| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 | // Copyright 2011 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package sshimport (	"crypto"	"crypto/rand"	"fmt"	"io"	"sync"	_ "crypto/sha1"	_ "crypto/sha256"	_ "crypto/sha512")// These are string constants in the SSH protocol.const (	compressionNone = "none"	serviceUserAuth = "ssh-userauth"	serviceSSH      = "ssh-connection")// supportedCiphers specifies the supported ciphers in preference order.var supportedCiphers = []string{	"aes128-ctr", "aes192-ctr", "aes256-ctr",	"[email protected]",	"arcfour256", "arcfour128",}// supportedKexAlgos specifies the supported key-exchange algorithms in// preference order.var supportedKexAlgos = []string{	kexAlgoCurve25519SHA256,	// P384 and P521 are not constant-time yet, but since we don't	// reuse ephemeral keys, using them for ECDH should be OK.	kexAlgoECDH256, kexAlgoECDH384, kexAlgoECDH521,	kexAlgoDH14SHA1, kexAlgoDH1SHA1,}// supportedKexAlgos specifies the supported host-key algorithms (i.e. methods// of authenticating servers) in preference order.var supportedHostKeyAlgos = []string{	CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01,	CertAlgoECDSA384v01, CertAlgoECDSA521v01,	KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521,	KeyAlgoRSA, KeyAlgoDSA,}// supportedMACs specifies a default set of MAC algorithms in preference order.// This is based on RFC 4253, section 6.4, but with hmac-md5 variants removed// because they have reached the end of their useful life.var supportedMACs = []string{	"hmac-sha2-256", "hmac-sha1", "hmac-sha1-96",}var supportedCompressions = []string{compressionNone}// hashFuncs keeps the mapping of supported algorithms to their respective// hashes needed for signature verification.var hashFuncs = map[string]crypto.Hash{	KeyAlgoRSA:          crypto.SHA1,	KeyAlgoDSA:          crypto.SHA1,	KeyAlgoECDSA256:     crypto.SHA256,	KeyAlgoECDSA384:     crypto.SHA384,	KeyAlgoECDSA521:     crypto.SHA512,	CertAlgoRSAv01:      crypto.SHA1,	CertAlgoDSAv01:      crypto.SHA1,	CertAlgoECDSA256v01: crypto.SHA256,	CertAlgoECDSA384v01: crypto.SHA384,	CertAlgoECDSA521v01: crypto.SHA512,}// unexpectedMessageError results when the SSH message that we received didn't// match what we wanted.func unexpectedMessageError(expected, got uint8) error {	return fmt.Errorf("ssh: unexpected message type %d (expected %d)", got, expected)}// parseError results from a malformed SSH message.func parseError(tag uint8) error {	return fmt.Errorf("ssh: parse error in message type %d", tag)}func findCommon(what string, client []string, server []string) (common string, err error) {	for _, c := range client {		for _, s := range server {			if c == s {				return c, nil			}		}	}	return "", fmt.Errorf("ssh: no common algorithm for %s; client offered: %v, server offered: %v", what, client, server)}type directionAlgorithms struct {	Cipher      string	MAC         string	Compression string}type algorithms struct {	kex     string	hostKey string	w       directionAlgorithms	r       directionAlgorithms}func findAgreedAlgorithms(clientKexInit, serverKexInit *kexInitMsg) (algs *algorithms, err error) {	result := &algorithms{}	result.kex, err = findCommon("key exchange", clientKexInit.KexAlgos, serverKexInit.KexAlgos)	if err != nil {		return	}	result.hostKey, err = findCommon("host key", clientKexInit.ServerHostKeyAlgos, serverKexInit.ServerHostKeyAlgos)	if err != nil {		return	}	result.w.Cipher, err = findCommon("client to server cipher", clientKexInit.CiphersClientServer, serverKexInit.CiphersClientServer)	if err != nil {		return	}	result.r.Cipher, err = findCommon("server to client cipher", clientKexInit.CiphersServerClient, serverKexInit.CiphersServerClient)	if err != nil {		return	}	result.w.MAC, err = findCommon("client to server MAC", clientKexInit.MACsClientServer, serverKexInit.MACsClientServer)	if err != nil {		return	}	result.r.MAC, err = findCommon("server to client MAC", clientKexInit.MACsServerClient, serverKexInit.MACsServerClient)	if err != nil {		return	}	result.w.Compression, err = findCommon("client to server compression", clientKexInit.CompressionClientServer, serverKexInit.CompressionClientServer)	if err != nil {		return	}	result.r.Compression, err = findCommon("server to client compression", clientKexInit.CompressionServerClient, serverKexInit.CompressionServerClient)	if err != nil {		return	}	return result, nil}// If rekeythreshold is too small, we can't make any progress sending// stuff.const minRekeyThreshold uint64 = 256// Config contains configuration data common to both ServerConfig and// ClientConfig.type Config struct {	// Rand provides the source of entropy for cryptographic	// primitives. If Rand is nil, the cryptographic random reader	// in package crypto/rand will be used.	