Switch.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2011-2014 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "CMWC4096.hpp"
  46. #include "../version.h"
  47. namespace ZeroTier {
  48. Switch::Switch(const RuntimeEnvironment *renv) :
  49. _r(renv),
  50. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  51. {
  52. }
  53. Switch::~Switch()
  54. {
  55. }
  56. void Switch::onRemotePacket(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,Buffer<ZT_SOCKET_MAX_MESSAGE_LEN> &data)
  57. {
  58. try {
  59. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  60. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  61. _handleRemotePacketFragment(fromSock,fromAddr,data);
  62. else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
  63. _handleRemotePacketHead(fromSock,fromAddr,data);
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. if (to == network->mac()) {
  77. LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tapDeviceName().c_str());
  78. return;
  79. }
  80. if (from != network->mac()) {
  81. LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  82. return;
  83. }
  84. if (!nconf->permitsEtherType(etherType)) {
  85. LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  86. return;
  87. }
  88. if (to.isMulticast()) {
  89. MulticastGroup mg(to,0);
  90. if (to.isBroadcast()) {
  91. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  92. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  93. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  94. }
  95. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  96. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  97. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  98. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
  99. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  100. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  101. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  102. for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
  103. memset(bloom,0,sizeof(bloom));
  104. unsigned char *fifoPtr = fifo;
  105. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
  106. while (fifoPtr != fifoEnd)
  107. *(fifoPtr++) = (unsigned char)0;
  108. Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
  109. if (!firstHop) {
  110. if (supernode)
  111. firstHop = supernode->address();
  112. else continue;
  113. }
  114. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  115. outp.append((uint16_t)0);
  116. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  117. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  118. outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
  119. outp.append(network->id());
  120. outp.append(bloomNonce);
  121. outp.append((unsigned char)nconf->multicastPrefixBits());
  122. outp.append((unsigned char)prefix);
  123. _r->identity.address().appendTo(outp);
  124. outp.append((unsigned char)((mcid >> 16) & 0xff));
  125. outp.append((unsigned char)((mcid >> 8) & 0xff));
  126. outp.append((unsigned char)(mcid & 0xff));
  127. outp.append(from.data,6);
  128. outp.append(mg.mac().data,6);
  129. outp.append(mg.adi());
  130. outp.append((uint16_t)etherType);
  131. outp.append((uint16_t)data.size());
  132. outp.append(data);
  133. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  134. outp.append((uint16_t)sig.size());
  135. outp.append(sig.data,(unsigned int)sig.size());
  136. if (nconf->com())
  137. nconf->com().serialize(outp);
  138. outp.compress();
  139. send(outp,true);
  140. }
  141. } else if (to.isZeroTier()) {
  142. // Simple unicast frame from us to another node
  143. Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
  144. if (network->isAllowed(toZT)) {
  145. network->pushMembershipCertificate(toZT,false,Utils::now());
  146. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  147. outp.append(network->id());
  148. outp.append((uint16_t)etherType);
  149. outp.append(data);
  150. outp.compress();
  151. send(outp,true);
  152. } else {
  153. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  154. }
  155. } else {
  156. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  157. }
  158. }
  159. void Switch::send(const Packet &packet,bool encrypt)
  160. {
  161. if (packet.destination() == _r->identity.address()) {
  162. TRACE("BUG: caught attempt to send() to self, ignored");
  163. return;
  164. }
  165. if (!_trySend(packet,encrypt)) {
  166. Mutex::Lock _l(_txQueue_m);
  167. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  168. }
  169. }
  170. void Switch::sendHELLO(const Address &dest)
  171. {
  172. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  173. outp.append((unsigned char)ZT_PROTO_VERSION);
  174. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  175. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  176. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  177. outp.append(Utils::now());
