Cluster.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Packet.hpp"
  43. #include "Identity.hpp"
  44. #include "Peer.hpp"
  45. #include "Switch.hpp"
  46. #include "Node.hpp"
  47. namespace ZeroTier {
  48. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  49. throw()
  50. {
  51. double dx = ((double)x2 - (double)x1);
  52. double dy = ((double)y2 - (double)y1);
  53. double dz = ((double)z2 - (double)z1);
  54. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  55. }
  56. Cluster::Cluster(
  57. const RuntimeEnvironment *renv,
  58. uint16_t id,
  59. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  60. int32_t x,
  61. int32_t y,
  62. int32_t z,
  63. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  64. void *sendFunctionArg,
  65. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  66. void *addressToLocationFunctionArg) :
  67. RR(renv),
  68. _sendFunction(sendFunction),
  69. _sendFunctionArg(sendFunctionArg),
  70. _addressToLocationFunction(addressToLocationFunction),
  71. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  72. _x(x),
  73. _y(y),
  74. _z(z),
  75. _id(id),
  76. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  77. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS])
  78. {
  79. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  80. // Generate master secret by hashing the secret from our Identity key pair
  81. RR->identity.sha512PrivateKey(_masterSecret);
  82. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  83. memcpy(stmp,_masterSecret,sizeof(stmp));
  84. stmp[0] ^= Utils::hton(id);
  85. SHA512::hash(stmp,stmp,sizeof(stmp));
  86. SHA512::hash(stmp,stmp,sizeof(stmp));
  87. memcpy(_key,stmp,sizeof(_key));
  88. Utils::burn(stmp,sizeof(stmp));
  89. }
  90. Cluster::~Cluster()
  91. {
  92. Utils::burn(_masterSecret,sizeof(_masterSecret));
  93. Utils::burn(_key,sizeof(_key));
  94. delete [] _members;
  95. }
  96. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  97. {
  98. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  99. {
  100. // FORMAT: <[16] iv><[8] MAC><... data>
  101. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  102. return;
  103. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  104. char keytmp[32];
  105. memcpy(keytmp,_key,32);
  106. for(int i=0;i<8;++i)
  107. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  108. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  109. Utils::burn(keytmp,sizeof(keytmp));
  110. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  111. char polykey[ZT_POLY1305_KEY_LEN];
  112. memset(polykey,0,sizeof(polykey));
  113. s20.encrypt12(polykey,polykey,sizeof(polykey));
  114. // Compute 16-byte MAC
  115. char mac[ZT_POLY1305_MAC_LEN];
  116. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  117. // Check first 8 bytes of MAC against 64-bit MAC in stream
  118. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  119. return;
  120. // Decrypt!
  121. dmsg.setSize(len - 24);
  122. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  123. }
  124. if (dmsg.size() < 4)
  125. return;
  126. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  127. unsigned int ptr = 2;
  128. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  129. return;
  130. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  131. ptr += 2;
  132. if (toMemberId != _id) // sanity check: message not for us?
