AES.hpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #ifndef ZT_AES_HPP
  27. #define ZT_AES_HPP
  28. #include "Constants.hpp"
  29. #include "Utils.hpp"
  30. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  31. #include <wmmintrin.h>
  32. #include <emmintrin.h>
  33. #include <smmintrin.h>
  34. #define ZT_AES_AESNI 1
  35. #endif
  36. namespace ZeroTier {
  37. /**
  38. * AES-256 and GCM AEAD
  39. *
  40. * AES with 128-bit or 192-bit key sizes isn't supported here. This also only
  41. * supports the encrypt operation since we use AES in GCM mode. For HW acceleration
  42. * the code is inlined for maximum performance.
  43. */
  44. class AES
  45. {
  46. public:
  47. /**
  48. * This will be true if your platform's type of AES acceleration is supported on this machine
  49. */
  50. static const bool HW_ACCEL;
  51. inline AES() {}
  52. inline AES(const uint8_t key[32]) { this->init(key); }
  53. inline ~AES()
  54. {
  55. Utils::burn(&_k,sizeof(_k));
  56. }
  57. inline void init(const uint8_t key[32])
  58. {
  59. #ifdef ZT_AES_AESNI
  60. if (HW_ACCEL) {
  61. _init_aesni(key);
  62. return;
  63. }
  64. #endif
  65. _initSW(key);
  66. }
  67. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  68. {
  69. #ifdef ZT_AES_AESNI
  70. if (HW_ACCEL) {
  71. _encrypt_aesni(in,out);
  72. return;
  73. }
  74. #endif
  75. _encryptSW(in,out);
  76. }
  77. inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
  78. {
  79. #ifdef ZT_AES_AESNI
  80. if (HW_ACCEL) {
  81. _encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
  82. return;
  83. }
  84. #endif
  85. abort(); // TODO: software
  86. }
  87. inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
  88. {
  89. abort(); // TODO: software
  90. return false;
  91. }
  92. // These are public so the software mode can always be tested in self-test.
  93. // Normally init(), encrypt(), etc. should be used and will choose accelerated
  94. // or software mode depending on hardware capability.
  95. void _initSW(const uint8_t key[32]);
  96. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  97. private:
  98. #ifdef ZT_AES_AESNI
  99. static inline __m128i _init256_1(__m128i a,__m128i b)
  100. {
  101. __m128i x,y;
  102. b = _mm_shuffle_epi32(b,0xff);
  103. y = _mm_slli_si128(a,0x04);
  104. x = _mm_xor_si128(a,y);
  105. y = _mm_slli_si128(y,0x04);
  106. x = _mm_xor_si128(x,y);
  107. y = _mm_slli_si128(y,0x04);
  108. x = _mm_xor_si128(x,y);
  109. x = _mm_xor_si128(x,b);
  110. return x;
  111. }
  112. static inline __m128i _init256_2(__m128i a,__m128i b)
  113. {
  114. __m128i x,y,z;
  115. y = _mm_aeskeygenassist_si128(a,0x00);
  116. z = _mm_shuffle_epi32(y,0xaa);
  117. y = _mm_slli_si128(b,0x04);
  118. x = _mm_xor_si128(b,y);
  119. y = _mm_slli_si128(y,0x04);
  120. x = _mm_xor_si128(x,y);
  121. y = _mm_slli_si128(y,0x04);
  122. x = _mm_xor_si128(x,y);
  123. x = _mm_xor_si128(x,z);
  124. return x;
  125. }
  126. inline void _init_aesni(const uint8_t key[32])
  127. {
  128. __m128i t1,t2;
  129. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  130. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  131. _k.ni.k[2] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x01));
  132. _k.ni.k[3] = t2 = _init256_2(t1,t2);
  133. _k.ni.k[4] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x02));
  134. _k.ni.k[5] = t2 = _init256_2(t1,t2);
  135. _k.ni.k[6] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x04));
