NetconEthernetTap.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_NETCON
  28. #include <algorithm>
  29. #include <utility>
  30. #include <dlfcn.h>
  31. #include "NetconEthernetTap.hpp"
  32. #include "../node/Utils.hpp"
  33. #include "../osdep/OSUtils.hpp"
  34. #include "../osdep/Phy.hpp"
  35. #include "lwip/tcp_impl.h"
  36. #include "netif/etharp.h"
  37. #include "lwip/ip.h"
  38. #include "lwip/ip_addr.h"
  39. #include "lwip/ip_frag.h"
  40. #include "lwip/tcp.h"
  41. #include "LWIPStack.hpp"
  42. #include "NetconService.hpp"
  43. #include "Intercept.h"
  44. #include "NetconUtilities.hpp"
  45. #define APPLICATION_POLL_FREQ 1
  46. namespace ZeroTier {
  47. NetconEthernetTap::NetconEthernetTap(
  48. const char *homePath,
  49. const MAC &mac,
  50. unsigned int mtu,
  51. unsigned int metric,
  52. uint64_t nwid,
  53. const char *friendlyName,
  54. void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
  55. void *arg) :
  56. _phy(this,false,true),
  57. _unixListenSocket((PhySocket *)0),
  58. _handler(handler),
  59. _arg(arg),
  60. _nwid(nwid),
  61. _mac(mac),
  62. _homePath(homePath),
  63. _mtu(mtu),
  64. _enabled(true),
  65. _run(true)
  66. {
  67. char sockPath[4096];
  68. Utils::snprintf(sockPath,sizeof(sockPath),"/tmp/.ztnc_%.16llx",(unsigned long long)nwid);
  69. _dev = sockPath;
  70. lwipstack = new LWIPStack("ext/bin/lwip/liblwip.so"); // ext/bin/liblwip.so.debug for debug symbols
  71. if(!lwipstack) // TODO double check this check
  72. throw std::runtime_error("unable to load lwip lib.");
  73. lwipstack->lwip_init();
  74. _unixListenSocket = _phy.unixListen(sockPath,(void *)this);
  75. if (!_unixListenSocket)
  76. throw std::runtime_error(std::string("unable to bind to ")+sockPath);
  77. _thread = Thread::start(this);
  78. }
  79. NetconEthernetTap::~NetconEthernetTap()
  80. {
  81. _run = false;
  82. _phy.whack();
  83. _phy.whack();
  84. Thread::join(_thread);
  85. _phy.close(_unixListenSocket,false);
  86. delete lwipstack;
  87. }
  88. void NetconEthernetTap::setEnabled(bool en)
  89. {
  90. _enabled = en;
  91. }
  92. bool NetconEthernetTap::enabled() const
  93. {
  94. return _enabled;
  95. }
  96. bool NetconEthernetTap::addIp(const InetAddress &ip)
  97. {
  98. Mutex::Lock _l(_ips_m);
  99. if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
  100. _ips.push_back(ip);
  101. std::sort(_ips.begin(),_ips.end());
  102. if (ip.isV4()) {
  103. // Set IP
  104. static ip_addr_t ipaddr, netmask, gw;
  105. IP4_ADDR(&gw,192,168,0,1);
  106. ipaddr.addr = *((u32_t *)ip.rawIpData());
  107. netmask.addr = *((u32_t *)ip.netmask().rawIpData());
  108. // Set up the lwip-netif for LWIP's sake
  109. lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
  110. interface.state = this;
  111. interface.output = lwipstack->_etharp_output;
  112. _mac.copyTo(interface.hwaddr, 6);
  113. interface.mtu = _mtu;
  114. interface.name[0] = 't';
  115. interface.name[1] = 'p';
  116. interface.linkoutput = low_level_output;
  117. interface.hwaddr_len = 6;
  118. interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
  119. lwipstack->netif_set_default(&interface);
  120. lwipstack->netif_set_up(&interface);
  121. }
  122. }
  123. return true;
  124. }
  125. bool NetconEthernetTap::removeIp(const InetAddress &ip)
  126. {
  127. Mutex::Lock _l(_ips_m);
  128. std::vector<InetAddress>::iterator i(std::find(_ips.begin(),_ips.end(),ip));
  129. if (i == _ips.end())
  130. return false;
  131. _ips.erase(i);
  132. if (ip.isV4()) {
  133. // TODO: dealloc from LWIP
  134. }
  135. return true;
  136. }
  137. std::vector<InetAddress> NetconEthernetTap::ips() const
  138. {
  139. Mutex::Lock _l(_ips_m);
  140. return _ips;
  141. }
  142. void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
  143. {
  144. struct pbuf *p,*q;
  145. if (!_enabled)
  146. return;
  147. struct eth_hdr ethhdr;
  148. from.copyTo(ethhdr.src.addr, 6);
  149. to.copyTo(ethhdr.dest.addr, 6);
  150. ethhdr.type = Utils::hton((uint16_t)etherType);
  151. // We allocate a pbuf chain of pbufs from the pool.
