock _l(_directPaths_m);	_directPaths.clear();}void Node::setNetconfMaster(void *networkControllerInstance){	RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);}ZT_ResultCode Node::circuitTestBegin(ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)){	if (test->hopCount > 0) {		try {			Packet outp(Address(),RR->identity.address(),Packet::VERB_CIRCUIT_TEST);			RR->identity.address().appendTo(outp);			outp.append((uint16_t)((test->reportAtEveryHop != 0) ? 0x03 : 0x02));			outp.append((uint64_t)test->timestamp);			outp.append((uint64_t)test->testId);			outp.append((uint16_t)0); // originator credential length, updated later			if (test->credentialNetworkId) {				outp.append((uint8_t)0x01);				outp.append((uint64_t)test->credentialNetworkId);				outp.setAt<uint16_t>(ZT_PACKET_IDX_PAYLOAD + 23,(uint16_t)9);			}			outp.append((uint16_t)0);			C25519::Signature sig(RR->identity.sign(reinterpret_cast<const char *>(outp.data()) + ZT_PACKET_IDX_PAYLOAD,outp.size() - ZT_PACKET_IDX_PAYLOAD));			outp.append((uint16_t)sig.size());			outp.append(sig.data,sig.size());			outp.append((uint16_t)0); // originator doesn't need an extra credential, since it's the originator			for(unsigned int h=1;h<test->hopCount;++h) {				outp.append((uint8_t)0);				outp.append((uint8_t)(test->hops[h].breadth & 0xff));				for(unsigned int a=0;a<test->hops[h].breadth;++a)					Address(test->hops[h].addresses[a]).appendTo(outp);			}			for(unsigned int a=0;a<test->hops[0].breadth;++a) {				outp.newInitializationVector();				outp.setDestination(Address(test->hops[0].addresses[a]));				RR->sw->send(outp,true,0);			}		} catch ( ... ) {			return ZT_RESULT_FATAL_ERROR_INTERNAL; // probably indicates FIFO too big for packet		}	}	{		test->_internalPtr = reinterpret_cast<void *>(reportCallback);		Mutex::Lock _l(_circuitTests_m);		if (std::find(_circuitTests.begin(),_circuitTests.end(),test) == _circuitTests.end())			_circuitTests.push_back(test);	}	return ZT_RESULT_OK;}void Node::circuitTestEnd(ZT_CircuitTest *test){	Mutex::Lock _l(_circuitTests_m);	for(;;) {		std::vector< ZT_CircuitTest * >::iterator ct(std::find(_circuitTests.begin(),_circuitTests.end(),test));		if (ct == _circuitTests.end())			break;		else _circuitTests.erase(ct);	}}ZT_ResultCode Node::clusterInit(	unsigned int myId,	const struct sockaddr_storage *zeroTierPhysicalEndpoints,	unsigned int numZeroTierPhysicalEndpoints,	int x,	int y,	int z,	void (*sendFunction)(void *,unsigned int,const void *,unsigned int),	void *sendFunctionArg,	int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),	void *addressToLocationFunctionArg){#ifdef ZT_ENABLE_CLUSTER	if (RR->cluster)		return ZT_RESULT_ERROR_BAD_PARAMETER;	std::vector<InetAddress> eps;	for(unsigned int i=0;i<numZeroTierPhysicalEndpoints;++i)		eps.push_back(InetAddress(zeroTierPhysicalEndpoints[i]));	std::sort(eps.begin(),eps.end());	RR->cluster = new Cluster(RR,myId,eps,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg);	return ZT_RESULT_OK;#else	return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION;#endif}ZT_ResultCode Node::clusterAddMember(unsigned int memberId){#ifdef ZT_ENABLE_CLUSTER	if (!RR->cluster)		return ZT_RESULT_ERROR_BAD_PARAMETER;	RR->cluster->addMember((uint16_t)memberId);	return ZT_RESULT_OK;#else	return ZT_RESULT_ERROR_UNSUPPORTED_OPERATION;#endif}void Node::clusterRemoveMember(unsigned int memberId){#ifdef ZT_ENABLE_CLUSTER	if (RR->cluster)		RR->cluster->removeMember((uint16_t)memberId);#endif}void Node::clusterHandleIncomingMessage(const void *msg,unsigned int len){#ifdef ZT_ENABLE_CLUSTER	if (RR->cluster)		RR->cluster->handleIncomingStateMessage(msg,len);#endif}void Node::clusterStatus(ZT_ClusterStatus *cs){	if (!cs)		return;#ifdef ZT_ENABLE_CLUSTER	if (RR->cluster)		RR->cluster->status(*cs);	else#endif	