  136. _k.ni.k[7] = t2 = _init256_2(t1,t2);
  137. _k.ni.k[8] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x08));
  138. _k.ni.k[9] = t2 = _init256_2(t1,t2);
  139. _k.ni.k[10] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x10));
  140. _k.ni.k[11] = t2 = _init256_2(t1,t2);
  141. _k.ni.k[12] = t1 = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x20));
  142. _k.ni.k[13] = t2 = _init256_2(t1,t2);
  143. _k.ni.k[14] = _init256_1(t1,_mm_aeskeygenassist_si128(t2,0x40));
  144. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  145. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  146. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  147. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  148. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  149. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  150. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  151. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  152. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  153. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  154. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  155. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  156. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  157. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  158. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  159. __m128i hswap = _swap128_aesni(h);
  160. __m128i hh = _mult_block_aesni(hswap,h);
  161. __m128i hhh = _mult_block_aesni(hswap,hh);
  162. __m128i hhhh = _mult_block_aesni(hswap,hhh);
  163. _k.ni.h = hswap;
  164. _k.ni.hh = _swap128_aesni(hh);
  165. _k.ni.hhh = _swap128_aesni(hhh);
  166. _k.ni.hhhh = _swap128_aesni(hhhh);
  167. /*
  168. this->h = h;
  169. h = swap128(h);
  170. this->hh = mult_block(h, this->h);
  171. this->hhh = mult_block(h, this->hh);
  172. this->hhhh = mult_block(h, this->hhh);
  173. this->h = swap128(this->h);
  174. this->hh = swap128(this->hh);
  175. this->hhh = swap128(this->hhh);
  176. this->hhhh = swap128(this->hhhh);
  177. */
  178. }
  179. inline void _encrypt_aesni(const void *in,void *out) const
  180. {
  181. __m128i tmp;
  182. tmp = _mm_loadu_si128((const __m128i *)in);
  183. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  184. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  185. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  186. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  187. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  188. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  189. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  190. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  191. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  192. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  193. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  194. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  195. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  196. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  197. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  198. }
  199. static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
  200. static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
  201. {
  202. __m128i t1,t2,t3,t4,t5,t6;
  203. y = _swap128_aesni(y);
  204. t1 = _mm_clmulepi64_si128(h, y, 0x00);
  205. t2 = _mm_clmulepi64_si128(h, y, 0x01);
  206. t3 = _mm_clmulepi64_si128(h, y, 0x10);
  207. t4 = _mm_clmulepi64_si128(h, y, 0x11);
