AES.hpp 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #ifndef ZT_AES_HPP
  27. #define ZT_AES_HPP
  28. #include "Constants.hpp"
  29. #include "Utils.hpp"
  30. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  31. #include <wmmintrin.h>
  32. #include <emmintrin.h>
  33. #include <smmintrin.h>
  34. #define ZT_AES_AESNI 1
  35. #endif
  36. #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__)
  37. #include <arm64intr.h>
  38. #include <arm64_neon.h>
  39. #ifndef ZT_AES_ARMNEON
  40. #define ZT_AES_ARMNEON 1
  41. #endif
  42. #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO))
  43. #include <arm_acle.h>
  44. #endif
  45. #endif
  46. #define ZT_AES_KEY_SIZE 32
  47. #define ZT_AES_BLOCK_SIZE 16
  48. namespace ZeroTier {
  49. /**
  50. * AES-256 and AES-GCM AEAD
  51. */
  52. class AES
  53. {
  54. public:
  55. /**
  56. * This will be true if your platform's type of AES acceleration is supported on this machine
  57. */
  58. static const bool HW_ACCEL;
  59. inline AES() {}
  60. inline AES(const uint8_t key[32]) { this->init(key); }
  61. inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
  62. inline void init(const uint8_t key[32])
  63. {
  64. #ifdef ZT_AES_AESNI
  65. if (likely(HW_ACCEL)) {
  66. _init_aesni(key);
  67. return;
  68. }
  69. #endif
  70. _initSW(key);
  71. }
  72. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  73. {
  74. #ifdef ZT_AES_AESNI
  75. if (likely(HW_ACCEL)) {
  76. _encrypt_aesni(in,out);
  77. return;
  78. }
  79. #endif
  80. _encryptSW(in,out);
  81. }
  82. inline void decrypt(const uint8_t in[16],uint8_t out[16]) const
  83. {
  84. #ifdef ZT_AES_AESNI
  85. if (likely(HW_ACCEL)) {
  86. _decrypt_aesni(in,out);
  87. return;
  88. }
  89. #endif
  90. _decryptSW(in,out);
  91. }
  92. inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
  93. {
  94. #ifdef ZT_AES_AESNI
  95. if (likely(HW_ACCEL)) {
  96. _encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
  97. return;
  98. }
  99. #endif
  100. abort(); // TODO: software
  101. }
  102. inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
  103. {
  104. #ifdef ZT_AES_AESNI
  105. if (likely(HW_ACCEL)) {
  106. uint8_t tagbuf[16];
  107. _decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen);
  108. return Utils::secureEq(tagbuf,tag,taglen);
  109. }
  110. #endif
  111. abort(); // TODO: software
  112. return false;
  113. }
  114. static inline void scramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  115. {
  116. if (inlen < 16)
  117. return;
  118. #ifdef ZT_AES_AESNI
  119. if (likely(HW_ACCEL)) {
  120. _scramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  121. return;
  122. }
  123. #endif
  124. }
  125. static inline void unscramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  126. {
  127. if (inlen < 16)
  128. return;
  129. #ifdef ZT_AES_AESNI
  130. if (likely(HW_ACCEL)) {
  131. _unscramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  132. return;
  133. }
  134. #endif
  135. }
  136. private:
  137. static const uint32_t Te0[256];
  138. static const uint32_t Te1[256];
  139. static const uint32_t Te2[256];
  140. static const uint32_t Te3[256];
  141. static const uint32_t Te4[256];
  142. static const uint32_t Td0[256];
  143. static const uint32_t Td1[256];
  144. static const uint32_t Td2[256];
  145. static const uint32_t Td3[256];
  146. static const uint8_t Td4[256];
  147. static const uint32_t rcon[10];
  148. void _initSW(const uint8_t key[32]);
  149. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  150. void _decryptSW(const uint8_t in[16],uint8_t out[16]) const;
  151. /**************************************************************************/
  152. union {
  153. #ifdef ZT_AES_ARMNEON
  154. struct {
  155. uint32x4_t k[15];
  156. } neon;
  157. #endif
  158. #ifdef ZT_AES_AESNI
  159. struct {
  160. __m128i k[28];
  161. __m128i h,hh,hhh,hhhh;
  162. } ni;
  163. #endif
  164. struct {
  165. uint32_t ek[60];
  166. uint32_t dk[60];
  167. } sw;
  168. } _k;
  169. /**************************************************************************/
  170. #ifdef ZT_AES_ARMNEON /******************************************************/
  171. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  172. {
  173. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  174. vst1q_u32(prv1, prev1);
  175. vst1q_u32(prv2, prev2);
  176. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  177. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  178. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  179. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  180. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  181. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  182. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  183. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  184. *e1 = vld1q_u3(round1);
  185. *e2 = vld1q_u3(round2);
  186. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  187. //return expansion;
  188. }
  189. inline void _init_armneon(uint8x16_t encKey)
  190. {
  191. uint32x4_t *schedule = _k.neon.k;
  192. uint32x4_t e1,e2;
  193. (*schedule)[0] = vld1q_u32(encKey);
  194. (*schedule)[1] = vld1q_u32(encKey + 16);
  195. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  196. (*schedule)[2] = e1; (*schedule)[3] = e2;
