|
@@ -7,21 +7,21 @@
|
|
|
|
|
|
# Bananas contain Potassium-40 with the following properties:
|
|
# Bananas contain Potassium-40 with the following properties:
|
|
|
|
|
|
-let molar_mass_40K: MolarMass = 40 g / mol
|
|
|
|
-let halflife_40K: Time = 1.25 billion years
|
|
|
|
|
|
+let halflife: Time = 1.25 billion years
|
|
|
|
+let molar_mass: MolarMass = 40 g / mol
|
|
|
|
|
|
# 40-K has a natural occcurence of
|
|
# 40-K has a natural occcurence of
|
|
|
|
|
|
-let occurence_40K = 0.0117 percent
|
|
|
|
|
|
+let occurence_40K = 0.0117%
|
|
|
|
|
|
# We can now compute the radioactivity of natural potassium
|
|
# We can now compute the radioactivity of natural potassium
|
|
|
|
|
|
-let decay_rate_40K: Activity = ln(2) / halflife_40K
|
|
|
|
|
|
+let decay_rate: Activity = ln(2) / halflife
|
|
|
|
|
|
-let radioactivity_potassium: Activity / Mass =
|
|
|
|
- N_A × occurence_40K × decay_rate_40K / molar_mass_40K -> Bq / g
|
|
|
|
|
|
+let radioactivity: Activity / Mass =
|
|
|
|
+ N_A × occurence_40K × decay_rate / molar_mass -> Bq / g
|
|
|
|
|
|
-print(radioactivity_potassium)
|
|
|
|
|
|
+print(radioactivity)
|
|
|
|
|
|
# Next, we come to bananas
|
|
# Next, we come to bananas
|
|
|
|
|
|
@@ -33,7 +33,7 @@ unit banana
|
|
let potassium_per_banana = 451 mg / banana
|
|
let potassium_per_banana = 451 mg / banana
|
|
|
|
|
|
let radioactivity_banana: Activity / Banana =
|
|
let radioactivity_banana: Activity / Banana =
|
|
- potassium_per_banana × radioactivity_potassium -> Bq / banana
|
|
|
|
|
|
+ potassium_per_banana × radioactivity -> Bq / banana
|
|
|
|
|
|
print(radioactivity_banana)
|
|
print(radioactivity_banana)
|
|
|
|
|