| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 | // Go support for Protocol Buffers - Google's data interchange format//// Copyright 2010 The Go Authors.  All rights reserved.// https://github.com/golang/protobuf//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.package proto/* * Types and routines for supporting protocol buffer extensions. */import (	"errors"	"fmt"	"io"	"reflect"	"strconv"	"sync")// ErrMissingExtension is the error returned by GetExtension if the named extension is not in the message.var ErrMissingExtension = errors.New("proto: missing extension")// ExtensionRange represents a range of message extensions for a protocol buffer.// Used in code generated by the protocol compiler.type ExtensionRange struct {	Start, End int32 // both inclusive}// extendableProto is an interface implemented by any protocol buffer generated by the current// proto compiler that may be extended.type extendableProto interface {	Message	ExtensionRangeArray() []ExtensionRange	extensionsWrite() map[int32]Extension	extensionsRead() (map[int32]Extension, sync.Locker)}// extendableProtoV1 is an interface implemented by a protocol buffer generated by the previous// version of the proto compiler that may be extended.type extendableProtoV1 interface {	Message	ExtensionRangeArray() []ExtensionRange	ExtensionMap() map[int32]Extension}// extensionAdapter is a wrapper around extendableProtoV1 that implements extendableProto.type extensionAdapter struct {	extendableProtoV1}func (e extensionAdapter) extensionsWrite() map[int32]Extension {	return e.ExtensionMap()}func (e extensionAdapter) extensionsRead() (map[int32]Extension, sync.Locker) {	return e.ExtensionMap(), notLocker{}}// notLocker is a sync.Locker whose Lock and Unlock methods are nops.type notLocker struct{}func (n notLocker) Lock()   {}func (n notLocker) Unlock() {}// extendable returns the extendableProto interface for the given generated proto message.// If the proto message has the old extension format, it returns a wrapper that implements// the extendableProto interface.func extendable(p interface{}) (extendableProto, error) {	switch p := p.(type) {	case extendableProto:		if isNilPtr(p) {			return nil, fmt.Errorf("proto: nil %T is not extendable", p)		}		return p, nil	case extendableProtoV1:		if isNilPtr(p) {			return nil, fmt.Errorf("proto: nil %T is not extendable", p)		}		return extensionAdapter{p}, nil	}	// Don't allocate a specific error containing %T:	// this is the hot path for Clone and MarshalText.	return nil, errNotExtendable}var errNotExtendable = errors.New("proto: not an extendable proto.Message")func isNilPtr(x interface{}) bool {	v := reflect.ValueOf(x)	return v.Kind() == reflect.Ptr && v.IsNil()}// XXX_InternalExtensions is an internal representation of proto extensions.//// Each generated message struct type embeds an anonymous XXX_InternalExtensions field,// thus gaining the unexported 'extensions' method, which can be called only from the proto package.//// The methods of XXX_InternalExtensions are not concurrency safe in general,// but calls to logically read-only methods such as has and get may be executed concurrently.type XXX_InternalExtensions struct {	// The struct must be indirect so that if a user inadvertently copies a	// generated message and its embedded XXX_InternalExtensions, they	// avoid the mayhem of a copied mutex.	//	// The mutex serializes all logically read-only operations to p.extensionMap.	// It is up to the client to ensure that write operations to p.extensionMap are	// mutually exclusive with other accesses.	p *struct {		mu           sync.Mutex		extensionMap map[int32]Extension	}}// extensionsWrite returns the extension map, creating it on first use.func (e *XXX_InternalExtensions) extensionsWrite() map[int32]Extension {	if e.p == nil {		e.p = new(struct {			mu           sync.Mutex			extensionMap map[int32]Extension		})		e.p.extensionMap = make(map[int32]Extension)	}	return e.p.extensionMap}// extensionsRead returns the extensions map for read-only use.  It may be nil.// The caller must hold the returned mutex's lock when accessing Elements within the map.func (e *XXX_InternalExtensions) extensionsRead() (map[int32]Extension, sync.Locker) {	if e.p == nil {		return nil, nil	}	return e.p.extensionMap, &e.p.mu}// ExtensionDesc represents an extension specification.