  152. p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
  153. if (p != NULL) {
  154. const char *dataptr = reinterpret_cast<const char *>(data);
  155. // First pbuf gets ethernet header at start
  156. q = p;
  157. if (q->len < sizeof(ethhdr)) {
  158. fprintf(stderr,"_put(): Dropped packet: first pbuf smaller than ethernet header\n");
  159. return;
  160. }
  161. memcpy(q->payload,&ethhdr,sizeof(ethhdr));
  162. memcpy(q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
  163. dataptr += q->len - sizeof(ethhdr);
  164. // Remaining pbufs (if any) get rest of data
  165. while ((q = q->next)) {
  166. memcpy(q->payload,dataptr,q->len);
  167. dataptr += q->len;
  168. }
  169. } else {
  170. fprintf(stderr, "_put(): Dropped packet: no pbufs available\n");
  171. return;
  172. }
  173. {
  174. Mutex::Lock _l2(lwipstack->_lock);
  175. if(interface.input(p, &interface) != ERR_OK) {
  176. fprintf(stderr, "_put(): Error while RXing packet (netif->input)\n");
  177. }
  178. }
  179. }
  180. std::string NetconEthernetTap::deviceName() const
  181. {
  182. return _dev;
  183. }
  184. void NetconEthernetTap::setFriendlyName(const char *friendlyName)
  185. {
  186. }
  187. void NetconEthernetTap::scanMulticastGroups(std::vector<MulticastGroup> &added,std::vector<MulticastGroup> &removed)
  188. {
  189. std::vector<MulticastGroup> newGroups;
  190. Mutex::Lock _l(_multicastGroups_m);
  191. // TODO: get multicast subscriptions from LWIP
  192. std::vector<InetAddress> allIps(ips());
  193. for(std::vector<InetAddress>::iterator ip(allIps.begin());ip!=allIps.end();++ip)
  194. newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
  195. std::sort(newGroups.begin(),newGroups.end());
  196. std::unique(newGroups.begin(),newGroups.end());
  197. for(std::vector<MulticastGroup>::iterator m(newGroups.begin());m!=newGroups.end();++m) {
  198. if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
  199. added.push_back(*m);
  200. }
  201. for(std::vector<MulticastGroup>::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
  202. if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
  203. removed.push_back(*m);
  204. }
  205. _multicastGroups.swap(newGroups);
  206. }
  207. TcpConnection *NetconEthernetTap::getConnectionByPCB(struct tcp_pcb *pcb)
  208. {
  209. for(size_t i=0; i<tcp_connections.size(); i++) {
  210. if(tcp_connections[i]->pcb == pcb)
  211. return tcp_connections[i];
  212. }
  213. return NULL;
  214. }
  215. TcpConnection *NetconEthernetTap::getConnectionByTheirFD(PhySocket *sock, int fd)
  216. {
  217. for(size_t i=0; i<tcp_connections.size(); i++) {
  218. if(tcp_connections[i]->perceived_fd == fd && tcp_connections[i]->rpcSock == sock)
  219. return tcp_connections[i];
  220. }
  221. return NULL;
  222. }
  223. /*
  224. * Closes a TcpConnection and associated LWIP PCB strcuture.
  225. */
  226. void NetconEthernetTap::closeConnection(TcpConnection *conn)
  227. {
  228. //fprintf(stderr, "closeConnection(): closing: conn->type = %d, fd=%d\n", conn->type, _phy.getDescriptor(conn->sock));
  229. lwipstack->_tcp_arg(conn->pcb, NULL);
  230. lwipstack->_tcp_sent(conn->pcb, NULL);
  231. lwipstack->_tcp_recv(conn->pcb, NULL);
  232. lwipstack->_tcp_err(conn->pcb, NULL);
  233. lwipstack->_tcp_poll(conn->pcb, NULL, 0);
  234. lwipstack->_tcp_close(conn->pcb);
  235. close(_phy.getDescriptor(conn->dataSock));
  236. close(conn->their_fd);
  237. _phy.close(conn->dataSock);
  238. for(int i=0; i<tcp_connections.size(); i++) {
  239. if(tcp_connections[i] == conn) {
  240. tcp_connections.erase(tcp_connections.begin() + i);
  241. }
  242. }
  243. delete conn;
  244. }
  245. /*
  246. * Close a single RPC connection and associated PhySocket
  247. */
  248. void NetconEthernetTap::closeClient(PhySocket *sock)
  249. {
  250. for(int i=0; i<rpc_sockets.size(); i++) {
  251. if(rpc_sockets[i] == sock)
  252. rpc_sockets.erase(rpc_sockets.begin() + i);
  253. }
  254. close(_phy.getDescriptor(sock));
  255. _phy.close(sock);
  256. }
  257. /*
  258. * Close all RPC and TCP connections
  259. */
  260. void NetconEthernetTap::closeAll()
  261. {
  262. while(rpc_sockets.size())
  263. closeClient(rpc_sockets.front());
  264. while(tcp_connections.size())
  265. closeConnection(tcp_connections.front());
  266. }
  267. #define ZT_LWIP_TCP_TIMER_INTERVAL 10
  268. void NetconEthernetTap::threadMain()
  269. throw()
  270. {
  271. fprintf(stderr, "_threadMain()\n");
  272. uint64_t prev_tcp_time = 0;
  273. uint64_t prev_etharp_time = 0;
  274. fprintf(stderr, "- MEM_SIZE = %dM\n", MEM_SIZE / (1024*1024));
  275. fprintf(stderr, "- TCP_SND_BUF = %dK\n", TCP_SND_BUF / 1024);
  276. fprintf(stderr, "- MEMP_NUM_PBUF = %d\n", MEMP_NUM_PBUF);
  277. fprintf(stderr, "- MEMP_NUM_TCP_PCB = %d\n", MEMP_NUM_TCP_PCB);
  278. fprintf(stderr, "- MEMP_NUM_TCP_PCB_LISTEN = %d\n", MEMP_NUM_TCP_PCB_LISTEN);
  279. fprintf(stderr, "- MEMP_NUM_TCP_SEG = %d\n", MEMP_NUM_TCP_SEG);
  280. fprintf(stderr, "- PBUF_POOL_SIZE = %d\n", PBUF_POOL_SIZE);
  281. fprintf(stderr, "- TCP_SND_QUEUELEN = %d\n", TCP_SND_QUEUELEN);
  282. fprintf(stderr, "- IP_REASSEMBLY = %d\n", IP_REASSEMBLY);