  197. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  198. (*schedule)[4] = e1; (*schedule)[5] = e2;
  199. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  200. (*schedule)[6] = e1; (*schedule)[7] = e2;
  201. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  202. (*schedule)[8] = e1; (*schedule)[9] = e2;
  203. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  204. (*schedule)[10] = e1; (*schedule)[11] = e2;
  205. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  206. (*schedule)[12] = e1; (*schedule)[13] = e2;
  207. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  208. (*schedule)[14] = e1;
  209. /*
  210. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  211. (*schedule)[2] = doubleRound[0];
  212. (*schedule)[3] = doubleRound[1];
  213. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  214. (*schedule)[4] = doubleRound[0];
  215. (*schedule)[5] = doubleRound[1];
  216. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  217. (*schedule)[6] = doubleRound[0];
  218. (*schedule)[7] = doubleRound[1];
  219. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  220. (*schedule)[8] = doubleRound[0];
  221. (*schedule)[9] = doubleRound[1];
  222. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  223. (*schedule)[10] = doubleRound[0];
  224. (*schedule)[11] = doubleRound[1];
  225. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  226. (*schedule)[12] = doubleRound[0];
  227. (*schedule)[13] = doubleRound[1];
  228. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  229. (*schedule)[14] = doubleRound[0];
  230. */
  231. }
  232. inline void _encrypt_armneon(uint8x16_t *data) const
  233. {
  234. *data = veorq_u8(*data, _k.neon.k[0]);
  235. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  236. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  237. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  238. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  239. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  240. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  241. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  242. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  243. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  244. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  245. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  246. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  247. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  248. *data = vaeseq_u8(*data, _k.neon.k[14]);
  249. }
  250. inline void _decrypt_armneon(uint8x16_t *data) const
  251. {
  252. *data = veorq_u8(*data, _k.neon.k[14]);
  253. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  254. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  255. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  256. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  257. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  258. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  259. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  260. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  261. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  262. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  263. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  264. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  265. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  266. *data = vaesdq_u8(*data, (uint8x16_t)_k.neon.k[0]);
  267. }
  268. #endif /*********************************************************************/
  269. #ifdef ZT_AES_AESNI /********************************************************/
  270. static inline __m128i _init256_1_aesni(__m128i a,__m128i b)
  271. {
  272. __m128i x,y;
  273. b = _mm_shuffle_epi32(b,0xff);
  274. y = _mm_slli_si128(a,0x04);
  275. x = _mm_xor_si128(a,y);
  276. y = _mm_slli_si128(y,0x04);
  277. x = _mm_xor_si128(x,y);
  278. y = _mm_slli_si128(y,0x04);
  279. x = _mm_xor_si128(x,y);
  280. x = _mm_xor_si128(x,b);
  281. return x;
  282. }
  283. static inline __m128i _init256_2_aesni(__m128i a,__m128i b)
  284. {
  285. __m128i x,y,z;
  286. y = _mm_aeskeygenassist_si128(a,0x00);
  287. z = _mm_shuffle_epi32(y,0xaa);
  288. y = _mm_slli_si128(b,0x04);
  289. x = _mm_xor_si128(b,y);
  290. y = _mm_slli_si128(y,0x04);
  291. x = _mm_xor_si128(x,y);
  292. y = _mm_slli_si128(y,0x04);
  293. x = _mm_xor_si128(x,y);
  294. x = _mm_xor_si128(x,z);
  295. return x;
  296. }
  297. inline void _init_aesni(const uint8_t key[32])
  298. {
  299. __m128i t1,t2;
  300. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  301. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  302. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  303. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  304. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  305. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  306. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  307. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  308. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  309. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  310. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  311. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  312. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  313. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  314. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  315. _k.ni.k[15] = _mm_aesimc_si128(_k.ni.k[13]);