  133. return;
  134. { // make sure sender is actually considered a member
  135. Mutex::Lock _l3(_memberIds_m);
  136. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  137. return;
  138. }
  139. {
  140. _Member &m = _members[fromMemberId];
  141. Mutex::Lock mlck(m.lock);
  142. try {
  143. while (ptr < dmsg.size()) {
  144. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  145. const unsigned int nextPtr = ptr + mlen;
  146. if (nextPtr > dmsg.size())
  147. break;
  148. int mtype = -1;
  149. try {
  150. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  151. default:
  152. break;
  153. case STATE_MESSAGE_ALIVE: {
  154. ptr += 7; // skip version stuff, not used yet
  155. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  156. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  157. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  158. ptr += 8; // skip local clock, not used
  159. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  160. ptr += 8; // skip flags, unused
  161. #ifdef ZT_TRACE
  162. std::string addrs;
  163. #endif
  164. unsigned int physicalAddressCount = dmsg[ptr++];
  165. m.zeroTierPhysicalEndpoints.clear();
  166. for(unsigned int i=0;i<physicalAddressCount;++i) {
  167. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  168. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  169. if (!(m.zeroTierPhysicalEndpoints.back())) {
  170. m.zeroTierPhysicalEndpoints.pop_back();
  171. }
  172. #ifdef ZT_TRACE
  173. else {
  174. if (addrs.length() > 0)
  175. addrs.push_back(',');
  176. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  177. }
  178. #endif
  179. }
  180. #ifdef ZT_TRACE
  181. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  182. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  183. }
  184. #endif
  185. m.lastReceivedAliveAnnouncement = RR->node->now();
  186. } break;
  187. case STATE_MESSAGE_HAVE_PEER: {
  188. try {
  189. Identity id;
  190. ptr += id.deserialize(dmsg,ptr);
  191. if (id) {
  192. RR->topology->saveIdentity(id);
  193. { // Add or update peer affinity entry
  194. _PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
  195. Mutex::Lock _l2(_peerAffinities_m);
  196. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  197. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  198. i->timestamp = pa.timestamp;
  199. } else {
  200. _peerAffinities.push_back(pa);
  201. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  202. }
  203. }
  204. TRACE("[%u] has %s",(unsigned int)fromMemberId,id.address().toString().c_str());
  205. }
  206. } catch ( ... ) {
  207. // ignore invalid identities
  208. }
  209. } break;
  210. case STATE_MESSAGE_MULTICAST_LIKE: {
  211. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  212. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  213. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  214. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  215. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  216. TRACE("[%u] %s likes %s/%u on %.16llu",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  217. } break;
  218. case STATE_MESSAGE_COM: {
  219. CertificateOfMembership com;
  220. ptr += com.deserialize(dmsg,ptr);
  221. if (com) {
  222. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  223. }
  224. } break;
  225. case STATE_MESSAGE_RELAY: {
  226. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  227. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  228. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  229. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  230. const unsigned int packetLen = dmsg.at<uint16_t>(ptr); ptr += 2;
  231. const void *packet = (const void *)dmsg.field(ptr,packetLen); ptr += packetLen;
  232. if (packetLen >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { // ignore anything too short to contain a dest address
  233. const Address destinationAddress(reinterpret_cast<const char *>(packet) + 8,ZT_ADDRESS_LENGTH);
  234. TRACE("[%u] relay %u bytes to %s (%u remote paths included)",(unsigned int)fromMemberId,packetLen,destinationAddress.toString().c_str(),numRemotePeerPaths);
  235. SharedPtr<Peer> destinationPeer(RR->topology->getPeer(destinationAddress));
  236. if (destinationPeer) {
  237. if (
  238. (destinationPeer->send(RR,packet,packetLen,RR->node->now()))&&
  239. (numRemotePeerPaths > 0)&&
  240. (packetLen >= 18)&&
  241. (reinterpret_cast<const unsigned char *>(packet)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  242. ) {
  243. // If remote peer paths were sent with this relayed packet, we do
  244. // RENDEZVOUS. It's handled here for cluster-relayed packets since
  245. // we don't have both Peer records so this is a different path.
