expander-filter.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. #include <stdint.h>
  2. #include <inttypes.h>
  3. #include <math.h>
  4. #include <obs-module.h>
  5. #include <media-io/audio-math.h>
  6. #include <util/platform.h>
  7. #include <util/circlebuf.h>
  8. #include <util/threading.h>
  9. /* -------------------------------------------------------- */
  10. #define do_log(level, format, ...) \
  11. blog(level, "[expander/gate/upward compressor: '%s'] " format, \
  12. obs_source_get_name(cd->context), ##__VA_ARGS__)
  13. #define warn(format, ...) do_log(LOG_WARNING, format, ##__VA_ARGS__)
  14. #define info(format, ...) do_log(LOG_INFO, format, ##__VA_ARGS__)
  15. #ifdef _DEBUG
  16. #define debug(format, ...) do_log(LOG_DEBUG, format, ##__VA_ARGS__)
  17. #else
  18. #define debug(format, ...)
  19. #endif
  20. /* -------------------------------------------------------- */
  21. /* clang-format off */
  22. #define S_RATIO "ratio"
  23. #define S_THRESHOLD "threshold"
  24. #define S_ATTACK_TIME "attack_time"
  25. #define S_RELEASE_TIME "release_time"
  26. #define S_OUTPUT_GAIN "output_gain"
  27. #define S_DETECTOR "detector"
  28. #define S_PRESETS "presets"
  29. #define S_KNEE "knee_width"
  30. #define MT_ obs_module_text
  31. #define TEXT_RATIO MT_("Expander.Ratio")
  32. #define TEXT_THRESHOLD MT_("Expander.Threshold")
  33. #define TEXT_ATTACK_TIME MT_("Expander.AttackTime")
  34. #define TEXT_RELEASE_TIME MT_("Expander.ReleaseTime")
  35. #define TEXT_OUTPUT_GAIN MT_("Expander.OutputGain")
  36. #define TEXT_DETECTOR MT_("Expander.Detector")
  37. #define TEXT_PEAK MT_("Expander.Peak")
  38. #define TEXT_RMS MT_("Expander.RMS")
  39. #define TEXT_PRESETS MT_("Expander.Presets")
  40. #define TEXT_PRESETS_EXP MT_("Expander.Presets.Expander")
  41. #define TEXT_PRESETS_GATE MT_("Expander.Presets.Gate")
  42. #define TEXT_KNEE MT_("Expander.Knee.Width")
  43. #define MIN_RATIO 1.0f
  44. #define MAX_RATIO 20.0f
  45. #define MIN_RATIO_UPW 0.0f
  46. #define MAX_RATIO_UPW 1.0f
  47. #define MIN_THRESHOLD_DB -60.0f
  48. #define MAX_THRESHOLD_DB 0.0f
  49. #define MIN_OUTPUT_GAIN_DB -32.0f
  50. #define MAX_OUTPUT_GAIN_DB 32.0f
  51. #define MIN_ATK_RLS_MS 1
  52. #define MAX_RLS_MS 1000
  53. #define MAX_ATK_MS 100
  54. #define DEFAULT_AUDIO_BUF_MS 10
  55. #define MS_IN_S 1000
  56. #define MS_IN_S_F ((float)MS_IN_S)
  57. /* clang-format on */
  58. /* -------------------------------------------------------- */
  59. struct expander_data {
  60. obs_source_t *context;
  61. float *envelope_buf[MAX_AUDIO_CHANNELS];
  62. size_t envelope_buf_len;
  63. float ratio;
  64. float threshold;
  65. float attack_gain;
  66. float release_gain;
  67. float output_gain;
  68. size_t num_channels;
  69. size_t sample_rate;
  70. float envelope[MAX_AUDIO_CHANNELS];
  71. float slope;
  72. int detector;
  73. float runave[MAX_AUDIO_CHANNELS];
  74. bool is_gate;
  75. float *runaverage[MAX_AUDIO_CHANNELS];
  76. size_t runaverage_len;
  77. float *gain_db[MAX_AUDIO_CHANNELS];
  78. size_t gain_db_len;
  79. float gain_db_buf[MAX_AUDIO_CHANNELS];