memset(cs,0,sizeof(ZT_ClusterStatus));}/****************************************************************************//* Node methods used only within node/                                      *//****************************************************************************/std::string Node::dataStoreGet(const char *name){	char buf[16384];	std::string r;	unsigned long olen = 0;	do {		long n = _dataStoreGetFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,name,buf,sizeof(buf),(unsigned long)r.length(),&olen);		if (n <= 0)			return std::string();		r.append(buf,n);	} while (r.length() < olen);	return r;}#ifdef ZT_TRACEvoid Node::postTrace(const char *module,unsigned int line,const char *fmt,...){	static Mutex traceLock;	va_list ap;	char tmp1[1024],tmp2[1024],tmp3[256];	Mutex::Lock _l(traceLock);	time_t now = (time_t)(_now / 1000ULL);#ifdef __WINDOWS__	ctime_s(tmp3,sizeof(tmp3),&now);	char *nowstr = tmp3;#else	char *nowstr = ctime_r(&now,tmp3);#endif	unsigned long nowstrlen = (unsigned long)strlen(nowstr);	if (nowstr[nowstrlen-1] == '\n')		nowstr[--nowstrlen] = (char)0;	if (nowstr[nowstrlen-1] == '\r')		nowstr[--nowstrlen] = (char)0;	va_start(ap,fmt);	vsnprintf(tmp2,sizeof(tmp2),fmt,ap);	va_end(ap);	tmp2[sizeof(tmp2)-1] = (char)0;	Utils::snprintf(tmp1,sizeof(tmp1),"[%s] %s:%u %s",nowstr,module,line,tmp2);	postEvent(ZT_EVENT_TRACE,tmp1);}#endif // ZT_TRACEuint64_t Node::prng(){	unsigned int p = (++_prngStreamPtr % (sizeof(_prngStream) / sizeof(uint64_t)));	if (!p)		_prng.encrypt12(_prngStream,_prngStream,sizeof(_prngStream));	return _prngStream[p];}void Node::postCircuitTestReport(const ZT_CircuitTestReport *report){	std::vector< ZT_CircuitTest * > toNotify;	{		Mutex::Lock _l(_circuitTests_m);		for(std::vector< ZT_CircuitTest * >::iterator i(_circuitTests.begin());i!=_circuitTests.end();++i) {			if ((*i)->testId == report->testId)				toNotify.push_back(*i);		}	}	for(std::vector< ZT_CircuitTest * >::iterator i(toNotify.begin());i!=toNotify.end();++i)		(reinterpret_cast<void (*)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)>((*i)->_internalPtr))(reinterpret_cast<ZT_Node *>(this),*i,report);}} // namespace ZeroTier/****************************************************************************//* CAPI bindings                                                            *//****************************************************************************/extern "C" {enum ZT_ResultCode ZT_Node_new(	ZT_Node **node,	void *uptr,	uint64_t now,	ZT_DataStoreGetFunction dataStoreGetFunction,	ZT_DataStorePutFunction dataStorePutFunction,	ZT_WirePacketSendFunction wirePacketSendFunction,	ZT_VirtualNetworkFrameFunction virtualNetworkFrameFunction,	ZT_VirtualNetworkConfigFunction virtualNetworkConfigFunction,	ZT_EventCallback eventCallback){	*node = (ZT_Node *)0;	try {		*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(now,uptr,dataStoreGetFunction,dataStorePutFunction,wirePacketSendFunction,virtualNetworkFrameFunction,virtualNetworkConfigFunction,eventCallback));		return ZT_RESULT_OK;	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch (std::runtime_error &exc) {		return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}void ZT_Node_delete(ZT_Node *node){	try {		delete (reinterpret_cast<ZeroTier::Node *>(node));	} catch ( ... ) {}}enum ZT_ResultCode ZT_Node_processWirePacket(	ZT_Node *node,	uint64_t now,	const struct sockaddr_storage *localAddress,	const struct sockaddr_storage *remoteAddress,	const void *packetData,	unsigned int packetLength,	volatile uint64_t *nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(now,localAddress,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up	}}enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(	ZT_Node *node,	uint64_t now,	uint64_t nwid,	uint64_t sourceMac,	uint64_t destMac,	unsigned int etherType,	unsigned int vlanId,	const void *frameData,	