  283. fprintf(stderr, "- TCP_WND = %d\n", TCP_WND);
  284. fprintf(stderr, "- TCP_MSS = %d\n", TCP_MSS);
  285. fprintf(stderr, "- ARP_TMR_INTERVAL = %d\n", ARP_TMR_INTERVAL);
  286. fprintf(stderr, "- TCP_TMR_INTERVAL = %d\n", TCP_TMR_INTERVAL);
  287. fprintf(stderr, "- IP_TMR_INTERVAL = %d\n", IP_TMR_INTERVAL);
  288. // Main timer loop
  289. while (_run) {
  290. uint64_t now = OSUtils::now();
  291. uint64_t since_tcp = now - prev_tcp_time;
  292. uint64_t since_etharp = now - prev_etharp_time;
  293. uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
  294. uint64_t etharp_remaining = ARP_TMR_INTERVAL;
  295. if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
  296. prev_tcp_time = now;
  297. lwipstack->tcp_tmr();
  298. } else {
  299. tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
  300. }
  301. if (since_etharp >= ARP_TMR_INTERVAL) {
  302. prev_etharp_time = now;
  303. lwipstack->etharp_tmr();
  304. } else {
  305. etharp_remaining = ARP_TMR_INTERVAL - since_etharp;
  306. }
  307. _phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining));
  308. }
  309. closeAll();
  310. // TODO: cleanup -- destroy LWIP state, kill any clients, unload .so, etc.
  311. }
  312. void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr)
  313. {
  314. // FIXME: What do?
  315. }
  316. /*
  317. * Handles data on a client's data buffer. Data is sent to LWIP to be enqueued.
  318. */
  319. void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable)
  320. {
  321. if(readable) {
  322. TcpConnection *conn = (TcpConnection*)*uptr;
  323. Mutex::Lock _l(lwipstack->_lock);
  324. handle_write(conn);
  325. }
  326. else {
  327. fprintf(stderr, "phyOnFileDescriptorActivity(): PhySocket not readable\n");
  328. }
  329. }
  330. // Unused -- no UDP or TCP from this thread/Phy<>
  331. void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
  332. void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
  333. void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
  334. void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {}
  335. void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
  336. void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {}
  337. /*
  338. * Add a new PhySocket for the client connection
  339. */
  340. void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {
  341. rpc_sockets.push_back(sockN);
  342. }
  343. /*
  344. * Processes incoming data on a client-specific RPC connection
  345. */
  346. void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
  347. {
  348. unsigned char *buf = (unsigned char*)data;
  349. switch(buf[0])
  350. {
  351. case RPC_SOCKET:
  352. fprintf(stderr, "RPC_SOCKET\n");
  353. struct socket_st socket_rpc;
  354. memcpy(&socket_rpc, &buf[1], sizeof(struct socket_st));
  355. handle_socket(sock, uptr, &socket_rpc);
  356. break;
  357. case RPC_LISTEN:
  358. fprintf(stderr, "RPC_LISTEN\n");
  359. struct listen_st listen_rpc;
  360. memcpy(&listen_rpc, &buf[1], sizeof(struct listen_st));
  361. handle_listen(sock, uptr, &listen_rpc);
  362. break;
  363. case RPC_BIND:
  364. fprintf(stderr, "RPC_BIND\n");
  365. struct bind_st bind_rpc;
  366. memcpy(&bind_rpc, &buf[1], sizeof(struct bind_st));
  367. handle_bind(sock, uptr, &bind_rpc);
  368. break;
  369. case RPC_KILL_INTERCEPT:
  370. fprintf(stderr, "RPC_KILL_INTERCEPT\n");
  371. break;
  372. case RPC_CONNECT:
  373. fprintf(stderr, "RPC_CONNECT\n");
  374. struct connect_st connect_rpc;
  375. memcpy(&connect_rpc, &buf[1], sizeof(struct connect_st));
  376. handle_connect(sock, uptr, &connect_rpc);
  377. break;
  378. case RPC_FD_MAP_COMPLETION:
  379. fprintf(stderr, "RPC_FD_MAP_COMPLETION\n");
  380. handle_retval(sock, uptr, buf);
  381. break;
  382. default:
  383. break;
  384. }
  385. }
  386. /*
  387. * Send a return value to the client for an RPC
  388. */
  389. int NetconEthernetTap::send_return_value(TcpConnection *conn, int retval, int _errno = 0)
  390. {
  391. if(conn) {
  392. int n = send_return_value(_phy.getDescriptor(conn->rpcSock), retval, _errno);
  393. if(n > 0)
  394. conn->pending = false;
  395. else {
  396. fprintf(stderr, "Unable to send return value to the intercept. Closing connection\n");
  397. closeConnection(conn);
  398. }
  399. return n;
  400. }
  401. return -1;
  402. }
  403. int NetconEthernetTap::send_return_value(int fd, int retval, int _errno = 0)
  404. {
  405. int sz = sizeof(char) + sizeof(retval) + sizeof(errno);
  406. char retmsg[sz];
  407. memset(&retmsg, '\0', sizeof(retmsg));
  408. retmsg[0]=RPC_RETVAL;
  409. memcpy(&retmsg[1], &retval, sizeof(retval));
  410. memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno));
  411. return write(fd, &retmsg, sz);
  412. }
  413. /*------------------------------------------------------------------------------
  414. --------------------------------- LWIP callbacks -------------------------------
  415. ------------------------------------------------------------------------------*/
  416. // NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY
  417. // locked in this case!