// Used in generated code from the protocol compiler.type ExtensionDesc struct {	ExtendedType  Message     // nil pointer to the type that is being extended	ExtensionType interface{} // nil pointer to the extension type	Field         int32       // field number	Name          string      // fully-qualified name of extension, for text formatting	Tag           string      // protobuf tag style	Filename      string      // name of the file in which the extension is defined}func (ed *ExtensionDesc) repeated() bool {	t := reflect.TypeOf(ed.ExtensionType)	return t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8}// Extension represents an extension in a message.type Extension struct {	// When an extension is stored in a message using SetExtension	// only desc and value are set. When the message is marshaled	// enc will be set to the encoded form of the message.	//	// When a message is unmarshaled and contains extensions, each	// extension will have only enc set. When such an extension is	// accessed using GetExtension (or GetExtensions) desc and value	// will be set.	desc *ExtensionDesc	// value is a concrete value for the extension field. Let the type of	// desc.ExtensionType be the "API type" and the type of Extension.value	// be the "storage type". The API type and storage type are the same except:	//	* For scalars (except []byte), the API type uses *T,	//	while the storage type uses T.	//	* For repeated fields, the API type uses []T, while the storage type	//	uses *[]T.	//	// The reason for the divergence is so that the storage type more naturally	// matches what is expected of when retrieving the values through the	// protobuf reflection APIs.	//	// The value may only be populated if desc is also populated.	value interface{}	// enc is the raw bytes for the extension field.	enc []byte}// SetRawExtension is for testing only.func SetRawExtension(base Message, id int32, b []byte) {	epb, err := extendable(base)	if err != nil {		return	}	extmap := epb.extensionsWrite()	extmap[id] = Extension{enc: b}}// isExtensionField returns true iff the given field number is in an extension range.func isExtensionField(pb extendableProto, field int32) bool {	for _, er := range pb.ExtensionRangeArray() {		if er.Start <= field && field <= er.End {			return true		}	}	return false}// checkExtensionTypes checks that the given extension is valid for pb.func checkExtensionTypes(pb extendableProto, extension *ExtensionDesc) error {	var pbi interface{} = pb	// Check the extended type.	if ea, ok := pbi.(extensionAdapter); ok {		pbi = ea.extendableProtoV1	}	if a, b := reflect.TypeOf(pbi), reflect.TypeOf(extension.ExtendedType); a != b {		return fmt.Errorf("proto: bad extended type; %v does not extend %v", b, a)	}	// Check the range.	if !isExtensionField(pb, extension.Field) {		return errors.New("proto: bad extension number; not in declared ranges")	}	return nil}// extPropKey is sufficient to uniquely identify an extension.type extPropKey struct {	base  reflect.Type	field int32}var extProp = struct {	sync.RWMutex	m map[extPropKey]*Properties}{	m: make(map[extPropKey]*Properties),}func extensionProperties(ed *ExtensionDesc) *Properties {	key := extPropKey{base: reflect.TypeOf(ed.ExtendedType), field: ed.Field}	extProp.RLock()	if prop, ok := extProp.m[key]; ok {		extProp.RUnlock()		return prop	}	extProp.RUnlock()	extProp.Lock()	defer extProp.Unlock()	// Check again.	if prop, ok := extProp.m[key]; ok {		return prop	}	prop := new(Properties)	prop.Init(reflect.TypeOf(ed.ExtensionType), "unknown_name", ed.Tag, nil)	extProp.m[key] = prop	return prop}// HasExtension returns whether the given extension is present in pb.func HasExtension(pb Message, extension *ExtensionDesc) bool {	// TODO: Check types, field numbers, etc.?	epb, err := extendable(pb)	if err != nil {		return false	}	extmap, mu := epb.extensionsRead()	if extmap == nil {		return false	}	mu.Lock()	_, ok := extmap[extension.Field]	mu.Unlock()	return ok}// ClearExtension removes the given extension from pb.func ClearExtension(pb Message, extension *ExtensionDesc) {	epb, err := extendable(pb)	if err != nil {		return	}	// TODO: Check types, field numbers, etc.?	extmap := epb.extensionsWrite()	delete(extmap, extension.Field)}// GetExtension retrieves a proto2 extended field from pb.