  316. _k.ni.k[16] = _mm_aesimc_si128(_k.ni.k[12]);
  317. _k.ni.k[17] = _mm_aesimc_si128(_k.ni.k[11]);
  318. _k.ni.k[18] = _mm_aesimc_si128(_k.ni.k[10]);
  319. _k.ni.k[19] = _mm_aesimc_si128(_k.ni.k[9]);
  320. _k.ni.k[20] = _mm_aesimc_si128(_k.ni.k[8]);
  321. _k.ni.k[21] = _mm_aesimc_si128(_k.ni.k[7]);
  322. _k.ni.k[22] = _mm_aesimc_si128(_k.ni.k[6]);
  323. _k.ni.k[23] = _mm_aesimc_si128(_k.ni.k[5]);
  324. _k.ni.k[24] = _mm_aesimc_si128(_k.ni.k[4]);
  325. _k.ni.k[25] = _mm_aesimc_si128(_k.ni.k[3]);
  326. _k.ni.k[26] = _mm_aesimc_si128(_k.ni.k[2]);
  327. _k.ni.k[27] = _mm_aesimc_si128(_k.ni.k[1]);
  328. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  329. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  330. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  331. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  332. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  333. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  334. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  335. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  336. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  337. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  338. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  339. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  340. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  341. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  342. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  343. __m128i hswap = _swap128_aesni(h);
  344. __m128i hh = _mult_block_aesni(hswap,h);
  345. __m128i hhh = _mult_block_aesni(hswap,hh);
  346. __m128i hhhh = _mult_block_aesni(hswap,hhh);
  347. _k.ni.h = hswap;
  348. _k.ni.hh = _swap128_aesni(hh);
  349. _k.ni.hhh = _swap128_aesni(hhh);
  350. _k.ni.hhhh = _swap128_aesni(hhhh);
  351. }
  352. static inline __m128i _assist128_aesni(__m128i a,__m128i b)
  353. {
  354. __m128i c;
  355. b = _mm_shuffle_epi32(b ,0xff);
  356. c = _mm_slli_si128(a, 0x04);
  357. a = _mm_xor_si128(a, c);
  358. c = _mm_slli_si128(c, 0x04);
  359. a = _mm_xor_si128(a, c);
  360. c = _mm_slli_si128(c, 0x04);
  361. a = _mm_xor_si128(a, c);
  362. a = _mm_xor_si128(a, b);
  363. return a;
  364. }
  365. /*static inline void _expand128_aesni(__m128i schedule[10],const void *const key)
  366. {
  367. __m128i t;
  368. schedule[0] = t = _mm_loadu_si128((const __m128i *)key);
  369. schedule[1] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  370. schedule[2] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  371. schedule[3] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  372. schedule[4] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  373. schedule[5] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  374. schedule[6] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x20));
  375. schedule[7] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x40));
  376. schedule[8] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x80));
  377. schedule[9] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x1b));
  378. schedule[10] = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x36));
  379. }*/
  380. static inline void _scramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  381. {
  382. __m128i t = _mm_loadu_si128((const __m128i *)key);
  383. __m128i k0 = t;
  384. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  385. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  386. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  387. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  388. __m128i k5 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  389. while (len >= 64) {
  390. len -= 64;
  391. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  392. in += 16;
  393. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  394. in += 16;
  395. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  396. in += 16;
  397. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  398. in += 16;
  399. d0 = _mm_xor_si128(d0,k0);
  400. d1 = _mm_xor_si128(d1,k0);
  401. d2 = _mm_xor_si128(d2,k0);
  402. d3 = _mm_xor_si128(d3,k0);
  403. d0 = _mm_aesenc_si128(d0,k1);
  404. d1 = _mm_aesenc_si128(d1,k1);
  405. d2 = _mm_aesenc_si128(d2,k1);
  406. d3 = _mm_aesenc_si128(d3,k1);
  407. d0 = _mm_aesenc_si128(d0,k2);
  408. d1 = _mm_aesenc_si128(d1,k2);
  409. d2 = _mm_aesenc_si128(d2,k2);
  410. d3 = _mm_aesenc_si128(d3,k2);
  411. d0 = _mm_aesenc_si128(d0,k3);
  412. d1 = _mm_aesenc_si128(d1,k3);
  413. d2 = _mm_aesenc_si128(d2,k3);
  414. d3 = _mm_aesenc_si128(d3,k3);
  415. d0 = _mm_aesenc_si128(d0,k4);
  416. d1 = _mm_aesenc_si128(d1,k4);
  417. d2 = _mm_aesenc_si128(d2,k4);
  418. d3 = _mm_aesenc_si128(d3,k4);
  419. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  420. out += 16;
  421. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d1,k5));
  422. out += 16;
  423. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d2,k5));
  424. out += 16;
  425. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d3,k5));
  426. out += 16;
  427. }
  428. while (len >= 16) {
  429. len -= 16;
  430. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  431. in += 16;
  432. d0 = _mm_xor_si128(d0,k0);
  433. d0 = _mm_aesenc_si128(d0,k1);