  178. _r->identity.serialize(outp,false);
  179. send(outp,false);
  180. }
  181. bool Switch::sendHELLO(const SharedPtr<Socket> &fromSock,const SharedPtr<Peer> &dest,const InetAddress &remoteAddr)
  182. {
  183. uint64_t now = Utils::now();
  184. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  185. outp.append((unsigned char)ZT_PROTO_VERSION);
  186. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  187. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  188. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  189. outp.append(now);
  190. _r->identity.serialize(outp,false);
  191. outp.armor(dest->key(),false);
  192. return fromSock->send(remoteAddr,outp.data(),outp.size());
  193. }
  194. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const InetAddress &remoteAddr,bool tcp)
  195. {
  196. uint64_t now = Utils::now();
  197. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  198. outp.append((unsigned char)ZT_PROTO_VERSION);
  199. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  200. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  201. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  202. outp.append(now);
  203. _r->identity.serialize(outp,false);
  204. outp.armor(dest->key(),false);
  205. return _r->sm->send(remoteAddr,tcp,outp.data(),outp.size());
  206. }
  207. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  208. {
  209. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  210. return false;
  211. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  212. if (!p1p)
  213. return false;
  214. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  215. if (!p2p)
  216. return false;
  217. uint64_t now = Utils::now();
  218. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  219. if (!(cg.first))
  220. return false;
  221. // Addresses are sorted in key for last unite attempt map for order
  222. // invariant lookup: (p1,p2) == (p2,p1)
  223. Array<Address,2> uniteKey;
  224. if (p1 >= p2) {
  225. uniteKey[0] = p2;
  226. uniteKey[1] = p1;
  227. } else {
  228. uniteKey[0] = p1;
  229. uniteKey[1] = p2;
  230. }
  231. {
  232. Mutex::Lock _l(_lastUniteAttempt_m);
  233. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  234. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  235. return false;
  236. else _lastUniteAttempt[uniteKey] = now;
  237. }
  238. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  239. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  240. * P2 in randomized order in terms of which gets sent first. This is done
  241. * since in a few cases NAT-t can be sensitive to slight timing differences
  242. * in terms of when the two peers initiate. Normally this is accounted for
  243. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  244. * given that supernodes are hosted on cloud providers this can in some
  245. * cases have a few ms of latency between packet departures. By randomizing
  246. * the order we make each attempted NAT-t favor one or the other going
  247. * first, meaning if it doesn't succeed the first time it might the second
  248. * and so forth. */
  249. unsigned int alt = _r->prng->next32() & 1;
  250. unsigned int completed = alt + 2;
  251. while (alt != completed) {
  252. if ((alt & 1) == 0) {
  253. // Tell p1 where to find p2.
  254. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  255. outp.append((unsigned char)0);
  256. p2.appendTo(outp);
  257. outp.append((uint16_t)cg.first.port());
  258. if (cg.first.isV6()) {
  259. outp.append((unsigned char)16);
  260. outp.append(cg.first.rawIpData(),16);
  261. } else {
  262. outp.append((unsigned char)4);
  263. outp.append(cg.first.rawIpData(),4);
  264. }
  265. outp.armor(p1p->key(),true);
  266. p1p->send(_r,outp.data(),outp.size(),now);
  267. } else {
  268. // Tell p2 where to find p1.
  269. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  270. outp.append((unsigned char)0);
  271. p1.appendTo(outp);
  272. outp.append((uint16_t)cg.second.port());
  273. if (cg.second.isV6()) {
  274. outp.append((unsigned char)16);
  275. outp.append(cg.second.rawIpData(),16);
  276. } else {
  277. outp.append((unsigned char)4);
  278. outp.append(cg.second.rawIpData(),4);
  279. }
  280. outp.armor(p2p->key(),true);
  281. p2p->send(_r,outp.data(),outp.size(),now);
  282. }
  283. ++alt; // counts up and also flips LSB
  284. }
  285. return true;
  286. }
  287. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  288. {
  289. _r->sm->sendFirewallOpener(atAddr,ZT_FIREWALL_OPENER_HOPS);
  290. {
  291. Mutex::Lock _l(_contactQueue_m);
  292. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,atAddr));
  293. }
  294. // Kick main loop out of wait so that it can pick up this
  295. // change to our scheduled timer tasks.