Rand io.Reader	// The maximum number of bytes sent or received after which a	// new key is negotiated. It must be at least 256. If	// unspecified, 1 gigabyte is used.	RekeyThreshold uint64	// The allowed key exchanges algorithms. If unspecified then a	// default set of algorithms is used.	KeyExchanges []string	// The allowed cipher algorithms. If unspecified then a sensible	// default is used.	Ciphers []string	// The allowed MAC algorithms. If unspecified then a sensible default	// is used.	MACs []string}// SetDefaults sets sensible values for unset fields in config. This is// exported for testing: Configs passed to SSH functions are copied and have// default values set automatically.func (c *Config) SetDefaults() {	if c.Rand == nil {		c.Rand = rand.Reader	}	if c.Ciphers == nil {		c.Ciphers = supportedCiphers	}	var ciphers []string	for _, c := range c.Ciphers {		if cipherModes[c] != nil {			// reject the cipher if we have no cipherModes definition			ciphers = append(ciphers, c)		}	}	c.Ciphers = ciphers	if c.KeyExchanges == nil {		c.KeyExchanges = supportedKexAlgos	}	if c.MACs == nil {		c.MACs = supportedMACs	}	if c.RekeyThreshold == 0 {		// RFC 4253, section 9 suggests rekeying after 1G.		c.RekeyThreshold = 1 << 30	}	if c.RekeyThreshold < minRekeyThreshold {		c.RekeyThreshold = minRekeyThreshold	}}// buildDataSignedForAuth returns the data that is signed in order to prove// possession of a private key. See RFC 4252, section 7.func buildDataSignedForAuth(sessionId []byte, req userAuthRequestMsg, algo, pubKey []byte) []byte {	data := struct {		Session []byte		Type    byte		User    string		Service string		Method  string		Sign    bool		Algo    []byte		PubKey  []byte	}{		sessionId,		msgUserAuthRequest,		req.User,		req.Service,		req.Method,		true,		algo,		pubKey,	}	return Marshal(data)}func appendU16(buf []byte, n uint16) []byte {	return append(buf, byte(n>>8), byte(n))}func appendU32(buf []byte, n uint32) []byte {	return append(buf, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))}func appendU64(buf []byte, n uint64) []byte {	return append(buf,		byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32),		byte(n>>24), byte(n>>16), byte(n>>8), byte(n))}func appendInt(buf []byte, n int) []byte {	return appendU32(buf, uint32(n))}func appendString(buf []byte, s string) []byte {	buf = appendU32(buf, uint32(len(s)))	buf = append(buf, s...)	return buf}func appendBool(buf []byte, b bool) []byte {	if b {		return append(buf, 1)	}	return append(buf, 0)}// newCond is a helper to hide the fact that there is no usable zero// value for sync.Cond.func newCond() *sync.Cond { return sync.NewCond(new(sync.Mutex)) }// window represents the buffer available to clients// wishing to write to a channel.type window struct {	*sync.Cond	win          uint32 // RFC 4254 5.2 says the window size can grow to 2^32-1	writeWaiters int	closed       bool}// add adds win to the amount of window available// for consumers.func (w *window) add(win uint32) bool {	// a zero sized window adjust is a noop.	if win == 0 {		return true	}	w.L.Lock()	if w.win+win < win {		w.L.Unlock()		return false	}	w.win += win	// It is unusual that multiple goroutines would be attempting to reserve	// window space, but not guaranteed. Use broadcast to notify all waiters	// that additional window is available.	w.Broadcast()	w.L.Unlock()	return true}// close sets the window to closed, so all reservations fail// immediately.func (w *window) close() {	w.L.Lock()	w.closed = true	w.Broadcast()	w.L.Unlock()}// reserve reserves win from the available window capacity.// If no capacity remains, reserve will block. reserve may// return less than requested.func (w *window) reserve(win uint32) (uint32, error) {	var err error	w.L.Lock()	w.writeWaiters++	w.Broadcast()	for w.win == 0 && !w.closed {		w.Wait()	}	w.writeWaiters--	if w.win < win {		win = w.win	}	w.win -= win	if w.closed {		err = io.EOF	}	w.L.Unlock()	return win, err}// waitWriterBlocked waits until some goroutine is blocked for further// writes. It is used in tests only.func (w *window) waitWriterBlocked() {	w.Cond.L.Lock()	for w.writeWaiters == 0 {		w.Cond.Wait()	}	w.Cond.L.Unlock()}
 |