  208. t2 = _mm_xor_si128(t2, t3);
  209. t3 = _mm_slli_si128(t2, 8);
  210. t2 = _mm_srli_si128(t2, 8);
  211. t1 = _mm_xor_si128(t1, t3);
  212. t4 = _mm_xor_si128(t4, t2);
  213. t5 = _mm_srli_epi32(t1, 31);
  214. t1 = _mm_slli_epi32(t1, 1);
  215. t6 = _mm_srli_epi32(t4, 31);
  216. t4 = _mm_slli_epi32(t4, 1);
  217. t3 = _mm_srli_si128(t5, 12);
  218. t6 = _mm_slli_si128(t6, 4);
  219. t5 = _mm_slli_si128(t5, 4);
  220. t1 = _mm_or_si128(t1, t5);
  221. t4 = _mm_or_si128(t4, t6);
  222. t4 = _mm_or_si128(t4, t3);
  223. t5 = _mm_slli_epi32(t1, 31);
  224. t6 = _mm_slli_epi32(t1, 30);
  225. t3 = _mm_slli_epi32(t1, 25);
  226. t5 = _mm_xor_si128(t5, t6);
  227. t5 = _mm_xor_si128(t5, t3);
  228. t6 = _mm_srli_si128(t5, 4);
  229. t4 = _mm_xor_si128(t4, t6);
  230. t5 = _mm_slli_si128(t5, 12);
  231. t1 = _mm_xor_si128(t1, t5);
  232. t4 = _mm_xor_si128(t4, t1);
  233. t5 = _mm_srli_epi32(t1, 1);
  234. t2 = _mm_srli_epi32(t1, 2);
  235. t3 = _mm_srli_epi32(t1, 7);
  236. t4 = _mm_xor_si128(t4, t2);
  237. t4 = _mm_xor_si128(t4, t3);
  238. t4 = _mm_xor_si128(t4, t5);
  239. return _swap128_aesni(t4);
  240. }
  241. static inline __m128i _mult4xor_aesni(__m128i h1,__m128i h2,__m128i h3,__m128i h4,__m128i d1,__m128i d2,__m128i d3,__m128i d4)
  242. {
  243. __m128i t0,t1,t2,t3,t4,t5,t6,t7,t8,t9;
  244. d1 = _swap128_aesni(d1);
  245. d2 = _swap128_aesni(d2);
  246. d3 = _swap128_aesni(d3);
  247. d4 = _swap128_aesni(d4);
  248. t0 = _mm_clmulepi64_si128(h1, d1, 0x00);
  249. t1 = _mm_clmulepi64_si128(h2, d2, 0x00);
  250. t2 = _mm_clmulepi64_si128(h3, d3, 0x00);
  251. t3 = _mm_clmulepi64_si128(h4, d4, 0x00);
  252. t8 = _mm_xor_si128(t0, t1);
  253. t8 = _mm_xor_si128(t8, t2);
  254. t8 = _mm_xor_si128(t8, t3);
  255. t4 = _mm_clmulepi64_si128(h1, d1, 0x11);
  256. t5 = _mm_clmulepi64_si128(h2, d2, 0x11);
  257. t6 = _mm_clmulepi64_si128(h3, d3, 0x11);
  258. t7 = _mm_clmulepi64_si128(h4, d4, 0x11);
  259. t9 = _mm_xor_si128(t4, t5);
  260. t9 = _mm_xor_si128(t9, t6);
  261. t9 = _mm_xor_si128(t9, t7);
  262. t0 = _mm_shuffle_epi32(h1, 78);
  263. t4 = _mm_shuffle_epi32(d1, 78);
  264. t0 = _mm_xor_si128(t0, h1);
  265. t4 = _mm_xor_si128(t4, d1);
  266. t1 = _mm_shuffle_epi32(h2, 78);
  267. t5 = _mm_shuffle_epi32(d2, 78);
  268. t1 = _mm_xor_si128(t1, h2);
  269. t5 = _mm_xor_si128(t5, d2);
  270. t2 = _mm_shuffle_epi32(h3, 78);
  271. t6 = _mm_shuffle_epi32(d3, 78);
  272. t2 = _mm_xor_si128(t2, h3);
  273. t6 = _mm_xor_si128(t6, d3);
  274. t3 = _mm_shuffle_epi32(h4, 78);
  275. t7 = _mm_shuffle_epi32(d4, 78);
  276. t3 = _mm_xor_si128(t3, h4);
  277. t7 = _mm_xor_si128(t7, d4);
  278. t0 = _mm_clmulepi64_si128(t0, t4, 0x00);
  279. t1 = _mm_clmulepi64_si128(t1, t5, 0x00);
  280. t2 = _mm_clmulepi64_si128(t2, t6, 0x00);
  281. t3 = _mm_clmulepi64_si128(t3, t7, 0x00);
  282. t0 = _mm_xor_si128(t0, t8);
  283. t0 = _mm_xor_si128(t0, t9);
  284. t0 = _mm_xor_si128(t1, t0);
  285. t0 = _mm_xor_si128(t2, t0);
  286. t0 = _mm_xor_si128(t3, t0);
  287. t4 = _mm_slli_si128(t0, 8);
  288. t0 = _mm_srli_si128(t0, 8);
  289. t3 = _mm_xor_si128(t4, t8);
  290. t6 = _mm_xor_si128(t0, t9);
  291. t7 = _mm_srli_epi32(t3, 31);
  292. t8 = _mm_srli_epi32(t6, 31);
  293. t3 = _mm_slli_epi32(t3, 1);
  294. t6 = _mm_slli_epi32(t6, 1);
  295. t9 = _mm_srli_si128(t7, 12);
  296. t8 = _mm_slli_si128(t8, 4);
  297. t7 = _mm_slli_si128(t7, 4);
  298. t3 = _mm_or_si128(t3, t7);
  299. t6 = _mm_or_si128(t6, t8);
  300. t6 = _mm_or_si128(t6, t9);
  301. t7 = _mm_slli_epi32(t3, 31);