  418. /*
  419. * Callback from LWIP for when a connection has been accepted and the PCB has been
  420. * put into an ACCEPT state.
  421. *
  422. * A socketpair is created, one end is kept and wrapped into a PhySocket object
  423. * for use in the main ZT I/O loop, and one end is sent to the client. The client
  424. * is then required to tell the service what new file descriptor it has allocated
  425. * for this connection. After the mapping is complete, the accepted socket can be
  426. * used.
  427. *
  428. * @param associated service state object
  429. * @param newly allocated PCB
  430. * @param error code
  431. * @return ERR_OK if everything is ok, -1 otherwise
  432. [ ] EAGAIN or EWOULDBLOCK - The socket is marked nonblocking and no connections are present
  433. to be accepted. POSIX.1-2001 allows either error to be returned for
  434. this case, and does not require these constants to have the same value,
  435. so a portable application should check for both possibilities.
  436. [ ] EBADF - The descriptor is invalid.
  437. [i] ECONNABORTED - A connection has been aborted.
  438. [i] EFAULT - The addr argument is not in a writable part of the user address space.
  439. [ ] EINTR - The system call was interrupted by a signal that was caught before a valid connection arrived; see signal(7).
  440. [ ] EINVAL - Socket is not listening for connections, or addrlen is invalid (e.g., is negative).
  441. [ ] EINVAL - (accept4()) invalid value in flags.
  442. [ ] EMFILE - The per-process limit of open file descriptors has been reached.
  443. [ ] ENFILE - The system limit on the total number of open files has been reached.
  444. [ ] ENOBUFS, ENOMEM - Not enough free memory. This often means that the memory allocation is
  445. limited by the socket buffer limits, not by the system memory.
  446. [i] ENOTSOCK - The descriptor references a file, not a socket.
  447. [i] EOPNOTSUPP - The referenced socket is not of type SOCK_STREAM.
  448. [ ] EPROTO - Protocol error.
  449. *
  450. */
  451. err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err)
  452. {
  453. fprintf(stderr, "nc_accept()\n");
  454. Larg *l = (Larg*)arg;
  455. TcpConnection *conn = l->conn;
  456. NetconEthernetTap *tap = l->tap;
  457. int larg_fd = tap->_phy.getDescriptor(conn->dataSock);
  458. if(conn) {
  459. ZT_PHY_SOCKFD_TYPE fds[2];
  460. if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
  461. if(errno < 0) {
  462. l->tap->send_return_value(conn, -1, errno);
  463. return ERR_MEM;
  464. }
  465. }
  466. TcpConnection *new_tcp_conn = new TcpConnection();
  467. new_tcp_conn->dataSock = tap->_phy.wrapSocket(fds[0], new_tcp_conn);
  468. new_tcp_conn->rpcSock = conn->rpcSock;
  469. new_tcp_conn->pcb = newpcb;
  470. new_tcp_conn->their_fd = fds[1];
  471. tap->tcp_connections.push_back(new_tcp_conn);
  472. int send_fd = tap->_phy.getDescriptor(conn->rpcSock);
  473. int n = write(larg_fd, "z", 1); // accept() in library waits for this byte
  474. if(n > 0) {
  475. if(sock_fd_write(send_fd, fds[1]) > 0) {
  476. new_tcp_conn->pending = true;
  477. }
  478. else {
  479. fprintf(stderr, "nc_accept(%d): unable to send fd to client\n", larg_fd);
  480. }
  481. }
  482. else {
  483. fprintf(stderr, "nc_accept(%d): error writing signal byte (send_fd = %d, perceived_fd = %d)\n", larg_fd, send_fd, fds[1]);
  484. return -1;
  485. }
  486. tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_tcp_conn));
  487. tap->lwipstack->_tcp_recv(newpcb, nc_recved);
  488. tap->lwipstack->_tcp_err(newpcb, nc_err);
  489. tap->lwipstack->_tcp_sent(newpcb, nc_sent);
  490. tap->lwipstack->_tcp_poll(newpcb, nc_poll, 0.5);
  491. tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections
  492. return ERR_OK;
  493. }
  494. else {
  495. fprintf(stderr, "nc_accept(%d): can't locate Connection object for PCB.\n", larg_fd);
  496. }
  497. return -1;
  498. }
  499. /*
  500. * Callback from LWIP for when data is available to be read from the network.
  501. *
  502. * Data is in the form of a linked list of struct pbufs, it is then recombined and
  503. * send to the client over the associated unix socket.
  504. *
  505. * @param associated service state object
  506. * @param allocated PCB
  507. * @param chain of pbufs
  508. * @param error code
  509. * @return ERR_OK if everything is ok, -1 otherwise
  510. *
  511. */
  512. err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err)
  513. {
  514. fprintf(stderr, "nc_recved()\n");
  515. Larg *l = (Larg*)arg;
  516. int n;
  517. struct pbuf* q = p;
  518. if(!l->conn) {
  519. fprintf(stderr, "nc_recved(): no connection object\n");
  520. return ERR_OK; // ?
  521. }
  522. if(p == NULL) {
  523. if(l->conn) {
  524. fprintf(stderr, "nc_recved(): closing connection\n");
  525. l->tap->closeConnection(l->conn);
  526. }
  527. else {
  528. fprintf(stderr, "nc_recved(): can't locate connection via (arg)\n");
  529. }
  530. return err;
  531. }
  532. q = p;
  533. while(p != NULL) { // Cycle through pbufs and write them to the socket
  534. if(p->len <= 0)
  535. break; // ?