  246. const Address remotePeerAddress(reinterpret_cast<const char *>(packet) + 13,ZT_ADDRESS_LENGTH);
  247. InetAddress bestDestV4,bestDestV6;
  248. destinationPeer->getBestActiveAddresses(RR->node->now(),bestDestV4,bestDestV6);
  249. InetAddress bestRemoteV4,bestRemoteV6;
  250. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  251. if ((bestRemoteV4)&&(bestRemoteV6))
  252. break;
  253. switch(remotePeerPaths[i].ss_family) {
  254. case AF_INET:
  255. if (!bestRemoteV4)
  256. bestRemoteV4 = remotePeerPaths[i];
  257. break;
  258. case AF_INET6:
  259. if (!bestRemoteV6)
  260. bestRemoteV6 = remotePeerPaths[i];
  261. break;
  262. }
  263. }
  264. Packet rendezvousForDest(destinationAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  265. rendezvousForDest.append((uint8_t)0);
  266. remotePeerAddress.appendTo(rendezvousForDest);
  267. Buffer<2048> rendezvousForOtherEnd;
  268. remotePeerAddress.appendTo(rendezvousForOtherEnd);
  269. rendezvousForOtherEnd.append((uint8_t)Packet::VERB_RENDEZVOUS);
  270. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForOtherEnd.size();
  271. rendezvousForOtherEnd.addSize(2); // space for actual packet payload length
  272. rendezvousForOtherEnd.append((uint8_t)0); // flags == 0
  273. destinationAddress.appendTo(rendezvousForOtherEnd);
  274. bool haveMatch = false;
  275. if ((bestDestV6)&&(bestRemoteV6)) {
  276. haveMatch = true;
  277. rendezvousForDest.append((uint16_t)bestRemoteV6.port());
  278. rendezvousForDest.append((uint8_t)16);
  279. rendezvousForDest.append(bestRemoteV6.rawIpData(),16);
  280. rendezvousForOtherEnd.append((uint16_t)bestDestV6.port());
  281. rendezvousForOtherEnd.append((uint8_t)16);
  282. rendezvousForOtherEnd.append(bestDestV6.rawIpData(),16);
  283. rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  284. } else if ((bestDestV4)&&(bestRemoteV4)) {
  285. haveMatch = true;
  286. rendezvousForDest.append((uint16_t)bestRemoteV4.port());
  287. rendezvousForDest.append((uint8_t)4);
  288. rendezvousForDest.append(bestRemoteV4.rawIpData(),4);
  289. rendezvousForOtherEnd.append((uint16_t)bestDestV4.port());
  290. rendezvousForOtherEnd.append((uint8_t)4);
  291. rendezvousForOtherEnd.append(bestDestV4.rawIpData(),4);
  292. rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  293. }
  294. if (haveMatch) {
  295. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForOtherEnd.data(),rendezvousForOtherEnd.size());
  296. RR->sw->send(rendezvousForDest,true,0);
  297. }
  298. }
  299. }
  300. }
  301. } break;
  302. case STATE_MESSAGE_PROXY_SEND: {
  303. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  304. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  305. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  306. Packet outp(rcpt,RR->identity.address(),verb);
  307. outp.append(dmsg.field(ptr,len),len);
  308. RR->sw->send(outp,true,0);
  309. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  310. } break;
  311. }
  312. } catch ( ... ) {
  313. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  314. // drop invalids
  315. }
  316. ptr = nextPtr;
  317. }
  318. } catch ( ... ) {
  319. TRACE("invalid message (outer loop), discarding");
  320. // drop invalids
  321. }
  322. }
  323. }
  324. bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len)
  325. {
  326. if (len > 16384) // sanity check
  327. return false;
  328. uint64_t mostRecentTimestamp = 0;
  329. uint16_t canHasPeer = 0;
  330. { // Anyone got this peer?