  302. t8 = _mm_slli_epi32(t3, 30);
  303. t9 = _mm_slli_epi32(t3, 25);
  304. t7 = _mm_xor_si128(t7, t8);
  305. t7 = _mm_xor_si128(t7, t9);
  306. t8 = _mm_srli_si128(t7, 4);
  307. t7 = _mm_slli_si128(t7, 12);
  308. t3 = _mm_xor_si128(t3, t7);
  309. t2 = _mm_srli_epi32(t3, 1);
  310. t4 = _mm_srli_epi32(t3, 2);
  311. t5 = _mm_srli_epi32(t3, 7);
  312. t2 = _mm_xor_si128(t2, t4);
  313. t2 = _mm_xor_si128(t2, t5);
  314. t2 = _mm_xor_si128(t2, t8);
  315. t3 = _mm_xor_si128(t3, t2);
  316. t6 = _mm_xor_si128(t6, t3);
  317. return _swap128_aesni(t6);
  318. }
  319. static inline __m128i _ghash_aesni(__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(h,_mm_xor_si128(y,x)); }
  320. static inline __m128i _increment_be_aesni(__m128i x)
  321. {
  322. x = _swap128_aesni(x);
  323. x = _mm_add_epi64(x, _mm_set_epi32(0, 0, 0, 1));
  324. x = _swap128_aesni(x);
  325. return x;
  326. }
  327. static inline void _htoun64_aesni(void *network,const uint64_t host) { *((uint64_t *)network) = Utils::hton(host); }
  328. static inline void _htoun32_aesni(void *network,const uint64_t host) { *((uint32_t *)network) = Utils::hton(host); }
  329. inline __m128i _create_j_aesni(const uint8_t *iv) const
  330. {
  331. uint8_t j[16];
  332. *((uint64_t *)j) = *((const uint64_t *)iv);
  333. *((uint32_t *)(j+8)) = *((const uint32_t *)(iv+8));
  334. j[12] = 0;
  335. j[13] = 0;
  336. j[14] = 0;
  337. j[15] = 1;
  338. return _mm_loadu_si128((__m128i *)j);
  339. }
  340. inline __m128i _icv_header_aesni(const void *assoc,unsigned int alen) const
  341. {
  342. unsigned int blocks,pblocks,rem,i;
  343. __m128i h1,h2,h3,h4,d1,d2,d3,d4;
  344. __m128i y,last;
  345. const __m128i *ab;
  346. h1 = _k.ni.hhhh;
  347. h2 = _k.ni.hhh;
  348. h3 = _k.ni.hh;
  349. h4 = _k.ni.h;
  350. y = _mm_setzero_si128();
  351. ab = (const __m128i *)assoc;
  352. blocks = alen / 16;
  353. pblocks = blocks - (blocks % 4);
  354. rem = alen % 16;
  355. for (i=0;i<pblocks;i+=4) {
  356. d1 = _mm_loadu_si128(ab + i + 0);
  357. d2 = _mm_loadu_si128(ab + i + 1);
  358. d3 = _mm_loadu_si128(ab + i + 2);
  359. d4 = _mm_loadu_si128(ab + i + 3);
  360. y = _mm_xor_si128(y, d1);
  361. y = _mult4xor_aesni(h1, h2, h3, h4, y, d2, d3, d4);
  362. }
  363. for (i = pblocks; i < blocks; i++)
  364. y = _ghash_aesni(_k.ni.h,y,_mm_loadu_si128(ab + i));
  365. if (rem) {
  366. last = _mm_setzero_si128();
  367. memcpy(&last, ab + blocks, rem);
  368. y = _ghash_aesni(_k.ni.h,y,last);
  369. }
  370. return y;
  371. }
  372. inline __m128i _icv_tailer_aesni(__m128i y,size_t alen,size_t dlen) const
  373. {
  374. __m128i b;
  375. _htoun64_aesni(&b, alen * 8);
  376. _htoun64_aesni((uint8_t *)&b + sizeof(uint64_t), dlen * 8);
  377. return _ghash_aesni(_k.ni.h, y, b);
  378. }
  379. inline void _icv_crypt_aesni(__m128i y,__m128i j,uint8_t *icv,unsigned int icvsize) const
  380. {
  381. __m128i *ks,t,b;
  382. t = _mm_xor_si128(j,_k.ni.k[0]);
  383. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  384. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  385. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  386. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  387. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  388. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  389. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  390. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  391. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  392. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  393. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  394. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  395. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  396. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  397. t = _mm_xor_si128(y, t);