  80. float *env_in;
  81. size_t env_in_len;
  82. bool is_upwcomp;
  83. float knee;
  84. };
  85. enum {
  86. RMS_DETECT,
  87. RMS_STILLWELL_DETECT,
  88. PEAK_DETECT,
  89. NO_DETECT,
  90. };
  91. /* -------------------------------------------------------- */
  92. static void resize_env_buffer(struct expander_data *cd, size_t len)
  93. {
  94. cd->envelope_buf_len = len;
  95. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++)
  96. cd->envelope_buf[i] =
  97. brealloc(cd->envelope_buf[i],
  98. cd->envelope_buf_len * sizeof(float));
  99. }
  100. static void resize_runaverage_buffer(struct expander_data *cd, size_t len)
  101. {
  102. cd->runaverage_len = len;
  103. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++)
  104. cd->runaverage[i] = brealloc(
  105. cd->runaverage[i], cd->runaverage_len * sizeof(float));
  106. }
  107. static void resize_env_in_buffer(struct expander_data *cd, size_t len)
  108. {
  109. cd->env_in_len = len;
  110. cd->env_in = brealloc(cd->env_in, cd->env_in_len * sizeof(float));
  111. }
  112. static void resize_gain_db_buffer(struct expander_data *cd, size_t len)
  113. {
  114. cd->gain_db_len = len;
  115. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++)
  116. cd->gain_db[i] = brealloc(cd->gain_db[i],
  117. cd->gain_db_len * sizeof(float));
  118. }
  119. static inline float gain_coefficient(uint32_t sample_rate, float time)
  120. {
  121. return expf(-1.0f / (sample_rate * time));
  122. }
  123. static const char *expander_name(void *unused)
  124. {
  125. UNUSED_PARAMETER(unused);
  126. return obs_module_text("Expander");
  127. }
  128. static const char *upward_compressor_name(void *unused)
  129. {
  130. UNUSED_PARAMETER(unused);
  131. return obs_module_text("Upward.Compressor");
  132. }
  133. static void expander_defaults(obs_data_t *s)
  134. {
  135. const char *presets = obs_data_get_string(s, S_PRESETS);
  136. bool is_expander_preset = true;
  137. if (strcmp(presets, "gate") == 0)
  138. is_expander_preset = false;
  139. obs_data_set_default_string(s, S_PRESETS,
  140. is_expander_preset ? "expander" : "gate");
  141. obs_data_set_default_double(s, S_RATIO,
  142. is_expander_preset ? 2.0 : 10.0);
  143. obs_data_set_default_double(s, S_THRESHOLD, -40.0f);
  144. obs_data_set_default_int(s, S_ATTACK_TIME, 10);
  145. obs_data_set_default_int(s, S_RELEASE_TIME,
  146. is_expander_preset ? 50 : 125);
  147. obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0);
  148. obs_data_set_default_string(s, S_DETECTOR, "RMS");
  149. }
  150. static void upward_compressor_defaults(obs_data_t *s)
  151. {
  152. obs_data_set_default_double(s, S_RATIO, 0.5);
  153. obs_data_set_default_double(s, S_THRESHOLD, -20.0f);
  154. obs_data_set_default_int(s, S_ATTACK_TIME, 10);
  155. obs_data_set_default_int(s, S_RELEASE_TIME, 50);
  156. obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0);
  157. obs_data_set_default_string(s, S_DETECTOR, "RMS");
  158. obs_data_set_default_int(s, S_KNEE, 10);
  159. }
  160. static void expander_update(void *data, obs_data_t *s)
  161. {