  434. d0 = _mm_aesenc_si128(d0,k2);
  435. d0 = _mm_aesenc_si128(d0,k3);
  436. d0 = _mm_aesenc_si128(d0,k4);
  437. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  438. out += 16;
  439. }
  440. if (len) {
  441. __m128i last = _mm_setzero_si128();
  442. last = _mm_xor_si128(last,k0);
  443. last = _mm_aesenc_si128(last,k1);
  444. last = _mm_aesenc_si128(last,k2);
  445. last = _mm_aesenc_si128(last,k3);
  446. last = _mm_aesenc_si128(last,k4);
  447. uint8_t lpad[16];
  448. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,k5));
  449. for(unsigned int i=0;i<len;++i) {
  450. out[i] = in[i] ^ lpad[i];
  451. }
  452. }
  453. }
  454. static inline void _unscramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  455. {
  456. __m128i t = _mm_loadu_si128((const __m128i *)key);
  457. __m128i dk5 = t; // k0
  458. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  459. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  460. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  461. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  462. __m128i dk0 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10)); // k5
  463. __m128i dk1 = _mm_aesimc_si128(k4);
  464. __m128i dk2 = _mm_aesimc_si128(k3);
  465. __m128i dk3 = _mm_aesimc_si128(k2);
  466. __m128i dk4 = _mm_aesimc_si128(k1);
  467. while (len >= 64) {
  468. len -= 64;
  469. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  470. in += 16;
  471. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  472. in += 16;
  473. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  474. in += 16;
  475. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  476. in += 16;
  477. d0 = _mm_xor_si128(d0,dk0);
  478. d1 = _mm_xor_si128(d1,dk0);
  479. d2 = _mm_xor_si128(d2,dk0);
  480. d3 = _mm_xor_si128(d3,dk0);
  481. d0 = _mm_aesdec_si128(d0,dk1);
  482. d1 = _mm_aesdec_si128(d1,dk1);
  483. d2 = _mm_aesdec_si128(d2,dk1);
  484. d3 = _mm_aesdec_si128(d3,dk1);
  485. d0 = _mm_aesdec_si128(d0,dk2);
  486. d1 = _mm_aesdec_si128(d1,dk2);
  487. d2 = _mm_aesdec_si128(d2,dk2);
  488. d3 = _mm_aesdec_si128(d3,dk2);
  489. d0 = _mm_aesdec_si128(d0,dk3);
  490. d1 = _mm_aesdec_si128(d1,dk3);
  491. d2 = _mm_aesdec_si128(d2,dk3);
  492. d3 = _mm_aesdec_si128(d3,dk3);
  493. d0 = _mm_aesdec_si128(d0,dk4);
  494. d1 = _mm_aesdec_si128(d1,dk4);
  495. d2 = _mm_aesdec_si128(d2,dk4);
  496. d3 = _mm_aesdec_si128(d3,dk4);
  497. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  498. out += 16;
  499. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d1,dk5));
  500. out += 16;
  501. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d2,dk5));
  502. out += 16;
  503. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d3,dk5));
  504. out += 16;
  505. }
  506. while (len >= 16) {
  507. len -= 16;
  508. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  509. in += 16;
  510. d0 = _mm_xor_si128(d0,dk0);
  511. d0 = _mm_aesdec_si128(d0,dk1);
  512. d0 = _mm_aesdec_si128(d0,dk2);
  513. d0 = _mm_aesdec_si128(d0,dk3);
  514. d0 = _mm_aesdec_si128(d0,dk4);
  515. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  516. out += 16;
  517. }
  518. if (len) {
  519. __m128i last = _mm_setzero_si128();
  520. last = _mm_xor_si128(last,dk5); // k0
  521. last = _mm_aesenc_si128(last,k1);
  522. last = _mm_aesenc_si128(last,k2);
  523. last = _mm_aesenc_si128(last,k3);
  524. last = _mm_aesenc_si128(last,k4);
  525. uint8_t lpad[16];
  526. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,dk0)); // k5
  527. for(unsigned int i=0;i<len;++i) {
  528. out[i] = in[i] ^ lpad[i];
  529. }
  530. }
  531. }
  532. inline void _encrypt_aesni(const void *in,void *out) const
  533. {
  534. __m128i tmp;
  535. tmp = _mm_loadu_si128((const __m128i *)in);
  536. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  537. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  538. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  539. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  540. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  541. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  542. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  543. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  544. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  545. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  546. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  547. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  548. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  549. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  550. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  551. }
  552. inline void _decrypt_aesni(const void *in,void *out) const
  553. {
  554. __m128i tmp;
  555. tmp = _mm_loadu_si128((const __m128i *)in);
  556. tmp = _mm_xor_si128(tmp,_k.ni.k[14]);
  557. tmp = _mm_aesdec_si128(tmp,_k.ni.k[15]);
  558. tmp = _mm_aesdec_si128(tmp,_k.ni.k[16]);
  559. tmp = _mm_aesdec_si128(tmp,_k.ni.k[17]);
  560. tmp = _mm_aesdec_si128(tmp,_k.ni.k[18]);
  561. tmp = _mm_aesdec_si128(tmp,_k.ni.k[19]);
  562. tmp = _mm_aesdec_si128(tmp,_k.ni.k[20]);
  563. tmp = _mm_aesdec_si128(tmp,_k.ni.k[21]);
  564. tmp = _mm_aesdec_si128(tmp,_k.ni.k[22]);
  565. tmp = _mm_aesdec_si128(tmp,_k.ni.k[23]);
  566. tmp = _mm_aesdec_si128(tmp,_k.ni.k[24]);
  567. tmp = _mm_aesdec_si128(tmp,_k.ni.k[25]);