  398. _mm_storeu_si128(&b, t);
  399. memcpy(icv,&b,icvsize);
  400. }
  401. inline __m128i _encrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y) const
  402. {
  403. __m128i *ks,t,b;
  404. memset(&b,0,sizeof(b));
  405. memcpy(&b,in,rem);
  406. t = _mm_xor_si128(cb,_k.ni.k[0]);
  407. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  408. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  409. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  410. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  411. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  412. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  413. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  414. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  415. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  416. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  417. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  418. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  419. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  420. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  421. b = _mm_xor_si128(t, b);
  422. memcpy(out,&b,rem);
  423. memset((u_char*)&b + rem,0,16 - rem);
  424. return _ghash_aesni(_k.ni.h,y,b);
  425. }
  426. inline void _encrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize) const
  427. {
  428. __m128i d1,d2,d3,d4,t1,t2,t3,t4;
  429. __m128i *ks,y,j,cb,*bi,*bo;
  430. j = _create_j_aesni(iv);
  431. cb = _increment_be_aesni(j);
  432. y = _icv_header_aesni(assoc,alen);
  433. unsigned int blocks = len / 16;
  434. unsigned int pblocks = blocks - (blocks % 4);
  435. unsigned int rem = len % 16;
  436. bi = (__m128i *)in;
  437. bo = (__m128i *)out;
  438. unsigned int i;
  439. for (i=0;i<pblocks;i+=4) {
  440. d1 = _mm_loadu_si128(bi + i + 0);
  441. d2 = _mm_loadu_si128(bi + i + 1);
  442. d3 = _mm_loadu_si128(bi + i + 2);
  443. d4 = _mm_loadu_si128(bi + i + 3);
  444. t1 = _mm_xor_si128(cb, _k.ni.k[0]);
  445. cb = _increment_be_aesni(cb);
  446. t2 = _mm_xor_si128(cb, _k.ni.k[0]);
  447. cb = _increment_be_aesni(cb);
  448. t3 = _mm_xor_si128(cb, _k.ni.k[0]);
  449. cb = _increment_be_aesni(cb);
  450. t4 = _mm_xor_si128(cb, _k.ni.k[0]);
  451. cb = _increment_be_aesni(cb);
  452. t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
  453. t2 = _mm_aesenc_si128(t2, _k.ni.k[1]);
  454. t3 = _mm_aesenc_si128(t3, _k.ni.k[1]);
  455. t4 = _mm_aesenc_si128(t4, _k.ni.k[1]);
  456. t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
  457. t2 = _mm_aesenc_si128(t2, _k.ni.k[2]);
  458. t3 = _mm_aesenc_si128(t3, _k.ni.k[2]);
  459. t4 = _mm_aesenc_si128(t4, _k.ni.k[2]);
  460. t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
  461. t2 = _mm_aesenc_si128(t2, _k.ni.k[3]);
  462. t3 = _mm_aesenc_si128(t3, _k.ni.k[3]);
  463. t4 = _mm_aesenc_si128(t4, _k.ni.k[3]);
  464. t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
  465. t2 = _mm_aesenc_si128(t2, _k.ni.k[4]);
  466. t3 = _mm_aesenc_si128(t3, _k.ni.k[4]);
  467. t4 = _mm_aesenc_si128(t4, _k.ni.k[4]);
  468. t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
  469. t2 = _mm_aesenc_si128(t2, _k.ni.k[5]);