  162. struct expander_data *cd = data;
  163. if (!cd->is_upwcomp) {
  164. const char *presets = obs_data_get_string(s, S_PRESETS);
  165. if (strcmp(presets, "expander") == 0 && cd->is_gate) {
  166. obs_data_clear(s);
  167. obs_data_set_string(s, S_PRESETS, "expander");
  168. expander_defaults(s);
  169. cd->is_gate = false;
  170. }
  171. if (strcmp(presets, "gate") == 0 && !cd->is_gate) {
  172. obs_data_clear(s);
  173. obs_data_set_string(s, S_PRESETS, "gate");
  174. expander_defaults(s);
  175. cd->is_gate = true;
  176. }
  177. }
  178. const uint32_t sample_rate =
  179. audio_output_get_sample_rate(obs_get_audio());
  180. const size_t num_channels = audio_output_get_channels(obs_get_audio());
  181. const float attack_time_ms = (float)obs_data_get_int(s, S_ATTACK_TIME);
  182. const float release_time_ms =
  183. (float)obs_data_get_int(s, S_RELEASE_TIME);
  184. const float output_gain_db =
  185. (float)obs_data_get_double(s, S_OUTPUT_GAIN);
  186. const float knee = cd->is_upwcomp ? (float)obs_data_get_int(s, S_KNEE)
  187. : 0.0f;
  188. cd->ratio = (float)obs_data_get_double(s, S_RATIO);
  189. cd->threshold = (float)obs_data_get_double(s, S_THRESHOLD);
  190. cd->attack_gain =
  191. gain_coefficient(sample_rate, attack_time_ms / MS_IN_S_F);
  192. cd->release_gain =
  193. gain_coefficient(sample_rate, release_time_ms / MS_IN_S_F);
  194. cd->output_gain = db_to_mul(output_gain_db);
  195. cd->num_channels = num_channels;
  196. cd->sample_rate = sample_rate;
  197. cd->slope = 1.0f - cd->ratio;
  198. cd->knee = knee;
  199. const char *detect_mode = obs_data_get_string(s, S_DETECTOR);
  200. if (strcmp(detect_mode, "RMS") == 0)
  201. cd->detector = RMS_DETECT;
  202. if (strcmp(detect_mode, "peak") == 0)
  203. cd->detector = PEAK_DETECT;
  204. size_t sample_len = sample_rate * DEFAULT_AUDIO_BUF_MS / MS_IN_S;
  205. if (cd->envelope_buf_len == 0)
  206. resize_env_buffer(cd, sample_len);
  207. if (cd->runaverage_len == 0)
  208. resize_runaverage_buffer(cd, sample_len);
  209. if (cd->env_in_len == 0)
  210. resize_env_in_buffer(cd, sample_len);
  211. if (cd->gain_db_len == 0)
  212. resize_gain_db_buffer(cd, sample_len);
  213. }
  214. static void *compressor_expander_create(obs_data_t *settings,
  215. obs_source_t *filter,
  216. bool is_compressor)
  217. {
  218. struct expander_data *cd = bzalloc(sizeof(struct expander_data));
  219. cd->context = filter;
  220. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
  221. cd->runave[i] = 0;
  222. cd->envelope[i] = 0;
  223. cd->gain_db_buf[i] = 0;
  224. }
  225. cd->is_gate = false;
  226. const char *presets = obs_data_get_string(settings, S_PRESETS);
  227. if (strcmp(presets, "gate") == 0)
  228. cd->is_gate = true;
  229. cd->is_upwcomp = is_compressor;
  230. expander_update(cd, settings);
  231. return cd;
  232. }
  233. static void *expander_create(obs_data_t *settings, obs_source_t *filter)
  234. {
  235. return compressor_expander_create(settings, filter, false);
  236. }
  237. static void *upward_compressor_create(obs_data_t *settings,
  238. obs_source_t *filter)