  296. _r->sm->whack();
  297. }
  298. unsigned long Switch::doTimerTasks()
  299. {
  300. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  301. uint64_t now = Utils::now();
  302. {
  303. Mutex::Lock _l(_contactQueue_m);
  304. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  305. if (now >= qi->fireAtTime) {
  306. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  307. sendHELLO(qi->peer,qi->inaddr,false);
  308. _contactQueue.erase(qi++);
  309. } else {
  310. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  311. ++qi;
  312. }
  313. }
  314. }
  315. {
  316. Mutex::Lock _l(_outstandingWhoisRequests_m);
  317. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  318. unsigned long since = (unsigned long)(now - i->second.lastSent);
  319. if (since >= ZT_WHOIS_RETRY_DELAY) {
  320. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  321. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  322. _outstandingWhoisRequests.erase(i++);
  323. continue;
  324. } else {
  325. i->second.lastSent = now;
  326. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  327. ++i->second.retries;
  328. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  329. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  330. }
  331. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  332. ++i;
  333. }
  334. }
  335. {
  336. Mutex::Lock _l(_txQueue_m);
  337. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  338. if (_trySend(i->second.packet,i->second.encrypt))
  339. _txQueue.erase(i++);
  340. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  341. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  342. _txQueue.erase(i++);
  343. } else ++i;
  344. }
  345. }
  346. {
  347. Mutex::Lock _l(_rxQueue_m);
  348. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  349. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  350. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  351. _rxQueue.erase(i++);
  352. } else ++i;
  353. }
  354. }
  355. {
  356. Mutex::Lock _l(_defragQueue_m);
  357. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  358. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  359. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  360. _defragQueue.erase(i++);
  361. } else ++i;
  362. }
  363. }
  364. return std::max(nextDelay,(unsigned long)10); // minimum delay
  365. }
  366. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  367. {
  368. std::vector< SharedPtr<Peer> > directPeers;
  369. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  370. #ifdef ZT_TRACE
  371. unsigned int totalMulticastGroups = 0;
  372. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  373. totalMulticastGroups += (unsigned int)i->second.size();
  374. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  375. #endif
  376. uint64_t now = Utils::now();
  377. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  378. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  379. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  380. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  381. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  382. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  383. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  384. send(outp,true);
  385. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  386. }
  387. // network ID, MAC, ADI
  388. outp.append((uint64_t)nwmgs->first->id());
  389. outp.append(mg->mac().data,6);
  390. outp.append((uint32_t)mg->adi());
  391. }
  392. }
  393. }
  394. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  395. send(outp,true);
  396. }
  397. }
  398. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  399. {
  400. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  401. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  402. uint64_t now = Utils::now();
  403. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  404. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  405. (*n)->pushMembershipCertificate(peer->address(),false,now);
  406. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  407. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  408. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  409. send(outp,true);
  410. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  411. }
  412. // network ID, MAC, ADI
  413. outp.append((uint64_t)(*n)->id());
  414. outp.append(mg->mac().data,6);
  415. outp.append((uint32_t)mg->adi());
  416. }
  417. }
  418. }
  419. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  420. send(outp,true);
  421. }
  422. void Switch::requestWhois(const Address &addr)
  423. {
  424. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  425. bool inserted = false;
  426. {
  427. Mutex::Lock _l(_outstandingWhoisRequests_m);
  428. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  429. if ((inserted = entry.second))
  430. entry.first->second.lastSent = Utils::now();