  331. Mutex::Lock _l2(_peerAffinities_m);
  332. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),_PeerAffinity(toPeerAddress,0,0))); // O(log(n))
  333. while ((i != _peerAffinities.end())&&(i->address() == toPeerAddress)) {
  334. uint16_t mid = i->clusterMemberId();
  335. if ((mid != _id)&&(i->timestamp > mostRecentTimestamp)) {
  336. mostRecentTimestamp = i->timestamp;
  337. canHasPeer = mid;
  338. }
  339. }
  340. }
  341. const uint64_t now = RR->node->now();
  342. if ((now - mostRecentTimestamp) < ZT_PEER_ACTIVITY_TIMEOUT) {
  343. Buffer<16384> buf;
  344. InetAddress v4,v6;
  345. if (fromPeerAddress) {
  346. SharedPtr<Peer> fromPeer(RR->topology->getPeer(fromPeerAddress));
  347. if (fromPeer)
  348. fromPeer->getBestActiveAddresses(now,v4,v6);
  349. }
  350. buf.append((uint8_t)( (v4) ? ((v6) ? 2 : 1) : ((v6) ? 1 : 0) ));
  351. if (v4)
  352. v4.serialize(buf);
  353. if (v6)
  354. v6.serialize(buf);
  355. buf.append((uint16_t)len);
  356. buf.append(data,len);
  357. {
  358. Mutex::Lock _l2(_members[canHasPeer].lock);
  359. _send(canHasPeer,STATE_MESSAGE_RELAY,buf.data(),buf.size());
  360. }
  361. TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
  362. return true;
  363. } else {
  364. TRACE("sendViaCluster(): unable to relay %u bytes from %s to %s since no cluster members seem to have it!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  365. return false;
  366. }
  367. }
  368. void Cluster::replicateHavePeer(const Identity &peerId)
  369. {
  370. { // Use peer affinity table to track our own last announce time for peers
  371. _PeerAffinity pa(peerId.address(),_id,RR->node->now());
  372. Mutex::Lock _l2(_peerAffinities_m);
  373. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  374. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  375. if ((pa.timestamp - i->timestamp) >= ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
  376. i->timestamp = pa.timestamp;
  377. // continue to announcement
  378. } else {
  379. // we've already announced this peer recently, so skip
  380. return;
  381. }
  382. } else {
  383. _peerAffinities.push_back(pa);
  384. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  385. // continue to announcement
  386. }
  387. }
  388. // announcement
  389. Buffer<4096> buf;
  390. peerId.serialize(buf,false);
  391. {
  392. Mutex::Lock _l(_memberIds_m);
  393. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  394. Mutex::Lock _l2(_members[*mid].lock);
  395. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  396. }
  397. }
  398. }
  399. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  400. {
  401. Buffer<2048> buf;
  402. buf.append((uint64_t)nwid);
  403. peerAddress.appendTo(buf);
  404. group.mac().appendTo(buf);
  405. buf.append((uint32_t)group.adi());
  406. TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
  407. {
  408. Mutex::Lock _l(_memberIds_m);
  409. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  410. Mutex::Lock _l2(_members[*mid].lock);
  411. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  412. }
  413. }
  414. }
  415. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  416. {
  417. Buffer<2048> buf;
  418. com.serialize(buf);
  419. TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
  420. {
  421. Mutex::Lock _l(_memberIds_m);
  422. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  423. Mutex::Lock _l2(_members[*mid].lock);
  424. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  425. }
  426. }
  427. }
  428. void Cluster::doPeriodicTasks()
  429. {
  430. const uint64_t now = RR->node->now();
  431. {
  432. Mutex::Lock _l(_memberIds_m);
  433. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  434. Mutex::Lock _l2(_members[*mid].lock);
  435. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  436. Buffer<2048> alive;
  437. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  438. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  439. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  440. alive.append((uint8_t)ZT_PROTO_VERSION);
  441. if (_addressToLocationFunction) {
  442. alive.append((int32_t)_x);
  443. alive.append((int32_t)_y);
  444. alive.append((int32_t)_z);
  445. } else {
  446. alive.append((int32_t)0);
  447. alive.append((int32_t)0);
  448. alive.append((int32_t)0);
  449. }
  450. alive.append((uint64_t)now);
