|
@@ -5,18 +5,22 @@ use units::si
|
|
|
|
|
|
# The speed of light in vacuum
|
|
|
let speed_of_light: Speed = 299_792_458 m / s
|
|
|
+let c = speed_of_light
|
|
|
|
|
|
# The Newtonian constant of gravitation
|
|
|
let gravitational_constant: Force × Length^2 / Mass^2 = 6.67430e-11 m³ / (kg s²)
|
|
|
+let G = gravitational_constant
|
|
|
|
|
|
# Standard acceleration of gravity on earth
|
|
|
let gravity: Acceleration = 9.80665 m / s²
|
|
|
+let g0 = gravity
|
|
|
|
|
|
# The Planck constant
|
|
|
let planck_constant = 6.62607015e-34 J / Hz
|
|
|
|
|
|
# The reduced Planck constant
|
|
|
let ℏ = planck_constant / 2π
|
|
|
+let h_bar = ℏ
|
|
|
|
|
|
# Mass of the electron
|
|
|
let electron_mass: Mass = 9.1093837015e-31 kg
|
|
@@ -26,19 +30,23 @@ let elementary_charge: Charge = 1.602176634e-19 C
|
|
|
let electron_charge: Charge = elementary_charge
|
|
|
|
|
|
# Magnetic constant (vacuum magnetic permeability)
|
|
|
-let µ0: Force / Current^2 = 1.25663706212e-6 N / A²
|
|
|
-let mu0 = µ0
|
|
|
+let magnetic_constant: Force / Current^2 = 1.25663706212e-6 N / A²
|
|
|
+let µ0 = magnetic_constant
|
|
|
+let mu0 = magnetic_constant
|
|
|
|
|
|
# Electric constant ( vacuum electric permittivity)
|
|
|
-let ε0: Capacitance / Length = 8.8541878128e-12 F / m
|
|
|
-let eps0 = ε0
|
|
|
+let electric_constant: Capacitance / Length = 8.8541878128e-12 F / m
|
|
|
+let ε0 = electric_constant
|
|
|
+let eps0 = electric_constant
|
|
|
|
|
|
# Bohr magneton
|
|
|
-let µ_B: Energy / MagneticFluxDensity = 9.2740100783e-24 J / T
|
|
|
+let bohr_magneton: Energy / MagneticFluxDensity = 9.2740100783e-24 J / T
|
|
|
+let µ_B = bohr_magneton
|
|
|
|
|
|
# Fine structure constant
|
|
|
-let α: Scalar = 7.2973525693e-3
|
|
|
-let alpha = α
|
|
|
+let fine_structure_constant: Scalar = 7.2973525693e-3
|
|
|
+let α = fine_structure_constant
|
|
|
+let alpha = fine_structure_constant
|
|
|
|
|
|
# Proton mass
|
|
|
let proton_mass: Mass = 1.67262192369e-27 kg
|
|
@@ -47,28 +55,31 @@ let proton_mass: Mass = 1.67262192369e-27 kg
|
|
|
let neutron_mass: Mass = 1.67492749804e-27 kg
|
|
|
|
|
|
# Avogadro constant
|
|
|
-let N_A: 1 / AmountOfSubstance = 6.02214076e23 / mol
|
|
|
+let avogadro_constant: 1 / AmountOfSubstance = 6.02214076e23 / mol
|
|
|
+let N_A = avogadro_constant
|
|
|
|
|
|
# Boltzmann constant
|
|
|
-let k_B: Energy / Temperature = 1.380649e-23 J / K
|
|
|
+let boltzmann_constant: Energy / Temperature = 1.380649e-23 J / K
|
|
|
+let k_B = boltzmann_constant
|
|
|
|
|
|
# Ideal gas constant
|
|
|
-let R: Energy / (AmountOfSubstance × Temperature) = 8.31446261815324 J / (K mol)
|
|
|
+let gas_constant: Energy / (AmountOfSubstance × Temperature) = 8.31446261815324 J / (K mol)
|
|
|
+let R = gas_constant
|
|
|
|
|
|
# Planck length
|
|
|
-let planck_length: Length = sqrt(ℏ gravitational_constant / speed_of_light^3) -> m
|
|
|
+let planck_length: Length = sqrt(ℏ G / c^3) -> m
|
|
|
|
|
|
# Planck mass
|
|
|
-let planck_mass: Mass = sqrt(ℏ speed_of_light / gravitational_constant) -> kg
|
|
|
+let planck_mass: Mass = sqrt(ℏ c / G) -> kg
|
|
|
|
|
|
# Planck time
|
|
|
-let planck_time: Time = sqrt(ℏ gravitational_constant / speed_of_light^5) -> s
|
|
|
+let planck_time: Time = sqrt(ℏ G / c^5) -> s
|
|
|
|
|
|
# Planck temperature
|
|
|
-let planck_temperature: Temperature = sqrt(ℏ speed_of_light^5 / (gravitational_constant * k_B^2)) -> K
|
|
|
+let planck_temperature: Temperature = sqrt(ℏ c^5 / (G k_B^2)) -> K
|
|
|
|
|
|
# Planck energy
|
|
|
-let planck_energy: Energy = sqrt(ℏ speed_of_light^5 / gravitational_constant) -> J
|
|
|
+let planck_energy: Energy = sqrt(ℏ c^5 / G) -> J
|
|
|
|
|
|
# Bohr radius
|
|
|
let bohr_radius: Length = 4 pi ε0 ℏ^2 / (electron_charge^2 electron_mass)
|