  431. entry.first->second.retries = 0; // reset retry count if entry already existed
  432. }
  433. if (inserted)
  434. _sendWhoisRequest(addr,(const Address *)0,0);
  435. }
  436. void Switch::cancelWhoisRequest(const Address &addr)
  437. {
  438. Mutex::Lock _l(_outstandingWhoisRequests_m);
  439. _outstandingWhoisRequests.erase(addr);
  440. }
  441. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  442. {
  443. {
  444. Mutex::Lock _l(_outstandingWhoisRequests_m);
  445. _outstandingWhoisRequests.erase(peer->address());
  446. }
  447. {
  448. Mutex::Lock _l(_rxQueue_m);
  449. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  450. if ((*rxi)->tryDecode(_r))
  451. _rxQueue.erase(rxi++);
  452. else ++rxi;
  453. }
  454. }
  455. {
  456. Mutex::Lock _l(_txQueue_m);
  457. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  458. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  459. if (_trySend(txi->second.packet,txi->second.encrypt))
  460. _txQueue.erase(txi++);
  461. else ++txi;
  462. }
  463. }
  464. }
  465. const char *Switch::etherTypeName(const unsigned int etherType)
  466. throw()
  467. {
  468. switch(etherType) {
  469. case ZT_ETHERTYPE_IPV4: return "IPV4";
  470. case ZT_ETHERTYPE_ARP: return "ARP";
  471. case ZT_ETHERTYPE_RARP: return "RARP";
  472. case ZT_ETHERTYPE_ATALK: return "ATALK";
  473. case ZT_ETHERTYPE_AARP: return "AARP";
  474. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  475. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  476. case ZT_ETHERTYPE_IPV6: return "IPV6";
  477. }
  478. return "UNKNOWN";
  479. }
  480. void Switch::_handleRemotePacketFragment(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  481. {
  482. Packet::Fragment fragment(data);
  483. Address destination(fragment.destination());
  484. if (destination != _r->identity.address()) {
  485. // Fragment is not for us, so try to relay it
  486. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  487. fragment.incrementHops();
  488. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  489. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()))) {
  490. relayTo = _r->topology->getBestSupernode();
  491. if (relayTo)
  492. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  493. }
  494. } else {
  495. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  496. }
  497. } else {
  498. // Fragment looks like ours
  499. uint64_t pid = fragment.packetId();
  500. unsigned int fno = fragment.fragmentNumber();
  501. unsigned int tf = fragment.totalFragments();
  502. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  503. // Fragment appears basically sane. Its fragment number must be
  504. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  505. // Total fragments must be more than 1, otherwise why are we
  506. // seeing a Packet::Fragment?
  507. Mutex::Lock _l(_defragQueue_m);
  508. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  509. if (dqe == _defragQueue.end()) {
  510. // We received a Packet::Fragment without its head, so queue it and wait
  511. DefragQueueEntry &dq = _defragQueue[pid];
  512. dq.creationTime = Utils::now();
  513. dq.frags[fno - 1] = fragment;
  514. dq.totalFragments = tf; // total fragment count is known
  515. dq.haveFragments = 1 << fno; // we have only this fragment
  516. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  517. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  518. // We have other fragments and maybe the head, so add this one and check
  519. dqe->second.frags[fno - 1] = fragment;
  520. dqe->second.totalFragments = tf;
  521. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  522. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  523. // We have all fragments -- assemble and process full Packet
  524. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  525. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  526. for(unsigned int f=1;f<tf;++f)
  527. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  528. _defragQueue.erase(dqe);
  529. if (!packet->tryDecode(_r)) {
  530. Mutex::Lock _l(_rxQueue_m);
  531. _rxQueue.push_back(packet);
  532. }
  533. }
  534. } // else this is a duplicate fragment, ignore
  535. }
  536. }
  537. }
  538. void Switch::_handleRemotePacketHead(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  539. {
  540. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,fromSock,fromAddr));
  541. Address source(packet->source());
  542. Address destination(packet->destination());
  543. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  544. if (destination != _r->identity.address()) {
  545. // Packet is not for us, so try to relay it
  546. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  547. packet->incrementHops();
  548. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  549. if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),Utils::now()))) {
  550. // If we've relayed, this periodically tries to get them to
  551. // talk directly to save our bandwidth.