  470. t3 = _mm_aesenc_si128(t3, _k.ni.k[5]);
  471. t4 = _mm_aesenc_si128(t4, _k.ni.k[5]);
  472. t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
  473. t2 = _mm_aesenc_si128(t2, _k.ni.k[6]);
  474. t3 = _mm_aesenc_si128(t3, _k.ni.k[6]);
  475. t4 = _mm_aesenc_si128(t4, _k.ni.k[6]);
  476. t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
  477. t2 = _mm_aesenc_si128(t2, _k.ni.k[7]);
  478. t3 = _mm_aesenc_si128(t3, _k.ni.k[7]);
  479. t4 = _mm_aesenc_si128(t4, _k.ni.k[7]);
  480. t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
  481. t2 = _mm_aesenc_si128(t2, _k.ni.k[8]);
  482. t3 = _mm_aesenc_si128(t3, _k.ni.k[8]);
  483. t4 = _mm_aesenc_si128(t4, _k.ni.k[8]);
  484. t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
  485. t2 = _mm_aesenc_si128(t2, _k.ni.k[9]);
  486. t3 = _mm_aesenc_si128(t3, _k.ni.k[9]);
  487. t4 = _mm_aesenc_si128(t4, _k.ni.k[9]);
  488. t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
  489. t2 = _mm_aesenc_si128(t2, _k.ni.k[10]);
  490. t3 = _mm_aesenc_si128(t3, _k.ni.k[10]);
  491. t4 = _mm_aesenc_si128(t4, _k.ni.k[10]);
  492. t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
  493. t2 = _mm_aesenc_si128(t2, _k.ni.k[11]);
  494. t3 = _mm_aesenc_si128(t3, _k.ni.k[11]);
  495. t4 = _mm_aesenc_si128(t4, _k.ni.k[11]);
  496. t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
  497. t2 = _mm_aesenc_si128(t2, _k.ni.k[12]);
  498. t3 = _mm_aesenc_si128(t3, _k.ni.k[12]);
  499. t4 = _mm_aesenc_si128(t4, _k.ni.k[12]);
  500. t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
  501. t2 = _mm_aesenc_si128(t2, _k.ni.k[13]);
  502. t3 = _mm_aesenc_si128(t3, _k.ni.k[13]);
  503. t4 = _mm_aesenc_si128(t4, _k.ni.k[13]);
  504. t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
  505. t2 = _mm_aesenclast_si128(t2, _k.ni.k[14]);
  506. t3 = _mm_aesenclast_si128(t3, _k.ni.k[14]);
  507. t4 = _mm_aesenclast_si128(t4, _k.ni.k[14]);
  508. t1 = _mm_xor_si128(t1, d1);
  509. t2 = _mm_xor_si128(t2, d2);
  510. t3 = _mm_xor_si128(t3, d3);
  511. t4 = _mm_xor_si128(t4, d4);
  512. y = _mm_xor_si128(y, t1);
  513. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,t2,t3,t4);
  514. _mm_storeu_si128(bo + i + 0, t1);
  515. _mm_storeu_si128(bo + i + 1, t2);
  516. _mm_storeu_si128(bo + i + 2, t3);
  517. _mm_storeu_si128(bo + i + 3, t4);
  518. }
  519. for (i=pblocks;i<blocks;++i) {
  520. d1 = _mm_loadu_si128(bi + i);
  521. t1 = _mm_xor_si128(cb, _k.ni.k[0]);
  522. t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
  523. t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
  524. t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
  525. t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
  526. t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
  527. t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
  528. t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
  529. t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
  530. t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
  531. t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
  532. t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
  533. t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
  534. t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
  535. t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
  536. t1 = _mm_xor_si128(t1, d1);
  537. _mm_storeu_si128(bo + i, t1);
  538. y = _ghash_aesni(_k.ni.h, y, t1);
  539. cb = _increment_be_aesni(cb);
  540. }