  568. tmp = _mm_aesdec_si128(tmp,_k.ni.k[26]);
  569. tmp = _mm_aesdec_si128(tmp,_k.ni.k[27]);
  570. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(tmp,_k.ni.k[0]));
  571. }
  572. static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
  573. static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
  574. {
  575. __m128i t1,t2,t3,t4,t5,t6;
  576. y = _swap128_aesni(y);
  577. t1 = _mm_clmulepi64_si128(h,y,0x00);
  578. t2 = _mm_clmulepi64_si128(h,y,0x01);
  579. t3 = _mm_clmulepi64_si128(h,y,0x10);
  580. t4 = _mm_clmulepi64_si128(h,y,0x11);
  581. t2 = _mm_xor_si128(t2,t3);
  582. t3 = _mm_slli_si128(t2,8);
  583. t2 = _mm_srli_si128(t2,8);
  584. t1 = _mm_xor_si128(t1,t3);
  585. t4 = _mm_xor_si128(t4,t2);
  586. t5 = _mm_srli_epi32(t1,31);
  587. t1 = _mm_slli_epi32(t1,1);
  588. t6 = _mm_srli_epi32(t4,31);
  589. t4 = _mm_slli_epi32(t4,1);
  590. t3 = _mm_srli_si128(t5,12);
  591. t6 = _mm_slli_si128(t6,4);
  592. t5 = _mm_slli_si128(t5,4);
  593. t1 = _mm_or_si128(t1,t5);
  594. t4 = _mm_or_si128(t4,t6);
  595. t4 = _mm_or_si128(t4,t3);
  596. t5 = _mm_slli_epi32(t1,31);
  597. t6 = _mm_slli_epi32(t1,30);
  598. t3 = _mm_slli_epi32(t1,25);
  599. t5 = _mm_xor_si128(t5,t6);
  600. t5 = _mm_xor_si128(t5,t3);
  601. t6 = _mm_srli_si128(t5,4);
  602. t4 = _mm_xor_si128(t4,t6);
  603. t5 = _mm_slli_si128(t5,12);
  604. t1 = _mm_xor_si128(t1,t5);
  605. t4 = _mm_xor_si128(t4,t1);
  606. t5 = _mm_srli_epi32(t1,1);
  607. t2 = _mm_srli_epi32(t1,2);
  608. t3 = _mm_srli_epi32(t1,7);
  609. t4 = _mm_xor_si128(t4,t2);
  610. t4 = _mm_xor_si128(t4,t3);
  611. t4 = _mm_xor_si128(t4,t5);
  612. return _swap128_aesni(t4);
  613. }
  614. static inline __m128i _mult4xor_aesni(__m128i h1,__m128i h2,__m128i h3,__m128i h4,__m128i d1,__m128i d2,__m128i d3,__m128i d4)
  615. {
  616. __m128i t0,t1,t2,t3,t4,t5,t6,t7,t8,t9;
  617. d1 = _swap128_aesni(d1);
  618. d2 = _swap128_aesni(d2);
  619. d3 = _swap128_aesni(d3);
  620. d4 = _swap128_aesni(d4);
  621. t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  622. t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  623. t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  624. t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  625. t8 = _mm_xor_si128(t0,t1);
  626. t8 = _mm_xor_si128(t8,t2);
  627. t8 = _mm_xor_si128(t8,t3);
  628. t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  629. t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  630. t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  631. t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  632. t9 = _mm_xor_si128(t4,t5);
  633. t9 = _mm_xor_si128(t9,t6);
  634. t9 = _mm_xor_si128(t9,t7);
  635. t0 = _mm_shuffle_epi32(h1,78);
  636. t4 = _mm_shuffle_epi32(d1,78);
  637. t0 = _mm_xor_si128(t0,h1);
  638. t4 = _mm_xor_si128(t4,d1);
  639. t1 = _mm_shuffle_epi32(h2,78);
  640. t5 = _mm_shuffle_epi32(d2,78);
  641. t1 = _mm_xor_si128(t1,h2);
  642. t5 = _mm_xor_si128(t5,d2);
  643. t2 = _mm_shuffle_epi32(h3,78);
  644. t6 = _mm_shuffle_epi32(d3,78);
  645. t2 = _mm_xor_si128(t2,h3);
  646. t6 = _mm_xor_si128(t6,d3);
  647. t3 = _mm_shuffle_epi32(h4,78);
  648. t7 = _mm_shuffle_epi32(d4,78);
  649. t3 = _mm_xor_si128(t3,h4);
  650. t7 = _mm_xor_si128(t7,d4);
  651. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  652. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  653. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  654. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  655. t0 = _mm_xor_si128(t0,t8);
  656. t0 = _mm_xor_si128(t0,t9);
  657. t0 = _mm_xor_si128(t1,t0);
  658. t0 = _mm_xor_si128(t2,t0);
  659. t0 = _mm_xor_si128(t3,t0);
  660. t4 = _mm_slli_si128(t0,8);
  661. t0 = _mm_srli_si128(t0,8);
  662. t3 = _mm_xor_si128(t4,t8);
  663. t6 = _mm_xor_si128(t0,t9);
  664. t7 = _mm_srli_epi32(t3,31);
  665. t8 = _mm_srli_epi32(t6,31);
  666. t3 = _mm_slli_epi32(t3,1);
  667. t6 = _mm_slli_epi32(t6,1);
  668. t9 = _mm_srli_si128(t7,12);
  669. t8 = _mm_slli_si128(t8,4);
  670. t7 = _mm_slli_si128(t7,4);
  671. t3 = _mm_or_si128(t3,t7);
  672. t6 = _mm_or_si128(t6,t8);
  673. t6 = _mm_or_si128(t6,t9);
  674. t7 = _mm_slli_epi32(t3,31);
  675. t8 = _mm_slli_epi32(t3,30);
  676. t9 = _mm_slli_epi32(t3,25);
  677. t7 = _mm_xor_si128(t7,t8);
  678. t7 = _mm_xor_si128(t7,t9);
  679. t8 = _mm_srli_si128(t7,4);
  680. t7 = _mm_slli_si128(t7,12);
  681. t3 = _mm_xor_si128(t3,t7);
  682. t2 = _mm_srli_epi32(t3,1);
  683. t4 = _mm_srli_epi32(t3,2);
  684. t5 = _mm_srli_epi32(t3,7);
  685. t2 = _mm_xor_si128(t2,t4);
  686. t2 = _mm_xor_si128(t2,t5);
  687. t2 = _mm_xor_si128(t2,t8);
  688. t3 = _mm_xor_si128(t3,t2);
  689. t6 = _mm_xor_si128(t6,t3);
  690. return _swap128_aesni(t6);
  691. }
  692. static inline __m128i _ghash_aesni(__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(h,_mm_xor_si128(y,x)); }
  693. static inline __m128i _increment_be_aesni(__m128i x)
  694. {
  695. x = _swap128_aesni(x);
  696. x = _mm_add_epi64(x,_mm_set_epi32(0,0,0,1));
  697. x = _swap128_aesni(x);
  698. return x;
  699. }
  700. static inline void _htoun64_aesni(void *network,const uint64_t host) { *((uint64_t *)network) = Utils::hton(host); }
  701. inline __m128i _create_j_aesni(const uint8_t *iv) const
  702. {
  703. uint8_t j[16];
  704. *((uint64_t *)j) = *((const uint64_t *)iv);
  705. *((uint32_t *)(j+8)) = *((const uint32_t *)(iv+8));