  552. unite(source,destination,false);
  553. } else {
  554. // If we've received a packet not for us and we don't have
  555. // a direct path to its recipient, pass it to (another)
  556. // supernode. This can happen due to Internet weather -- the
  557. // most direct supernode may not be reachable, yet another
  558. // further away may be.
  559. relayTo = _r->topology->getBestSupernode(&source,1,true);
  560. if (relayTo)
  561. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  562. }
  563. } else {
  564. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  565. }
  566. } else if (packet->fragmented()) {
  567. // Packet is the head of a fragmented packet series
  568. uint64_t pid = packet->packetId();
  569. Mutex::Lock _l(_defragQueue_m);
  570. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  571. if (dqe == _defragQueue.end()) {
  572. // If we have no other fragments yet, create an entry and save the head
  573. DefragQueueEntry &dq = _defragQueue[pid];
  574. dq.creationTime = Utils::now();
  575. dq.frag0 = packet;
  576. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  577. dq.haveFragments = 1; // head is first bit (left to right)
  578. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  579. } else if (!(dqe->second.haveFragments & 1)) {
  580. // If we have other fragments but no head, see if we are complete with the head
  581. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  582. // We have all fragments -- assemble and process full Packet
  583. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  584. // packet already contains head, so append fragments
  585. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  586. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  587. _defragQueue.erase(dqe);
  588. if (!packet->tryDecode(_r)) {
  589. Mutex::Lock _l(_rxQueue_m);
  590. _rxQueue.push_back(packet);
  591. }
  592. } else {
  593. // Still waiting on more fragments, so queue the head
  594. dqe->second.frag0 = packet;
  595. }
  596. } // else this is a duplicate head, ignore
  597. } else {
  598. // Packet is unfragmented, so just process it
  599. if (!packet->tryDecode(_r)) {
  600. Mutex::Lock _l(_rxQueue_m);
  601. _rxQueue.push_back(packet);
  602. }
  603. }
  604. }
  605. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  606. {
  607. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  608. if (supernode) {
  609. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  610. addr.appendTo(outp);
  611. outp.armor(supernode->key(),true);
  612. uint64_t now = Utils::now();
  613. if (supernode->send(_r,outp.data(),outp.size(),now))
  614. return supernode->address();
  615. }
  616. return Address();
  617. }
  618. bool Switch::_trySend(const Packet &packet,bool encrypt)
  619. {
  620. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  621. if (peer) {
  622. uint64_t now = Utils::now();
  623. SharedPtr<Peer> via;
  624. if (peer->hasActiveDirectPath(now)) {
  625. via = peer;
  626. } else {
  627. via = _r->topology->getBestSupernode();
  628. if (!via)
  629. return false;
  630. }
  631. Packet tmp(packet);
  632. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  633. tmp.setFragmented(chunkSize < tmp.size());
  634. tmp.armor(peer->key(),encrypt);
  635. if (via->send(_r,tmp.data(),chunkSize,now)) {
  636. if (chunkSize < tmp.size()) {
  637. // Too big for one bite, fragment the rest
  638. unsigned int fragStart = chunkSize;
  639. unsigned int remaining = tmp.size() - chunkSize;
  640. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  641. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  642. ++fragsRemaining;
  643. unsigned int totalFragments = fragsRemaining + 1;
  644. for(unsigned int f=0;f<fragsRemaining;++f) {
  645. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  646. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  647. if (!via->send(_r,frag.data(),frag.size(),now)) {
  648. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  649. }
  650. fragStart += chunkSize;
  651. remaining -= chunkSize;
  652. }
  653. }
  654. #ifdef ZT_TRACE
  655. if (via != peer) {
  656. TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
  657. } else {
  658. TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
  659. }
  660. #endif
  661. return true;
  662. }
  663. return false;
  664. }
  665. requestWhois(packet.destination());
  666. return false;
  667. }
  668. } // namespace ZeroTier