  536. if((n = l->tap->_phy.streamSend(l->conn->dataSock,p->payload, p->len)) > 0) {
  537. if(n < p->len) {
  538. fprintf(stderr, "nc_recved(): unable to write entire pbuf to buffer\n");
  539. }
  540. l->tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end?
  541. }
  542. else {
  543. fprintf(stderr, "nc_recved(): No data written to intercept buffer\n");
  544. }
  545. p = p->next;
  546. }
  547. l->tap->lwipstack->_pbuf_free(q); // free pbufs
  548. return ERR_OK;
  549. }
  550. /*
  551. * Callback from LWIP when an internal error is associtated with the given (arg)
  552. *
  553. * Since the PCB related to this error might no longer exist, only its perviously
  554. * associated (arg) is provided to us.
  555. *
  556. * @param associated service state object
  557. * @param error code
  558. *
  559. */
  560. void NetconEthernetTap::nc_err(void *arg, err_t err)
  561. {
  562. Larg *l = (Larg*)arg;
  563. //fprintf(stderr, "larg = %x, nc_err() = %d\n", l, err);
  564. if(!l->conn)
  565. fprintf(stderr, "nc_err(): Connection is NULL!\n");
  566. if(l->conn) {
  567. switch(err)
  568. {
  569. // FIXME: Check if connection is pending first?
  570. case ERR_MEM:
  571. fprintf(stderr, "nc_err(): ERR_MEM->ENOMEM\n");
  572. l->tap->send_return_value(l->conn, -1, ENOMEM);
  573. break;
  574. case ERR_BUF:
  575. fprintf(stderr, "nc_err(): ERR_BUF->ENOBUFS\n");
  576. l->tap->send_return_value(l->conn, -1, ENOBUFS);
  577. break;
  578. case ERR_TIMEOUT:
  579. fprintf(stderr, "nc_err(): ERR_TIMEOUT->ETIMEDOUT\n");
  580. l->tap->send_return_value(l->conn, -1, ETIMEDOUT);
  581. break;
  582. case ERR_RTE:
  583. fprintf(stderr, "nc_err(): ERR_RTE->ENETUNREACH\n");
  584. l->tap->send_return_value(l->conn, -1, ENETUNREACH);
  585. break;
  586. case ERR_INPROGRESS:
  587. fprintf(stderr, "nc_err(): ERR_INPROGRESS->EINPROGRESS\n");
  588. l->tap->send_return_value(l->conn, -1, EINPROGRESS);
  589. break;
  590. case ERR_VAL:
  591. fprintf(stderr, "nc_err(): ERR_VAL->EINVAL\n");
  592. l->tap->send_return_value(l->conn, -1, EINVAL);
  593. break;
  594. case ERR_WOULDBLOCK:
  595. fprintf(stderr, "nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n");
  596. l->tap->send_return_value(l->conn, -1, EWOULDBLOCK);
  597. break;
  598. case ERR_USE:
  599. fprintf(stderr, "nc_err(): ERR_USE->EADDRINUSE\n");
  600. l->tap->send_return_value(l->conn, -1, EADDRINUSE);
  601. break;
  602. case ERR_ISCONN:
  603. fprintf(stderr, "nc_err(): ERR_ISCONN->EISCONN\n");
  604. l->tap->send_return_value(l->conn, -1, EISCONN);
  605. break;
  606. case ERR_ABRT:
  607. fprintf(stderr, "nc_err(): ERR_ABRT->ETIMEDOUT\n"); // FIXME: Correct?
  608. l->tap->send_return_value(l->conn, -1, ETIMEDOUT);
  609. break;
  610. // FIXME: Below are errors which don't have a standard errno correlate
  611. case ERR_RST:
  612. l->tap->send_return_value(l->conn, -1, -1);
  613. break;
  614. case ERR_CLSD:
  615. l->tap->send_return_value(l->conn, -1, -1);
  616. break;
  617. case ERR_CONN:
  618. l->tap->send_return_value(l->conn, -1, -1);
  619. break;
  620. case ERR_ARG:
  621. l->tap->send_return_value(l->conn, -1, -1);
  622. break;
  623. case ERR_IF:
  624. l->tap->send_return_value(l->conn, -1, -1);
  625. break;
  626. default:
  627. break;
  628. }
  629. fprintf(stderr, "nc_err(): closing connection\n");
  630. l->tap->closeConnection(l->conn);
  631. }
  632. else {
  633. fprintf(stderr, "nc_err(): can't locate connection object for PCB\n");
  634. }
  635. }
  636. /*
  637. * Callback from LWIP to do whatever work we might need to do.
  638. *
  639. * @param associated service state object
  640. * @param PCB we're polling on
  641. * @return ERR_OK if everything is ok, -1 otherwise
  642. *
  643. */
  644. err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb)
  645. {
  646. /*
  647. Larg *l = (Larg*)arg;
  648. TcpConnection *conn = l->conn;
  649. NetconEthernetTap *tap = l->tap;
  650. if(conn && conn->idx) // if valid connection and non-zero index (indicating data present)
  651. tap->handle_write(conn);
  652. */
  653. return ERR_OK;
  654. }
  655. /*
  656. * Callback from LWIP to signal that 'len' bytes have successfully been sent.
  657. * As a result, we should put our socket back into a notify-on-readability state
  658. * since there is now room on the PCB buffer to write to.