//// If the descriptor is type complete (i.e., ExtensionDesc.ExtensionType is non-nil),// then GetExtension parses the encoded field and returns a Go value of the specified type.// If the field is not present, then the default value is returned (if one is specified),// otherwise ErrMissingExtension is reported.//// If the descriptor is not type complete (i.e., ExtensionDesc.ExtensionType is nil),// then GetExtension returns the raw encoded bytes of the field extension.func GetExtension(pb Message, extension *ExtensionDesc) (interface{}, error) {	epb, err := extendable(pb)	if err != nil {		return nil, err	}	if extension.ExtendedType != nil {		// can only check type if this is a complete descriptor		if err := checkExtensionTypes(epb, extension); err != nil {			return nil, err		}	}	emap, mu := epb.extensionsRead()	if emap == nil {		return defaultExtensionValue(extension)	}	mu.Lock()	defer mu.Unlock()	e, ok := emap[extension.Field]	if !ok {		// defaultExtensionValue returns the default value or		// ErrMissingExtension if there is no default.		return defaultExtensionValue(extension)	}	if e.value != nil {		// Already decoded. Check the descriptor, though.		if e.desc != extension {			// This shouldn't happen. If it does, it means that			// GetExtension was called twice with two different			// descriptors with the same field number.			return nil, errors.New("proto: descriptor conflict")		}		return extensionAsLegacyType(e.value), nil	}	if extension.ExtensionType == nil {		// incomplete descriptor		return e.enc, nil	}	v, err := decodeExtension(e.enc, extension)	if err != nil {		return nil, err	}	// Remember the decoded version and drop the encoded version.	// That way it is safe to mutate what we return.	e.value = extensionAsStorageType(v)	e.desc = extension	e.enc = nil	emap[extension.Field] = e	return extensionAsLegacyType(e.value), nil}// defaultExtensionValue returns the default value for extension.// If no default for an extension is defined ErrMissingExtension is returned.func defaultExtensionValue(extension *ExtensionDesc) (interface{}, error) {	if extension.ExtensionType == nil {		// incomplete descriptor, so no default		return nil, ErrMissingExtension	}	t := reflect.TypeOf(extension.ExtensionType)	props := extensionProperties(extension)	sf, _, err := fieldDefault(t, props)	if err != nil {		return nil, err	}	if sf == nil || sf.value == nil {		// There is no default value.		return nil, ErrMissingExtension	}	if t.Kind() != reflect.Ptr {		// We do not need to return a Ptr, we can directly return sf.value.		return sf.value, nil	}	// We need to return an interface{} that is a pointer to sf.value.	value := reflect.New(t).Elem()	value.Set(reflect.New(value.Type().Elem()))	if sf.kind == reflect.Int32 {		// We may have an int32 or an enum, but the underlying data is int32.		// Since we can't set an int32 into a non int32 reflect.value directly		// set it as a int32.		value.Elem().SetInt(int64(sf.value.(int32)))	} else {		value.Elem().Set(reflect.ValueOf(sf.value))	}	return value.Interface(), nil}// decodeExtension decodes an extension encoded in b.func decodeExtension(b []byte, extension *ExtensionDesc) (interface{}, error) {	t := reflect.TypeOf(extension.ExtensionType)	unmarshal := typeUnmarshaler(t, extension.Tag)	// t is a pointer to a struct, pointer to basic type or a slice.	// Allocate space to store the pointer/slice.	value := reflect.New(t).Elem()	var err error	for {		x, n := decodeVarint(b)		if n == 0 {			return nil, io.ErrUnexpectedEOF		}		b = b[n:]		wire := int(x) & 7		b, err = unmarshal(b, valToPointer(value.Addr()), wire)		if err != nil {			return nil, err		}		if len(b) == 0 {			break		}	}	return value.Interface(), nil}// GetExtensions returns a slice of the extensions present in pb that are also listed in es.// The returned slice has the same length as es; missing extensions will appear as nil elements.func GetExtensions(pb Message, es []*ExtensionDesc) (extensions []interface{}, err error) {	epb, err := extendable(pb)	if err != nil {		return nil, err	}	extensions = make([]interface{}, len(es))	for i, e := range es {		extensions[i], err = GetExtension(epb, e)		if err == ErrMissingExtension {			err = nil		}		if err != nil {			return		}	}	return}// ExtensionDescs returns a new slice containing pb's extension descriptors, in undefined order.