  541. if (rem)
  542. y = _encrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  543. y = _icv_tailer_aesni(y,alen,len);
  544. _icv_crypt_aesni(y,j,icv,icvsize);
  545. }
  546. inline __m128i _decrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y)
  547. {
  548. __m128i *ks, t, b;
  549. memset(&b, 0, sizeof(b));
  550. memcpy(&b, in, rem);
  551. y = _ghash_aesni(_k.ni.h, y, b);
  552. t = _mm_xor_si128(cb,_k.ni.k[0]);
  553. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  554. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  555. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  556. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  557. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  558. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  559. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  560. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  561. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  562. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  563. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  564. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  565. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  566. t = _mm_aesenclast_si128(t, _k.ni.k[14]);
  567. b = _mm_xor_si128(t, b);
  568. memcpy(out, &b, rem);
  569. return y;
  570. }
  571. inline void decrypt_gcm256(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize)
  572. {
  573. __m128i d1, d2, d3, d4, t1, t2, t3, t4;
  574. __m128i *ks, y, j, cb, *bi, *bo;
  575. unsigned int blocks, pblocks, rem;
  576. j = _create_j_aesni(iv);
  577. cb = _increment_be_aesni(j);
  578. y = _icv_header_aesni(assoc,alen);
  579. blocks = len / 16;
  580. pblocks = blocks - (blocks % 4);
  581. rem = len % 16;
  582. bi = (__m128i *)in;
  583. bo = (__m128i *)out;
  584. unsigned int i;
  585. for (i=0;i<pblocks;i+=4) {
  586. d1 = _mm_loadu_si128(bi + i + 0);
  587. d2 = _mm_loadu_si128(bi + i + 1);
  588. d3 = _mm_loadu_si128(bi + i + 2);
  589. d4 = _mm_loadu_si128(bi + i + 3);
  590. y = _mm_xor_si128(y, d1);
  591. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,d2,d3,d4);
  592. t1 = _mm_xor_si128(cb, _k.ni.k[0]);
  593. cb = _increment_be_aesni(cb);
  594. t2 = _mm_xor_si128(cb, _k.ni.k[0]);
  595. cb = _increment_be_aesni(cb);
  596. t3 = _mm_xor_si128(cb, _k.ni.k[0]);
  597. cb = _increment_be_aesni(cb);
  598. t4 = _mm_xor_si128(cb, _k.ni.k[0]);
  599. cb = _increment_be_aesni(cb);
  600. t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
  601. t2 = _mm_aesenc_si128(t2, _k.ni.k[1]);
  602. t3 = _mm_aesenc_si128(t3, _k.ni.k[1]);
  603. t4 = _mm_aesenc_si128(t4, _k.ni.k[1]);
  604. t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
  605. t2 = _mm_aesenc_si128(t2, _k.ni.k[2]);
  606. t3 = _mm_aesenc_si128(t3, _k.ni.k[2]);
  607. t4 = _mm_aesenc_si128(t4, _k.ni.k[2]);
  608. t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
  609. t2 = _mm_aesenc_si128(t2, _k.ni.k[3]);
  610. t3 = _mm_aesenc_si128(t3, _k.ni.k[3]);
  611. t4 = _mm_aesenc_si128(t4, _k.ni.k[3]);
  612. t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
  613. t2 = _mm_aesenc_si128(t2, _k.ni.k[4]);
  614. t3 = _mm_aesenc_si128(t3, _k.ni.k[4]);
  615. t4 = _mm_aesenc_si128(t4, _k.ni.k[4]);
  616. t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
  617. t2 = _mm_aesenc_si128(t2, _k.ni.k[5]);
  618. t3 = _mm_aesenc_si128(t3, _k.ni.k[5]);
  619. t4 = _mm_aesenc_si128(t4, _k.ni.k[5]);
  620. t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