  706. j[12] = 0;
  707. j[13] = 0;
  708. j[14] = 0;
  709. j[15] = 1;
  710. return _mm_loadu_si128((__m128i *)j);
  711. }
  712. inline __m128i _icv_header_aesni(const void *assoc,unsigned int alen) const
  713. {
  714. unsigned int blocks,pblocks,rem,i;
  715. __m128i h1,h2,h3,h4,d1,d2,d3,d4;
  716. __m128i y,last;
  717. const __m128i *ab;
  718. h1 = _k.ni.hhhh;
  719. h2 = _k.ni.hhh;
  720. h3 = _k.ni.hh;
  721. h4 = _k.ni.h;
  722. y = _mm_setzero_si128();
  723. ab = (const __m128i *)assoc;
  724. blocks = alen / 16;
  725. pblocks = blocks - (blocks % 4);
  726. rem = alen % 16;
  727. for (i=0;i<pblocks;i+=4) {
  728. d1 = _mm_loadu_si128(ab + i + 0);
  729. d2 = _mm_loadu_si128(ab + i + 1);
  730. d3 = _mm_loadu_si128(ab + i + 2);
  731. d4 = _mm_loadu_si128(ab + i + 3);
  732. y = _mm_xor_si128(y, d1);
  733. y = _mult4xor_aesni(h1,h2,h3,h4,y,d2,d3,d4);
  734. }
  735. for (i = pblocks; i < blocks; i++)
  736. y = _ghash_aesni(_k.ni.h,y,_mm_loadu_si128(ab + i));
  737. if (rem) {
  738. last = _mm_setzero_si128();
  739. memcpy(&last,ab + blocks,rem);
  740. y = _ghash_aesni(_k.ni.h,y,last);
  741. }
  742. return y;
  743. }
  744. inline __m128i _icv_tailer_aesni(__m128i y,size_t alen,size_t dlen) const
  745. {
  746. __m128i b;
  747. _htoun64_aesni(&b, alen * 8);
  748. _htoun64_aesni((uint8_t *)&b + sizeof(uint64_t), dlen * 8);
  749. return _ghash_aesni(_k.ni.h, y, b);
  750. }
  751. inline void _icv_crypt_aesni(__m128i y,__m128i j,uint8_t *icv,unsigned int icvsize) const
  752. {
  753. __m128i t,b;
  754. t = _mm_xor_si128(j,_k.ni.k[0]);
  755. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  756. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  757. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  758. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  759. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  760. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  761. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  762. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  763. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  764. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  765. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  766. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  767. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  768. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  769. t = _mm_xor_si128(y, t);
  770. _mm_storeu_si128(&b, t);
  771. memcpy(icv,&b,icvsize);
  772. }
  773. inline __m128i _encrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y) const
  774. {
  775. __m128i t,b;
  776. memset(&b,0,sizeof(b));
  777. memcpy(&b,in,rem);
  778. t = _mm_xor_si128(cb,_k.ni.k[0]);
  779. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  780. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  781. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  782. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  783. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  784. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  785. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  786. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  787. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  788. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  789. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  790. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  791. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  792. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  793. b = _mm_xor_si128(t,b);
  794. memcpy(out,&b,rem);
  795. memset((u_char*)&b + rem,0,16 - rem);
  796. return _ghash_aesni(_k.ni.h,y,b);
  797. }
  798. inline void _encrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize) const
  799. {
  800. __m128i j = _create_j_aesni(iv);
  801. __m128i cb = _increment_be_aesni(j);
  802. __m128i y = _icv_header_aesni(assoc,alen);
  803. unsigned int blocks = len / 16;
  804. unsigned int pblocks = blocks - (blocks % 4);
  805. unsigned int rem = len % 16;
  806. __m128i *bi = (__m128i *)in;
  807. __m128i *bo = (__m128i *)out;
  808. unsigned int i;
  809. for (i=0;i<pblocks;i+=4) {
  810. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  811. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  812. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  813. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  814. __m128i k0 = _k.ni.k[0];
  815. __m128i k1 = _k.ni.k[1];
  816. __m128i k2 = _k.ni.k[2];
  817. __m128i k3 = _k.ni.k[3];
  818. __m128i t1 = _mm_xor_si128(cb,k0);
  819. cb = _increment_be_aesni(cb);
  820. __m128i t2 = _mm_xor_si128(cb,k0);
  821. cb = _increment_be_aesni(cb);
  822. __m128i t3 = _mm_xor_si128(cb,k0);
  823. cb = _increment_be_aesni(cb);
  824. __m128i t4 = _mm_xor_si128(cb,k0);
  825. cb = _increment_be_aesni(cb);
  826. t1 = _mm_aesenc_si128(t1,k1);
  827. t2 = _mm_aesenc_si128(t2,k1);
  828. t3 = _mm_aesenc_si128(t3,k1);
  829. t4 = _mm_aesenc_si128(t4,k1);
  830. t1 = _mm_aesenc_si128(t1,k2);
  831. t2 = _mm_aesenc_si128(t2,k2);
  832. t3 = _mm_aesenc_si128(t3,k2);
  833. t4 = _mm_aesenc_si128(t4,k2);
  834. t1 = _mm_aesenc_si128(t1,k3);
  835. t2 = _mm_aesenc_si128(t2,k3);
  836. t3 = _mm_aesenc_si128(t3,k3);
  837. t4 = _mm_aesenc_si128(t4,k3);
  838. __m128i k4 = _k.ni.k[4];
  839. __m128i k5 = _k.ni.k[5];