  451. alive.append((uint64_t)0); // TODO: compute and send load average
  452. alive.append((uint64_t)0); // unused/reserved flags
  453. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  454. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  455. pe->serialize(alive);
  456. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  457. _members[*mid].lastAnnouncedAliveTo = now;
  458. }
  459. _flush(*mid); // does nothing if nothing to flush
  460. }
  461. }
  462. }
  463. void Cluster::addMember(uint16_t memberId)
  464. {
  465. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  466. return;
  467. Mutex::Lock _l2(_members[memberId].lock);
  468. {
  469. Mutex::Lock _l(_memberIds_m);
  470. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  471. return;
  472. _memberIds.push_back(memberId);
  473. std::sort(_memberIds.begin(),_memberIds.end());
  474. }
  475. _members[memberId].clear();
  476. // Generate this member's message key from the master and its ID
  477. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  478. memcpy(stmp,_masterSecret,sizeof(stmp));
  479. stmp[0] ^= Utils::hton(memberId);
  480. SHA512::hash(stmp,stmp,sizeof(stmp));
  481. SHA512::hash(stmp,stmp,sizeof(stmp));
  482. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  483. Utils::burn(stmp,sizeof(stmp));
  484. // Prepare q
  485. _members[memberId].q.clear();
  486. char iv[16];
  487. Utils::getSecureRandom(iv,16);
  488. _members[memberId].q.append(iv,16);
  489. _members[memberId].q.addSize(8); // room for MAC
  490. _members[memberId].q.append((uint16_t)_id);
  491. _members[memberId].q.append((uint16_t)memberId);
  492. }
  493. void Cluster::removeMember(uint16_t memberId)
  494. {
  495. Mutex::Lock _l(_memberIds_m);
  496. std::vector<uint16_t> newMemberIds;
  497. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  498. if (*mid != memberId)
  499. newMemberIds.push_back(*mid);
  500. }
  501. _memberIds = newMemberIds;
  502. }
  503. bool Cluster::redirectPeer(const SharedPtr<Peer> &peer,const InetAddress &localAddress,const InetAddress &peerPhysicalAddress,bool offload)
  504. {
  505. if (!peerPhysicalAddress) // sanity check
  506. return false;
  507. if (_addressToLocationFunction) {
  508. // Pick based on location if it can be determined
  509. int px = 0,py = 0,pz = 0;
  510. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  511. TRACE("NO GEOLOCATION available for %s",peerPhysicalAddress.toIpString().c_str());
  512. return false;
  513. }
  514. // Find member closest to this peer
  515. const uint64_t now = RR->node->now();
  516. std::vector<InetAddress> best; // initial "best" is for peer to stay put
  517. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  518. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  519. unsigned int bestMember = _id;
  520. TRACE("%s is at %d,%d,%d -- looking for anyone closer than %d,%d,%d (%fkm)",peerPhysicalAddress.toString().c_str(),px,py,pz,_x,_y,_z,bestDistance);
  521. {
  522. Mutex::Lock _l(_memberIds_m);
  523. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  524. _Member &m = _members[*mid];
  525. Mutex::Lock _ml(m.lock);
  526. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  527. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  528. double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  529. if (mdist < bestDistance) {
  530. bestDistance = mdist;
  531. bestMember = *mid;
  532. best = m.zeroTierPhysicalEndpoints;
  533. }
  534. }
  535. }
  536. }
  537. if (best.size() > 0) {
  538. TRACE("%s seems closer to %u at %fkm, suggesting redirect...",peer->address().toString().c_str(),bestMember,bestDistance);
  539. /* if (peer->remoteVersionProtocol() >= 5) {
  540. // If it's a newer peer send VERB_PUSH_DIRECT_PATHS which is more idiomatic
  541. } else { */
  542. // Otherwise send VERB_RENDEZVOUS for ourselves, which will trick peers into trying other endpoints for us even if they're too old for PUSH_DIRECT_PATHS
  543. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  544. if (a->ss_family == peerPhysicalAddress.ss_family) {
  545. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
  546. outp.append((uint8_t)0); // no flags
  547. RR->identity.address().appendTo(outp); // HACK: rendezvous with ourselves! with really old peers this will only work if I'm a root server!