  659. *
  660. * NOTE: This could be used to track the amount of data sent by a connection.
  661. *
  662. * @param associated service state object
  663. * @param relevant PCB
  664. * @param length of data sent
  665. * @return ERR_OK if everything is ok, -1 otherwise
  666. *
  667. */
  668. err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len)
  669. {
  670. Larg *l = (Larg*)arg;
  671. if(len) {
  672. //fprintf(stderr, "ACKING len = %d, setting read-notify = true, (sndbuf = %d)\n", len, l->conn->pcb->snd_buf);
  673. l->tap->_phy.setNotifyReadable(l->conn->dataSock, true);
  674. //uint64_t now = OSUtils::now();
  675. //fprintf(stderr, "nc_sent(): now = %u\n", now);
  676. l->tap->_phy.whack();
  677. }
  678. return ERR_OK;
  679. }
  680. /*
  681. * Callback from LWIP which sends a return value to the client to signal that
  682. * a connection was established for this PCB
  683. *
  684. * @param associated service state object
  685. * @param relevant PCB
  686. * @param error code
  687. * @return ERR_OK if everything is ok, -1 otherwise
  688. *
  689. */
  690. err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err)
  691. {
  692. Larg *l = (Larg*)arg;
  693. l->tap->send_return_value(l->conn, ERR_OK);
  694. return ERR_OK;
  695. }
  696. /*------------------------------------------------------------------------------
  697. ----------------------------- RPC Handler functions ----------------------------
  698. ------------------------------------------------------------------------------*/
  699. /**
  700. * Handles a return value (client's perceived fd) and completes a mapping
  701. * so that we know what connection an RPC call should be associated with.
  702. *
  703. * @param PhySocket associated with this RPC connection
  704. * @param structure containing the data and parameters for this client's RPC
  705. *
  706. */
  707. void NetconEthernetTap::handle_retval(PhySocket *sock, void **uptr, unsigned char* buf)
  708. {
  709. TcpConnection *conn = (TcpConnection*)*uptr;
  710. if(conn->pending) {
  711. memcpy(&(conn->perceived_fd), &buf[1], sizeof(int));
  712. //fprintf(stderr, "handle_retval(): Mapping [our=%d -> their=%d]\n",
  713. //_phy.getDescriptor(conn->dataSock), conn->perceived_fd);
  714. conn->pending = false;
  715. }
  716. }
  717. /*
  718. * Handles an RPC to bind an LWIP PCB to a given address and port
  719. *
  720. * @param PhySocket associated with this RPC connection
  721. * @param structure containing the data and parameters for this client's RPC
  722. *
  723. [ ] EACCES - The address is protected, and the user is not the superuser.
  724. [X] EADDRINUSE - The given address is already in use.
  725. [X] EBADF - sockfd is not a valid descriptor.
  726. [X] EINVAL - The socket is already bound to an address.
  727. [i] ENOTSOCK - sockfd is a descriptor for a file, not a socket.
  728. [-] The following errors are specific to UNIX domain (AF_UNIX) sockets:
  729. [-] EACCES - Search permission is denied on a component of the path prefix. (See also path_resolution(7).)
  730. [-] EADDRNOTAVAIL - A nonexistent interface was requested or the requested address was not local.
  731. [-] EFAULT - addr points outside the user's accessible address space.
  732. [-] EINVAL - The addrlen is wrong, or the socket was not in the AF_UNIX family.
  733. [-] ELOOP - Too many symbolic links were encountered in resolving addr.
  734. [-] ENAMETOOLONG - s addr is too long.
  735. [-] ENOENT - The file does not exist.
  736. [X] ENOMEM - Insufficient kernel memory was available.
  737. [-] ENOTDIR - A component of the path prefix is not a directory.
  738. [-] EROFS - The socket inode would reside on a read-only file system.
  739. */
  740. void NetconEthernetTap::handle_bind(PhySocket *sock, void **uptr, struct bind_st *bind_rpc)
  741. {
  742. struct sockaddr_in *connaddr;
  743. connaddr = (struct sockaddr_in *) &bind_rpc->addr;
  744. int conn_port = lwipstack->ntohs(connaddr->sin_port);
  745. ip_addr_t conn_addr;
  746. conn_addr.addr = *((u32_t *)_ips[0].rawIpData());
  747. TcpConnection *conn = getConnectionByTheirFD(sock, bind_rpc->sockfd);
  748. if(conn) {
  749. if(conn->pcb->state == CLOSED){
  750. int err = lwipstack->tcp_bind(conn->pcb, &conn_addr, conn_port);
  751. if(err != ERR_OK) {
  752. int ip = connaddr->sin_addr.s_addr;
  753. unsigned char d[4];
  754. d[0] = ip & 0xFF;
  755. d[1] = (ip >> 8) & 0xFF;
  756. d[2] = (ip >> 16) & 0xFF;
  757. d[3] = (ip >> 24) & 0xFF;
  758. fprintf(stderr, "handle_bind(): error binding to %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port);
  759. if(err == ERR_USE)
  760. send_return_value(conn, -1, EADDRINUSE);
  761. if(err == ERR_MEM)
  762. send_return_value(conn, -1, ENOMEM); // FIXME: Likely won't happen
  763. if(err == ERR_BUF)
  764. send_return_value(conn, -1, ENOMEM);
  765. }
  766. else {
  767. send_return_value(conn, ERR_OK, ERR_OK); // Success
  768. }
  769. }
  770. else {
  771. fprintf(stderr, "handle_bind(): PCB not in CLOSED state. Ignoring BIND request.\n");
  772. send_return_value(conn, -1, EINVAL);
  773. }
  774. }
  775. //else {
  776. // fprintf(stderr, "handle_bind(): can't locate connection for PCB\n");
  777. // send_return_value(conn, -1, EBADF); // FIXME: This makes no sense
  778. //}
  779. }
  780. /*
  781. * Handles an RPC to put an LWIP PCB into LISTEN mode
  782. *
  783. * @param PhySocket associated with this RPC connection
  784. * @param structure containing the data and parameters for this client's RPC
  785. *
  786. [?] EADDRINUSE - Another socket is already listening on the same port.