  840. __m128i k6 = _k.ni.k[6];
  841. __m128i k7 = _k.ni.k[7];
  842. t1 = _mm_aesenc_si128(t1,k4);
  843. t2 = _mm_aesenc_si128(t2,k4);
  844. t3 = _mm_aesenc_si128(t3,k4);
  845. t4 = _mm_aesenc_si128(t4,k4);
  846. t1 = _mm_aesenc_si128(t1,k5);
  847. t2 = _mm_aesenc_si128(t2,k5);
  848. t3 = _mm_aesenc_si128(t3,k5);
  849. t4 = _mm_aesenc_si128(t4,k5);
  850. t1 = _mm_aesenc_si128(t1,k6);
  851. t2 = _mm_aesenc_si128(t2,k6);
  852. t3 = _mm_aesenc_si128(t3,k6);
  853. t4 = _mm_aesenc_si128(t4,k6);
  854. t1 = _mm_aesenc_si128(t1,k7);
  855. t2 = _mm_aesenc_si128(t2,k7);
  856. t3 = _mm_aesenc_si128(t3,k7);
  857. t4 = _mm_aesenc_si128(t4,k7);
  858. __m128i k8 = _k.ni.k[8];
  859. __m128i k9 = _k.ni.k[9];
  860. __m128i k10 = _k.ni.k[10];
  861. __m128i k11 = _k.ni.k[11];
  862. t1 = _mm_aesenc_si128(t1,k8);
  863. t2 = _mm_aesenc_si128(t2,k8);
  864. t3 = _mm_aesenc_si128(t3,k8);
  865. t4 = _mm_aesenc_si128(t4,k8);
  866. t1 = _mm_aesenc_si128(t1,k9);
  867. t2 = _mm_aesenc_si128(t2,k9);
  868. t3 = _mm_aesenc_si128(t3,k9);
  869. t4 = _mm_aesenc_si128(t4,k9);
  870. t1 = _mm_aesenc_si128(t1,k10);
  871. t2 = _mm_aesenc_si128(t2,k10);
  872. t3 = _mm_aesenc_si128(t3,k10);
  873. t4 = _mm_aesenc_si128(t4,k10);
  874. t1 = _mm_aesenc_si128(t1,k11);
  875. t2 = _mm_aesenc_si128(t2,k11);
  876. t3 = _mm_aesenc_si128(t3,k11);
  877. t4 = _mm_aesenc_si128(t4,k11);
  878. __m128i k12 = _k.ni.k[12];
  879. __m128i k13 = _k.ni.k[13];
  880. __m128i k14 = _k.ni.k[14];
  881. t1 = _mm_aesenc_si128(t1,k12);
  882. t2 = _mm_aesenc_si128(t2,k12);
  883. t3 = _mm_aesenc_si128(t3,k12);
  884. t4 = _mm_aesenc_si128(t4,k12);
  885. t1 = _mm_aesenc_si128(t1,k13);
  886. t2 = _mm_aesenc_si128(t2,k13);
  887. t3 = _mm_aesenc_si128(t3,k13);
  888. t4 = _mm_aesenc_si128(t4,k13);
  889. t1 = _mm_aesenclast_si128(t1,k14);
  890. t2 = _mm_aesenclast_si128(t2,k14);
  891. t3 = _mm_aesenclast_si128(t3,k14);
  892. t4 = _mm_aesenclast_si128(t4,k14);
  893. t1 = _mm_xor_si128(t1,d1);
  894. t2 = _mm_xor_si128(t2,d2);
  895. t3 = _mm_xor_si128(t3,d3);
  896. t4 = _mm_xor_si128(t4,d4);
  897. y = _mm_xor_si128(y,t1);
  898. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,t2,t3,t4);
  899. _mm_storeu_si128(bo + i + 0,t1);
  900. _mm_storeu_si128(bo + i + 1,t2);
  901. _mm_storeu_si128(bo + i + 2,t3);
  902. _mm_storeu_si128(bo + i + 3,t4);
  903. }
  904. for (i=pblocks;i<blocks;++i) {
  905. __m128i d1 = _mm_loadu_si128(bi + i);
  906. __m128i k0 = _k.ni.k[0];
  907. __m128i k1 = _k.ni.k[1];
  908. __m128i k2 = _k.ni.k[2];
  909. __m128i k3 = _k.ni.k[3];
  910. __m128i t1 = _mm_xor_si128(cb,k0);
  911. t1 = _mm_aesenc_si128(t1,k1);
  912. t1 = _mm_aesenc_si128(t1,k2);
  913. t1 = _mm_aesenc_si128(t1,k3);
  914. __m128i k4 = _k.ni.k[4];
  915. __m128i k5 = _k.ni.k[5];
  916. __m128i k6 = _k.ni.k[6];
  917. __m128i k7 = _k.ni.k[7];
  918. t1 = _mm_aesenc_si128(t1,k4);
  919. t1 = _mm_aesenc_si128(t1,k5);
  920. t1 = _mm_aesenc_si128(t1,k6);
  921. t1 = _mm_aesenc_si128(t1,k7);
  922. __m128i k8 = _k.ni.k[8];
  923. __m128i k9 = _k.ni.k[9];
  924. __m128i k10 = _k.ni.k[10];
  925. __m128i k11 = _k.ni.k[11];
  926. t1 = _mm_aesenc_si128(t1,k8);
  927. t1 = _mm_aesenc_si128(t1,k9);
  928. t1 = _mm_aesenc_si128(t1,k10);
  929. t1 = _mm_aesenc_si128(t1,k11);
  930. __m128i k12 = _k.ni.k[12];
  931. __m128i k13 = _k.ni.k[13];
  932. __m128i k14 = _k.ni.k[14];
  933. t1 = _mm_aesenc_si128(t1,k12);
  934. t1 = _mm_aesenc_si128(t1,k13);
  935. t1 = _mm_aesenclast_si128(t1,k14);
  936. t1 = _mm_xor_si128(t1,d1);
  937. _mm_storeu_si128(bo + i,t1);
  938. y = _ghash_aesni(_k.ni.h,y,t1);
  939. cb = _increment_be_aesni(cb);
  940. }
  941. if (rem)
  942. y = _encrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  943. y = _icv_tailer_aesni(y,alen,len);
  944. _icv_crypt_aesni(y,j,icv,icvsize);
  945. }
  946. inline __m128i _decrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y)
  947. {
  948. __m128i t,b;
  949. memset(&b,0,sizeof(b));
  950. memcpy(&b,in,rem);
  951. y = _ghash_aesni(_k.ni.h,y,b);
  952. t = _mm_xor_si128(cb,_k.ni.k[0]);
  953. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  954. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  955. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  956. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  957. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  958. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  959. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  960. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  961. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  962. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  963. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  964. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  965. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  966. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  967. b = _mm_xor_si128(t,b);
  968. memcpy(out,&b,rem);
  969. return y;
  970. }
  971. inline void _decrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize)
  972. {
  973. __m128i j = _create_j_aesni(iv);
  974. __m128i cb = _increment_be_aesni(j);
  975. __m128i y = _icv_header_aesni(assoc,alen);
  976. unsigned int blocks = len / 16;
  977. unsigned int pblocks = blocks - (blocks % 4);
  978. unsigned int rem = len % 16;
  979. __m128i *bi = (__m128i *)in;