  548. outp.append((uint16_t)a->port());
  549. if (a->ss_family == AF_INET) {
  550. outp.append((uint8_t)4);
  551. outp.append(a->rawIpData(),4);
  552. } else {
  553. outp.append((uint8_t)16);
  554. outp.append(a->rawIpData(),16);
  555. }
  556. outp.armor(peer->key(),true);
  557. RR->antiRec->logOutgoingZT(outp.data(),outp.size());
  558. RR->node->putPacket(localAddress,peerPhysicalAddress,outp.data(),outp.size());
  559. }
  560. }
  561. //}
  562. return true;
  563. } else {
  564. //TRACE("peer %s is at [%d,%d,%d], distance to us is %f and this seems to be the best",peer->address().toString().c_str(),px,py,pz,currentDistance);
  565. return false;
  566. }
  567. } else {
  568. // TODO: pick based on load if no location info?
  569. return false;
  570. }
  571. }
  572. void Cluster::status(ZT_ClusterStatus &status) const
  573. {
  574. const uint64_t now = RR->node->now();
  575. memset(&status,0,sizeof(ZT_ClusterStatus));
  576. ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS];
  577. memset(ms,0,sizeof(ms));
  578. status.myId = _id;
  579. ms[_id] = &(status.members[status.clusterSize++]);
  580. ms[_id]->id = _id;
  581. ms[_id]->alive = 1;
  582. ms[_id]->x = _x;
  583. ms[_id]->y = _y;
  584. ms[_id]->z = _z;
  585. ms[_id]->peers = RR->topology->countAlive();
  586. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  587. if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  588. break;
  589. memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  590. }
  591. {
  592. Mutex::Lock _l1(_memberIds_m);
  593. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  594. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  595. break;
  596. ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]);
  597. _Member &m = _members[*mid];
  598. Mutex::Lock ml(m.lock);
  599. s->id = *mid;
  600. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  601. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  602. s->x = m.x;
  603. s->y = m.y;
  604. s->z = m.z;
  605. s->load = m.load;
  606. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  607. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  608. break;
  609. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  610. }
  611. }
  612. }
  613. {
  614. Mutex::Lock _l2(_peerAffinities_m);
  615. for(std::vector<_PeerAffinity>::const_iterator pi(_peerAffinities.begin());pi!=_peerAffinities.end();++pi) {
  616. unsigned int mid = pi->clusterMemberId();
  617. if ((ms[mid])&&(mid != _id)&&((now - pi->timestamp) < ZT_PEER_ACTIVITY_TIMEOUT))
  618. ++ms[mid]->peers;
  619. }
  620. }
  621. }
  622. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  623. {
  624. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  625. return;
  626. _Member &m = _members[memberId];
  627. // assumes m.lock is locked!
  628. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  629. _flush(memberId);
  630. m.q.append((uint16_t)(len + 1));
  631. m.q.append((uint8_t)type);
  632. m.q.append(msg,len);
  633. }
  634. void Cluster::_flush(uint16_t memberId)
  635. {
  636. _Member &m = _members[memberId];
  637. // assumes m.lock is locked!
  638. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  639. // Create key from member's key and IV
  640. char keytmp[32];
  641. memcpy(keytmp,m.key,32);
  642. for(int i=0;i<8;++i)
  643. keytmp[i] ^= m.q[i];
  644. Salsa20 s20(keytmp,256,m.q.field(8,8));
  645. Utils::burn(keytmp,sizeof(keytmp));
  646. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  647. char polykey[ZT_POLY1305_KEY_LEN];
  648. memset(polykey,0,sizeof(polykey));
  649. s20.encrypt12(polykey,polykey,sizeof(polykey));
  650. // Encrypt m.q in place
  651. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  652. // Add MAC for authentication (encrypt-then-MAC)
  653. char mac[ZT_POLY1305_MAC_LEN];
  654. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  655. memcpy(m.q.field(16,8),mac,8);
  656. // Send!
  657. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  658. // Prepare for more
  659. m.q.clear();
  660. char iv[16];
  661. Utils::getSecureRandom(iv,16);
  662. m.q.append(iv,16);
  663. m.q.addSize(8); // room for MAC
  664. m.q.append((uint16_t)_id); // from member ID
  665. m.q.append((uint16_t)memberId); // to member ID
  666. }
  667. }
  668. } // namespace ZeroTier
  669. #endif // ZT_ENABLE_CLUSTER