  787. [X] EBADF - The argument sockfd is not a valid descriptor.
  788. [i] ENOTSOCK - The argument sockfd is not a socket.
  789. [i] EOPNOTSUPP - The socket is not of a type that supports the listen() operation.
  790. */
  791. void NetconEthernetTap::handle_listen(PhySocket *sock, void **uptr, struct listen_st *listen_rpc)
  792. {
  793. TcpConnection *conn = getConnectionByTheirFD(sock, listen_rpc->sockfd);
  794. if(conn) {
  795. if(conn->pcb->state == LISTEN) {
  796. fprintf(stderr, "handle_listen(): PCB is already in listening state.\n");
  797. return;
  798. }
  799. struct tcp_pcb* listening_pcb = lwipstack->tcp_listen(conn->pcb);
  800. if(listening_pcb != NULL) {
  801. conn->pcb = listening_pcb;
  802. lwipstack->tcp_accept(listening_pcb, nc_accept);
  803. lwipstack->tcp_arg(listening_pcb, new Larg(this, conn));
  804. /* we need to wait for the client to send us the fd allocated on their end
  805. for this listening socket */
  806. conn->pending = true;
  807. send_return_value(conn, ERR_OK, ERR_OK);
  808. }
  809. else {
  810. fprintf(stderr, "handle_listen(): unable to allocate memory for new listening PCB\n");
  811. send_return_value(conn, -1, ENOMEM); // FIXME: This does not have an equivalent errno value
  812. }
  813. }
  814. else {
  815. // We can't find a connection mapped to the socket fd provided
  816. fprintf(stderr, "handle_listen(): can't locate connection for PCB\n");
  817. send_return_value(conn, -1, EBADF);
  818. }
  819. }
  820. /*
  821. * Handles an RPC to create a socket (LWIP PCB and associated socketpair)
  822. *
  823. * A socketpair is created, one end is kept and wrapped into a PhySocket object
  824. * for use in the main ZT I/O loop, and one end is sent to the client. The client
  825. * is then required to tell the service what new file descriptor it has allocated
  826. * for this connection. After the mapping is complete, the socket can be used.
  827. *
  828. * @param PhySocket associated with this RPC connection
  829. * @param structure containing the data and parameters for this client's RPC
  830. *
  831. TODO: set errno appropriately
  832. [-] EACCES - Permission to create a socket of the specified type and/or protocol is denied.
  833. [?] EAFNOSUPPORT - The implementation does not support the specified address family.
  834. [?] EINVAL - Unknown protocol, or protocol family not available.
  835. [?] EINVAL - Invalid flags in type.
  836. [i] EMFILE - Process file table overflow.
  837. [i] ENFILE - The system limit on the total number of open files has been reached.
  838. [X] ENOBUFS or ENOMEM - Insufficient memory is available. The socket cannot be created until sufficient resources are freed.
  839. [?] EPROTONOSUPPORT - The protocol type or the specified protocol is not supported within this domain.
  840. */
  841. void NetconEthernetTap::handle_socket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
  842. {
  843. struct tcp_pcb *newpcb = lwipstack->tcp_new();
  844. if(newpcb != NULL) {
  845. ZT_PHY_SOCKFD_TYPE fds[2];
  846. if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
  847. if(errno < 0) {
  848. send_return_value(_phy.getDescriptor(sock), -1, errno);
  849. return;
  850. }
  851. }
  852. TcpConnection *new_conn = new TcpConnection();
  853. new_conn->dataSock = _phy.wrapSocket(fds[0], new_conn);
  854. *uptr = new_conn;
  855. new_conn->rpcSock = sock;
  856. new_conn->pcb = newpcb;
  857. new_conn->their_fd = fds[1];
  858. tcp_connections.push_back(new_conn);
  859. sock_fd_write(_phy.getDescriptor(sock), fds[1]);
  860. // Once the client tells us what its fd is for the other end, we can then complete the mapping
  861. new_conn->pending = true;
  862. }
  863. else {
  864. int rpc_fd = _phy.getDescriptor(sock);
  865. sock_fd_write(rpc_fd, -1); // Send a bad fd, to signal error
  866. fprintf(stderr, "handle_socket(): Memory not available for new PCB\n");
  867. if(send_return_value(rpc_fd, -1, ENOMEM) < 0) {
  868. fprintf(stderr, "handle_socket(): Unable to send return value\n");
  869. }
  870. }
  871. }
  872. /*
  873. * Handles an RPC to connect to a given address and port
  874. *
  875. * @param PhySocket associated with this RPC connection
  876. * @param structure containing the data and parameters for this client's RPC
  877. --- Error handling in this method will only catch problems which are immeidately
  878. apprent. Some errors will need to be caught in the nc_connected(0 callback
  879. [i] EACCES - For UNIX domain sockets, which are identified by pathname: Write permission is denied ...
  880. [ ] EACCES, EPERM - The user tried to connect to a broadcast address without having the socket broadcast flag enabled ...