  980. __m128i *bo = (__m128i *)out;
  981. unsigned int i;
  982. for (i=0;i<pblocks;i+=4) {
  983. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  984. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  985. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  986. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  987. y = _mm_xor_si128(y,d1);
  988. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,d2,d3,d4);
  989. __m128i k0 = _k.ni.k[0];
  990. __m128i k1 = _k.ni.k[1];
  991. __m128i k2 = _k.ni.k[2];
  992. __m128i k3 = _k.ni.k[3];
  993. __m128i t1 = _mm_xor_si128(cb,k0);
  994. cb = _increment_be_aesni(cb);
  995. __m128i t2 = _mm_xor_si128(cb,k0);
  996. cb = _increment_be_aesni(cb);
  997. __m128i t3 = _mm_xor_si128(cb,k0);
  998. cb = _increment_be_aesni(cb);
  999. __m128i t4 = _mm_xor_si128(cb,k0);
  1000. cb = _increment_be_aesni(cb);
  1001. t1 = _mm_aesenc_si128(t1,k1);
  1002. t2 = _mm_aesenc_si128(t2,k1);
  1003. t3 = _mm_aesenc_si128(t3,k1);
  1004. t4 = _mm_aesenc_si128(t4,k1);
  1005. t1 = _mm_aesenc_si128(t1,k2);
  1006. t2 = _mm_aesenc_si128(t2,k2);
  1007. t3 = _mm_aesenc_si128(t3,k2);
  1008. t4 = _mm_aesenc_si128(t4,k2);
  1009. t1 = _mm_aesenc_si128(t1,k3);
  1010. t2 = _mm_aesenc_si128(t2,k3);
  1011. t3 = _mm_aesenc_si128(t3,k3);
  1012. t4 = _mm_aesenc_si128(t4,k3);
  1013. __m128i k4 = _k.ni.k[4];
  1014. __m128i k5 = _k.ni.k[5];
  1015. __m128i k6 = _k.ni.k[6];
  1016. __m128i k7 = _k.ni.k[7];
  1017. t1 = _mm_aesenc_si128(t1,k4);
  1018. t2 = _mm_aesenc_si128(t2,k4);
  1019. t3 = _mm_aesenc_si128(t3,k4);
  1020. t4 = _mm_aesenc_si128(t4,k4);
  1021. t1 = _mm_aesenc_si128(t1,k5);
  1022. t2 = _mm_aesenc_si128(t2,k5);
  1023. t3 = _mm_aesenc_si128(t3,k5);
  1024. t4 = _mm_aesenc_si128(t4,k5);
  1025. t1 = _mm_aesenc_si128(t1,k6);
  1026. t2 = _mm_aesenc_si128(t2,k6);
  1027. t3 = _mm_aesenc_si128(t3,k6);
  1028. t4 = _mm_aesenc_si128(t4,k6);
  1029. t1 = _mm_aesenc_si128(t1,k7);
  1030. t2 = _mm_aesenc_si128(t2,k7);
  1031. t3 = _mm_aesenc_si128(t3,k7);
  1032. t4 = _mm_aesenc_si128(t4,k7);
  1033. __m128i k8 = _k.ni.k[8];
  1034. __m128i k9 = _k.ni.k[9];
  1035. __m128i k10 = _k.ni.k[10];
  1036. __m128i k11 = _k.ni.k[11];
  1037. t1 = _mm_aesenc_si128(t1,k8);
  1038. t2 = _mm_aesenc_si128(t2,k8);
  1039. t3 = _mm_aesenc_si128(t3,k8);
  1040. t4 = _mm_aesenc_si128(t4,k8);
  1041. t1 = _mm_aesenc_si128(t1,k9);
  1042. t2 = _mm_aesenc_si128(t2,k9);
  1043. t3 = _mm_aesenc_si128(t3,k9);
  1044. t4 = _mm_aesenc_si128(t4,k9);
  1045. t1 = _mm_aesenc_si128(t1,k10);
  1046. t2 = _mm_aesenc_si128(t2,k10);
  1047. t3 = _mm_aesenc_si128(t3,k10);
  1048. t4 = _mm_aesenc_si128(t4,k10);
  1049. t1 = _mm_aesenc_si128(t1,k11);
  1050. t2 = _mm_aesenc_si128(t2,k11);
  1051. t3 = _mm_aesenc_si128(t3,k11);
  1052. t4 = _mm_aesenc_si128(t4,k11);
  1053. __m128i k12 = _k.ni.k[12];
  1054. __m128i k13 = _k.ni.k[13];
  1055. __m128i k14 = _k.ni.k[14];
  1056. t1 = _mm_aesenc_si128(t1,k12);
  1057. t2 = _mm_aesenc_si128(t2,k12);
  1058. t3 = _mm_aesenc_si128(t3,k12);
  1059. t4 = _mm_aesenc_si128(t4,k12);
  1060. t1 = _mm_aesenc_si128(t1,k13);
  1061. t2 = _mm_aesenc_si128(t2,k13);
  1062. t3 = _mm_aesenc_si128(t3,k13);
  1063. t4 = _mm_aesenc_si128(t4,k13);
  1064. t1 = _mm_aesenclast_si128(t1,k14);
  1065. t2 = _mm_aesenclast_si128(t2,k14);
  1066. t3 = _mm_aesenclast_si128(t3,k14);
  1067. t4 = _mm_aesenclast_si128(t4,k14);
  1068. t1 = _mm_xor_si128(t1,d1);
  1069. t2 = _mm_xor_si128(t2,d2);
  1070. t3 = _mm_xor_si128(t3,d3);
  1071. t4 = _mm_xor_si128(t4,d4);
  1072. _mm_storeu_si128(bo + i + 0,t1);
  1073. _mm_storeu_si128(bo + i + 1,t2);
  1074. _mm_storeu_si128(bo + i + 2,t3);
  1075. _mm_storeu_si128(bo + i + 3,t4);
  1076. }
  1077. for (i=pblocks;i<blocks;i++) {
  1078. __m128i d1 = _mm_loadu_si128(bi + i);
  1079. y = _ghash_aesni(_k.ni.h,y,d1);
  1080. __m128i k0 = _k.ni.k[0];
  1081. __m128i k1 = _k.ni.k[1];
  1082. __m128i k2 = _k.ni.k[2];
  1083. __m128i k3 = _k.ni.k[3];
  1084. __m128i t1 = _mm_xor_si128(cb,k0);
  1085. t1 = _mm_aesenc_si128(t1,k1);
  1086. t1 = _mm_aesenc_si128(t1,k2);
  1087. t1 = _mm_aesenc_si128(t1,k3);
  1088. __m128i k4 = _k.ni.k[4];
  1089. __m128i k5 = _k.ni.k[5];
  1090. __m128i k6 = _k.ni.k[6];
  1091. __m128i k7 = _k.ni.k[7];
  1092. t1 = _mm_aesenc_si128(t1,k4);
  1093. t1 = _mm_aesenc_si128(t1,k5);
  1094. t1 = _mm_aesenc_si128(t1,k6);
  1095. t1 = _mm_aesenc_si128(t1,k7);
  1096. __m128i k8 = _k.ni.k[8];
  1097. __m128i k9 = _k.ni.k[9];
  1098. __m128i k10 = _k.ni.k[10];
  1099. __m128i k11 = _k.ni.k[11];
  1100. t1 = _mm_aesenc_si128(t1,k8);
  1101. t1 = _mm_aesenc_si128(t1,k9);
  1102. t1 = _mm_aesenc_si128(t1,k10);
  1103. t1 = _mm_aesenc_si128(t1,k11);
  1104. __m128i k12 = _k.ni.k[12];
  1105. __m128i k13 = _k.ni.k[13];
  1106. __m128i k14 = _k.ni.k[14];
  1107. t1 = _mm_aesenc_si128(t1,k12);
  1108. t1 = _mm_aesenc_si128(t1,k13);
  1109. t1 = _mm_aesenclast_si128(t1,k14);
  1110. t1 = _mm_xor_si128(t1,d1);
  1111. _mm_storeu_si128(bo + i,t1);
  1112. cb = _increment_be_aesni(cb);
  1113. }
  1114. if (rem)
  1115. y = _decrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  1116. y = _icv_tailer_aesni(y,alen,len);
  1117. _icv_crypt_aesni(y,j,icv,icvsize);
  1118. }
  1119. #endif /* ZT_AES_AESNI ******************************************************/
  1120. };
  1121. } // namespace ZeroTier
  1122. #endif