  239. {
  240. return compressor_expander_create(settings, filter, true);
  241. }
  242. static void expander_destroy(void *data)
  243. {
  244. struct expander_data *cd = data;
  245. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
  246. bfree(cd->envelope_buf[i]);
  247. bfree(cd->runaverage[i]);
  248. bfree(cd->gain_db[i]);
  249. }
  250. bfree(cd->env_in);
  251. bfree(cd);
  252. }
  253. // detection stage
  254. static void analyze_envelope(struct expander_data *cd, float **samples,
  255. const uint32_t num_samples)
  256. {
  257. if (cd->envelope_buf_len < num_samples)
  258. resize_env_buffer(cd, num_samples);
  259. if (cd->runaverage_len < num_samples)
  260. resize_runaverage_buffer(cd, num_samples);
  261. if (cd->env_in_len < num_samples)
  262. resize_env_in_buffer(cd, num_samples);
  263. // 10 ms RMS window
  264. const float rmscoef = exp2f(-100.0f / cd->sample_rate);
  265. for (int i = 0; i < MAX_AUDIO_CHANNELS; i++) {
  266. memset(cd->envelope_buf[i], 0,
  267. num_samples * sizeof(cd->envelope_buf[i][0]));
  268. memset(cd->runaverage[i], 0,
  269. num_samples * sizeof(cd->runaverage[i][0]));
  270. }
  271. memset(cd->env_in, 0, num_samples * sizeof(cd->env_in[0]));
  272. for (size_t chan = 0; chan < cd->num_channels; ++chan) {
  273. if (!samples[chan])
  274. continue;
  275. float *envelope_buf = cd->envelope_buf[chan];
  276. float *runave = cd->runaverage[chan];
  277. float *env_in = cd->env_in;
  278. if (cd->detector == RMS_DETECT) {
  279. runave[0] =
  280. rmscoef * cd->runave[chan] +
  281. (1 - rmscoef) * powf(samples[chan][0], 2.0f);
  282. env_in[0] = sqrtf(fmaxf(runave[0], 0));
  283. for (uint32_t i = 1; i < num_samples; ++i) {
  284. runave[i] =
  285. rmscoef * runave[i - 1] +
  286. (1 - rmscoef) *
  287. powf(samples[chan][i], 2.0f);
  288. env_in[i] = sqrtf(runave[i]);
  289. }
  290. } else if (cd->detector == PEAK_DETECT) {
  291. for (uint32_t i = 0; i < num_samples; ++i) {
  292. runave[i] = powf(samples[chan][i], 2);
  293. env_in[i] = fabsf(samples[chan][i]);
  294. }
  295. }
  296. cd->runave[chan] = runave[num_samples - 1];
  297. for (uint32_t i = 0; i < num_samples; ++i)
  298. envelope_buf[i] = fmaxf(envelope_buf[i], env_in[i]);
  299. cd->envelope[chan] = cd->envelope_buf[chan][num_samples - 1];
  300. }
  301. }
  302. static inline void process_sample(size_t idx, float *samples, float *env_buf,
  303. float *gain_db, bool is_upwcomp,
  304. float channel_gain, float threshold,
  305. float slope, float attack_gain,
  306. float inv_attack_gain, float release_gain,
  307. float inv_release_gain, float output_gain,
  308. float knee)
  309. {
  310. /* --------------------------------- */
  311. /* gain stage of expansion */
  312. float env_db = mul_to_db(env_buf[idx]);
  313. float diff = threshold - env_db;
  314. if (is_upwcomp && env_db <= (threshold - 60.0f) / 2)
  315. diff = env_db + 60.0f > 0 ? env_db + 60.0f : 0.0f;
  316. float gain = 0.0f;
  317. float prev_gain = 0.0f;
  318. // Note that the gain is always >= 0 for the upward compressor
  319. // but is always <=0 for the expander.