unsigned int frameLength,	volatile uint64_t *nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,uint64_t now,volatile uint64_t *nextBackgroundTaskDeadline){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(now,nextBackgroundTaskDeadline);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(nwid,multicastGroup,multicastAdi);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);	} catch (std::bad_alloc &exc) {		return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}uint64_t ZT_Node_address(ZT_Node *node){	return reinterpret_cast<ZeroTier::Node *>(node)->address();}void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status){	try {		reinterpret_cast<ZeroTier::Node *>(node)->status(status);	} catch ( ... ) {}}ZT_PeerList *ZT_Node_peers(ZT_Node *node){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->peers();	} catch ( ... ) {		return (ZT_PeerList *)0;	}}ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);	} catch ( ... ) {		return (ZT_VirtualNetworkConfig *)0;	}}ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->networks();	} catch ( ... ) {		return (ZT_VirtualNetworkList *)0;	}}void ZT_Node_freeQueryResult(ZT_Node *node,void *qr){	try {		reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);	} catch ( ... ) {}}int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);	} catch ( ... ) {		return 0;	}}void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node){	try {		reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();	} catch ( ... ) {}}void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance){	try {		reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);	} catch ( ... ) {}}enum ZT_ResultCode ZT_Node_circuitTestBegin(ZT_Node *node,ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *)){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->circuitTestBegin(test,reportCallback);	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}void ZT_Node_circuitTestEnd(ZT_Node *node,ZT_CircuitTest *test){	try {		reinterpret_cast<ZeroTier::Node *>(node)->circuitTestEnd(test);	} catch ( ... ) {}}enum ZT_ResultCode ZT_Node_clusterInit(	ZT_Node *node,	unsigned int myId,	const struct sockaddr_storage *zeroTierPhysicalEndpoints,	unsigned int numZeroTierPhysicalEndpoints,	int x,	int y,	int z,	void (*sendFunction)(void *,unsigned int,const void *,unsigned int),	void *sendFunctionArg,	int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),	void *addressToLocationFunctionArg){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->clusterInit(myId,zeroTierPhysicalEndpoints,numZeroTierPhysicalEndpoints,x,y,z,sendFunction,sendFunctionArg,addressToLocationFunction,addressToLocationFunctionArg);	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}enum ZT_ResultCode ZT_Node_clusterAddMember(ZT_Node *node,unsigned int memberId){	try {		return reinterpret_cast<ZeroTier::Node *>(node)->clusterAddMember(memberId);	} catch ( ... ) {		return ZT_RESULT_FATAL_ERROR_INTERNAL;	}}void ZT_Node_clusterRemoveMember(ZT_Node *node,unsigned int memberId){	try {		reinterpret_cast<ZeroTier::Node *>(node)->clusterRemoveMember(memberId);	} catch ( ... ) {}}void ZT_Node_clusterHandleIncomingMessage(ZT_Node *node,const void *msg,unsigned int len){	try {		reinterpret_cast<ZeroTier::Node *>(node)->clusterHandleIncomingMessage(msg,len);	} catch ( ... ) {}}void ZT_Node_clusterStatus(ZT_Node *node,ZT_ClusterStatus *cs){	try {		reinterpret_cast<ZeroTier::Node *>(node)->clusterStatus(cs);	} catch ( ... ) {}}void ZT_version(int *major,int *minor,int *revision,unsigned long *featureFlags){	if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;	if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;	if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;	if (featureFlags) {		*featureFlags = (			ZT_FEATURE_FLAG_THREAD_SAFE		);	}}} // extern "C"
 |