// For non-registered extensions, ExtensionDescs returns an incomplete descriptor containing// just the Field field, which defines the extension's field number.func ExtensionDescs(pb Message) ([]*ExtensionDesc, error) {	epb, err := extendable(pb)	if err != nil {		return nil, err	}	registeredExtensions := RegisteredExtensions(pb)	emap, mu := epb.extensionsRead()	if emap == nil {		return nil, nil	}	mu.Lock()	defer mu.Unlock()	extensions := make([]*ExtensionDesc, 0, len(emap))	for extid, e := range emap {		desc := e.desc		if desc == nil {			desc = registeredExtensions[extid]			if desc == nil {				desc = &ExtensionDesc{Field: extid}			}		}		extensions = append(extensions, desc)	}	return extensions, nil}// SetExtension sets the specified extension of pb to the specified value.func SetExtension(pb Message, extension *ExtensionDesc, value interface{}) error {	epb, err := extendable(pb)	if err != nil {		return err	}	if err := checkExtensionTypes(epb, extension); err != nil {		return err	}	typ := reflect.TypeOf(extension.ExtensionType)	if typ != reflect.TypeOf(value) {		return fmt.Errorf("proto: bad extension value type. got: %T, want: %T", value, extension.ExtensionType)	}	// nil extension values need to be caught early, because the	// encoder can't distinguish an ErrNil due to a nil extension	// from an ErrNil due to a missing field. Extensions are	// always optional, so the encoder would just swallow the error	// and drop all the extensions from the encoded message.	if reflect.ValueOf(value).IsNil() {		return fmt.Errorf("proto: SetExtension called with nil value of type %T", value)	}	extmap := epb.extensionsWrite()	extmap[extension.Field] = Extension{desc: extension, value: extensionAsStorageType(value)}	return nil}// ClearAllExtensions clears all extensions from pb.func ClearAllExtensions(pb Message) {	epb, err := extendable(pb)	if err != nil {		return	}	m := epb.extensionsWrite()	for k := range m {		delete(m, k)	}}// A global registry of extensions.// The generated code will register the generated descriptors by calling RegisterExtension.var extensionMaps = make(map[reflect.Type]map[int32]*ExtensionDesc)// RegisterExtension is called from the generated code.func RegisterExtension(desc *ExtensionDesc) {	st := reflect.TypeOf(desc.ExtendedType).Elem()	m := extensionMaps[st]	if m == nil {		m = make(map[int32]*ExtensionDesc)		extensionMaps[st] = m	}	if _, ok := m[desc.Field]; ok {		panic("proto: duplicate extension registered: " + st.String() + " " + strconv.Itoa(int(desc.Field)))	}	m[desc.Field] = desc}// RegisteredExtensions returns a map of the registered extensions of a// protocol buffer struct, indexed by the extension number.// The argument pb should be a nil pointer to the struct type.func RegisteredExtensions(pb Message) map[int32]*ExtensionDesc {	return extensionMaps[reflect.TypeOf(pb).Elem()]}// extensionAsLegacyType converts an value in the storage type as the API type.// See Extension.value.func extensionAsLegacyType(v interface{}) interface{} {	switch rv := reflect.ValueOf(v); rv.Kind() {	case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:		// Represent primitive types as a pointer to the value.		rv2 := reflect.New(rv.Type())		rv2.Elem().Set(rv)		v = rv2.Interface()	case reflect.Ptr:		// Represent slice types as the value itself.		switch rv.Type().Elem().Kind() {		case reflect.Slice:			if rv.IsNil() {				v = reflect.Zero(rv.Type().Elem()).Interface()			} else {				v = rv.Elem().Interface()			}		}	}	return v}// extensionAsStorageType converts an value in the API type as the storage type.// See Extension.value.func extensionAsStorageType(v interface{}) interface{} {	switch rv := reflect.ValueOf(v); rv.Kind() {	case reflect.Ptr:		// Represent slice types as the value itself.		switch rv.Type().Elem().Kind() {		case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:			if rv.IsNil() {				v = reflect.Zero(rv.Type().Elem()).Interface()			} else {				v = rv.Elem().Interface()			}		}	case reflect.Slice:		// Represent slice types as a pointer to the value.		if rv.Type().Elem().Kind() != reflect.Uint8 {			rv2 := reflect.New(rv.Type())			rv2.Elem().Set(rv)			v = rv2.Interface()		}	}	return v}
 |