  320. if (is_upwcomp) {
  321. prev_gain = idx > 0 ? fmaxf(gain_db[idx - 1], 0)
  322. : fmaxf(channel_gain, 0);
  323. // gain above knee (included for clarity):
  324. if (env_db >= threshold + knee / 2)
  325. gain = 0.0f;
  326. // gain below knee:
  327. if (threshold - knee / 2 >= env_db)
  328. gain = slope * diff;
  329. // gain in knee:
  330. if (env_db > threshold - knee / 2 &&
  331. threshold + knee / 2 > env_db)
  332. gain = slope * powf(diff + knee / 2, 2) / (2.0f * knee);
  333. } else {
  334. prev_gain = idx > 0 ? gain_db[idx - 1] : channel_gain;
  335. gain = diff > 0.0f ? fmaxf(slope * diff, -60.0f) : 0.0f;
  336. }
  337. /* --------------------------------- */
  338. /* ballistics (attack/release) */
  339. if (gain > prev_gain)
  340. gain_db[idx] = attack_gain * prev_gain + inv_attack_gain * gain;
  341. else
  342. gain_db[idx] =
  343. release_gain * prev_gain + inv_release_gain * gain;
  344. /* --------------------------------- */
  345. /* output */
  346. if (!is_upwcomp) {
  347. gain = db_to_mul(fminf(0, gain_db[idx]));
  348. } else {
  349. gain = db_to_mul(gain_db[idx]);
  350. }
  351. samples[idx] *= gain * output_gain;
  352. }
  353. // gain stage and ballistics in dB domain
  354. static inline void process_expansion(struct expander_data *cd, float **samples,
  355. uint32_t num_samples)
  356. {
  357. const float attack_gain = cd->attack_gain;
  358. const float release_gain = cd->release_gain;
  359. const float inv_attack_gain = 1.0f - attack_gain;
  360. const float inv_release_gain = 1.0f - release_gain;
  361. const float threshold = cd->threshold;
  362. const float slope = cd->slope;
  363. const float output_gain = cd->output_gain;
  364. const bool is_upwcomp = cd->is_upwcomp;
  365. const float knee = cd->knee;
  366. if (cd->gain_db_len < num_samples)
  367. resize_gain_db_buffer(cd, num_samples);
  368. for (size_t i = 0; i < cd->num_channels; i++)
  369. memset(cd->gain_db[i], 0,
  370. num_samples * sizeof(cd->gain_db[i][0]));
  371. for (size_t chan = 0; chan < cd->num_channels; chan++) {
  372. float *channel_samples = samples[chan];
  373. float *env_buf = cd->envelope_buf[chan];
  374. float *gain_db = cd->gain_db[chan];
  375. float channel_gain = cd->gain_db_buf[chan];
  376. for (size_t i = 0; i < num_samples; ++i) {
  377. process_sample(i, channel_samples, env_buf, gain_db,
  378. is_upwcomp, channel_gain, threshold,
  379. slope, attack_gain, inv_attack_gain,
  380. release_gain, inv_release_gain,
  381. output_gain, knee);
  382. }
  383. cd->gain_db_buf[chan] = gain_db[num_samples - 1];
  384. }
  385. }
  386. static struct obs_audio_data *
  387. expander_filter_audio(void *data, struct obs_audio_data *audio)
  388. {
  389. struct expander_data *cd = data;
  390. const uint32_t num_samples = audio->frames;
  391. if (num_samples == 0)
  392. return audio;
  393. float **samples = (float **)audio->data;
  394. analyze_envelope(cd, samples, num_samples);
  395. process_expansion(cd, samples, num_samples);
  396. return audio;
  397. }
  398. static bool presets_changed(obs_properties_t *props, obs_property_t *prop,