  881. [i] EADDRINUSE - Local address is already in use.
  882. [?] EAFNOSUPPORT - The passed address didn't have the correct address family in its sa_family field.
  883. [ ] EAGAIN - No more free local ports or insufficient entries in the routing cache.
  884. [ ] EALREADY - The socket is nonblocking and a previous connection attempt has not yet been completed.
  885. [ ] EBADF - The file descriptor is not a valid index in the descriptor table.
  886. [ ] ECONNREFUSED - No-one listening on the remote address.
  887. [i] EFAULT - The socket structure address is outside the user's address space.
  888. [ ] EINPROGRESS - The socket is nonblocking and the connection cannot be completed immediately.
  889. [?] EINTR - The system call was interrupted by a signal that was caught.
  890. [X] EISCONN - The socket is already connected.
  891. [?] ENETUNREACH - Network is unreachable.
  892. [ ] ENOTSOCK - The file descriptor is not associated with a socket.
  893. [X] ETIMEDOUT - Timeout while attempting connection.
  894. *
  895. */
  896. void NetconEthernetTap::handle_connect(PhySocket *sock, void **uptr, struct connect_st* connect_rpc)
  897. {
  898. TcpConnection *conn = (TcpConnection*)*uptr;
  899. struct sockaddr_in *connaddr;
  900. connaddr = (struct sockaddr_in *) &connect_rpc->__addr;
  901. int conn_port = lwipstack->ntohs(connaddr->sin_port);
  902. ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr);
  903. if(conn != NULL) {
  904. lwipstack->tcp_sent(conn->pcb, nc_sent); // FIXME: Move?
  905. lwipstack->tcp_recv(conn->pcb, nc_recved);
  906. lwipstack->tcp_err(conn->pcb, nc_err);
  907. lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ);
  908. lwipstack->tcp_arg(conn->pcb, new Larg(this, conn));
  909. int err = 0;
  910. if((err = lwipstack->tcp_connect(conn->pcb,&conn_addr,conn_port, nc_connected)) < 0)
  911. {
  912. if(err == ERR_USE) {
  913. send_return_value(conn, -1, EISCONN); // Already in use
  914. return;
  915. }
  916. if(err == ERR_VAL) {
  917. send_return_value(conn, -1, EAFNOSUPPORT); // FIXME: Invalid arguments?
  918. return;
  919. }
  920. if(err == ERR_RTE) {
  921. send_return_value(conn, -1, ENETUNREACH); // FIXME: Host unreachable
  922. return;
  923. }
  924. if(err == ERR_BUF)
  925. {
  926. // FIXME
  927. }
  928. if(err == ERR_MEM)
  929. {
  930. // FIXME: return value originates from tcp_enqueue_flags()
  931. }
  932. // We should only return a value if failure happens immediately
  933. // Otherwise, we still need to wait for a callback from lwIP.
  934. // - This is because an ERR_OK from tcp_connect() only verifies
  935. // that the SYN packet was enqueued onto the stack properly,
  936. // that's it!
  937. // - Most instances of a retval for a connect() should happen
  938. // in the nc_connect() and nc_err() callbacks!
  939. fprintf(stderr, "handle_connect(): unable to connect\n");
  940. send_return_value(conn, -1, err); // FIXME: Only catch unhandled errors
  941. }
  942. // Everything seems to be ok, but we don't have enough info to retval
  943. conn->pending=true;
  944. }
  945. else {
  946. fprintf(stderr, "could not locate PCB based on their fd\n");
  947. }
  948. }
  949. void NetconEthernetTap::handle_write(TcpConnection *conn)
  950. {
  951. float max = (float)TCP_SND_BUF;
  952. int r;
  953. if(!conn) {
  954. fprintf(stderr, "handle_write(): could not locate connection for this fd\n");
  955. return;
  956. }
  957. if(conn->idx < max) {
  958. int sndbuf = conn->pcb->snd_buf; // How much we are currently allowed to write to the connection
  959. /* PCB send buffer is full,turn off readability notifications for the
  960. corresponding PhySocket until nc_sent() is called and confirms that there is
  961. now space on the buffer */
  962. if(sndbuf == 0) {
  963. _phy.setNotifyReadable(conn->dataSock, false);
  964. lwipstack->_tcp_output(conn->pcb);
  965. return;
  966. }
  967. int read_fd = _phy.getDescriptor(conn->dataSock);
  968. if((r = read(read_fd, (&conn->buf)+conn->idx, sndbuf)) > 0) {
  969. conn->idx += r;
  970. /* Writes data pulled from the client's socket buffer to LWIP. This merely sends the
  971. * data to LWIP to be enqueued and eventually sent to the network. */
  972. if(r > 0) {
  973. int sz;
  974. // NOTE: this assumes that lwipstack->_lock is locked, either
  975. // because we are in a callback or have locked it manually.
  976. int err = lwipstack->_tcp_write(conn->pcb, &conn->buf, r, TCP_WRITE_FLAG_COPY);
  977. if(err != ERR_OK) {
  978. fprintf(stderr, "handle_write(): error while writing to PCB\n");
  979. return;
  980. }
  981. else {
  982. sz = (conn->idx)-r;
  983. if(sz) {
  984. memmove(&conn->buf, (conn->buf+r), sz);
  985. }
  986. conn->idx -= r;
  987. return;
  988. }
  989. }
  990. else {
  991. fprintf(stderr, "handle_write(): LWIP stack full\n");
  992. return;
  993. }
  994. }
  995. }
  996. }
  997. } // namespace ZeroTier
  998. #endif // ZT_ENABLE_NETCON