  621. t2 = _mm_aesenc_si128(t2, _k.ni.k[6]);
  622. t3 = _mm_aesenc_si128(t3, _k.ni.k[6]);
  623. t4 = _mm_aesenc_si128(t4, _k.ni.k[6]);
  624. t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
  625. t2 = _mm_aesenc_si128(t2, _k.ni.k[7]);
  626. t3 = _mm_aesenc_si128(t3, _k.ni.k[7]);
  627. t4 = _mm_aesenc_si128(t4, _k.ni.k[7]);
  628. t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
  629. t2 = _mm_aesenc_si128(t2, _k.ni.k[8]);
  630. t3 = _mm_aesenc_si128(t3, _k.ni.k[8]);
  631. t4 = _mm_aesenc_si128(t4, _k.ni.k[8]);
  632. t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
  633. t2 = _mm_aesenc_si128(t2, _k.ni.k[9]);
  634. t3 = _mm_aesenc_si128(t3, _k.ni.k[9]);
  635. t4 = _mm_aesenc_si128(t4, _k.ni.k[9]);
  636. t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
  637. t2 = _mm_aesenc_si128(t2, _k.ni.k[10]);
  638. t3 = _mm_aesenc_si128(t3, _k.ni.k[10]);
  639. t4 = _mm_aesenc_si128(t4, _k.ni.k[10]);
  640. t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
  641. t2 = _mm_aesenc_si128(t2, _k.ni.k[11]);
  642. t3 = _mm_aesenc_si128(t3, _k.ni.k[11]);
  643. t4 = _mm_aesenc_si128(t4, _k.ni.k[11]);
  644. t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
  645. t2 = _mm_aesenc_si128(t2, _k.ni.k[12]);
  646. t3 = _mm_aesenc_si128(t3, _k.ni.k[12]);
  647. t4 = _mm_aesenc_si128(t4, _k.ni.k[12]);
  648. t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
  649. t2 = _mm_aesenc_si128(t2, _k.ni.k[13]);
  650. t3 = _mm_aesenc_si128(t3, _k.ni.k[13]);
  651. t4 = _mm_aesenc_si128(t4, _k.ni.k[13]);
  652. t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
  653. t2 = _mm_aesenclast_si128(t2, _k.ni.k[14]);
  654. t3 = _mm_aesenclast_si128(t3, _k.ni.k[14]);
  655. t4 = _mm_aesenclast_si128(t4, _k.ni.k[14]);
  656. t1 = _mm_xor_si128(t1, d1);
  657. t2 = _mm_xor_si128(t2, d2);
  658. t3 = _mm_xor_si128(t3, d3);
  659. t4 = _mm_xor_si128(t4, d4);
  660. _mm_storeu_si128(bo + i + 0, t1);
  661. _mm_storeu_si128(bo + i + 1, t2);
  662. _mm_storeu_si128(bo + i + 2, t3);
  663. _mm_storeu_si128(bo + i + 3, t4);
  664. }
  665. for (i=pblocks;i<blocks;i++) {
  666. d1 = _mm_loadu_si128(bi + i);
  667. y = _ghash_aesni(_k.ni.h,y,d1);
  668. t1 = _mm_xor_si128(cb, _k.ni.k[0]);
  669. t1 = _mm_aesenc_si128(t1, _k.ni.k[1]);
  670. t1 = _mm_aesenc_si128(t1, _k.ni.k[2]);
  671. t1 = _mm_aesenc_si128(t1, _k.ni.k[3]);
  672. t1 = _mm_aesenc_si128(t1, _k.ni.k[4]);
  673. t1 = _mm_aesenc_si128(t1, _k.ni.k[5]);
  674. t1 = _mm_aesenc_si128(t1, _k.ni.k[6]);
  675. t1 = _mm_aesenc_si128(t1, _k.ni.k[7]);
  676. t1 = _mm_aesenc_si128(t1, _k.ni.k[8]);
  677. t1 = _mm_aesenc_si128(t1, _k.ni.k[9]);
  678. t1 = _mm_aesenc_si128(t1, _k.ni.k[10]);
  679. t1 = _mm_aesenc_si128(t1, _k.ni.k[11]);
  680. t1 = _mm_aesenc_si128(t1, _k.ni.k[12]);
  681. t1 = _mm_aesenc_si128(t1, _k.ni.k[13]);
  682. t1 = _mm_aesenclast_si128(t1, _k.ni.k[14]);
  683. t1 = _mm_xor_si128(t1, d1);
  684. _mm_storeu_si128(bo + i, t1);
  685. cb = _increment_be_aesni(cb);
  686. }
  687. if (rem)
  688. y = _decrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  689. y = _icv_tailer_aesni(y,alen,len);
  690. _icv_crypt_aesni(y,j,icv,icvsize);
  691. }
  692. #endif
  693. union {
  694. #ifdef ZT_AES_AESNI
  695. struct {
  696. __m128i k[15]; // AES-NI expanded key
  697. __m128i h,hh,hhh,hhhh;
  698. } ni;
  699. #endif
  700. uint32_t sw[60]; // software mode expanded key
  701. } _k;
  702. };
  703. } // namespace ZeroTier
  704. #endif