  399. obs_data_t *settings)
  400. {
  401. UNUSED_PARAMETER(props);
  402. UNUSED_PARAMETER(prop);
  403. UNUSED_PARAMETER(settings);
  404. return true;
  405. }
  406. static obs_properties_t *expander_properties(void *data)
  407. {
  408. struct expander_data *cd = data;
  409. obs_properties_t *props = obs_properties_create();
  410. obs_property_t *p;
  411. if (!cd->is_upwcomp) {
  412. obs_property_t *presets = obs_properties_add_list(
  413. props, S_PRESETS, TEXT_PRESETS, OBS_COMBO_TYPE_LIST,
  414. OBS_COMBO_FORMAT_STRING);
  415. obs_property_list_add_string(presets, TEXT_PRESETS_EXP,
  416. "expander");
  417. obs_property_list_add_string(presets, TEXT_PRESETS_GATE,
  418. "gate");
  419. obs_property_set_modified_callback(presets, presets_changed);
  420. }
  421. p = obs_properties_add_float_slider(
  422. props, S_RATIO, TEXT_RATIO,
  423. !cd->is_upwcomp ? MIN_RATIO : MIN_RATIO_UPW,
  424. !cd->is_upwcomp ? MAX_RATIO : MAX_RATIO_UPW, 0.1);
  425. obs_property_float_set_suffix(p, ":1");
  426. p = obs_properties_add_float_slider(props, S_THRESHOLD, TEXT_THRESHOLD,
  427. MIN_THRESHOLD_DB, MAX_THRESHOLD_DB,
  428. 0.1);
  429. obs_property_float_set_suffix(p, " dB");
  430. p = obs_properties_add_int_slider(props, S_ATTACK_TIME,
  431. TEXT_ATTACK_TIME, MIN_ATK_RLS_MS,
  432. MAX_ATK_MS, 1);
  433. obs_property_int_set_suffix(p, " ms");
  434. p = obs_properties_add_int_slider(props, S_RELEASE_TIME,
  435. TEXT_RELEASE_TIME, MIN_ATK_RLS_MS,
  436. MAX_RLS_MS, 1);
  437. obs_property_int_set_suffix(p, " ms");
  438. p = obs_properties_add_float_slider(props, S_OUTPUT_GAIN,
  439. TEXT_OUTPUT_GAIN,
  440. MIN_OUTPUT_GAIN_DB,
  441. MAX_OUTPUT_GAIN_DB, 0.1);
  442. obs_property_float_set_suffix(p, " dB");
  443. if (!cd->is_upwcomp) {
  444. obs_property_t *detect = obs_properties_add_list(
  445. props, S_DETECTOR, TEXT_DETECTOR, OBS_COMBO_TYPE_LIST,
  446. OBS_COMBO_FORMAT_STRING);
  447. obs_property_list_add_string(detect, TEXT_RMS, "RMS");
  448. obs_property_list_add_string(detect, TEXT_PEAK, "peak");
  449. } else {
  450. p = obs_properties_add_int_slider(props, S_KNEE, TEXT_KNEE, 0,
  451. 20, 1);
  452. obs_property_float_set_suffix(p, " dB");
  453. }
  454. return props;
  455. }
  456. struct obs_source_info expander_filter = {
  457. .id = "expander_filter",
  458. .type = OBS_SOURCE_TYPE_FILTER,
  459. .output_flags = OBS_SOURCE_AUDIO,
  460. .get_name = expander_name,
  461. .create = expander_create,
  462. .destroy = expander_destroy,
  463. .update = expander_update,
  464. .filter_audio = expander_filter_audio,
  465. .get_defaults = expander_defaults,
  466. .get_properties = expander_properties,
  467. };
  468. struct obs_source_info upward_compressor_filter = {
  469. .id = "upward_compressor_filter",
  470. .type = OBS_SOURCE_TYPE_FILTER,
  471. .output_flags = OBS_SOURCE_AUDIO,
  472. .get_name = upward_compressor_name,
  473. .create = upward_compressor_create,
  474. .destroy = expander_destroy,
  475. .update = expander_update,
  476. .filter_audio = expander_filter_audio,
  477. .get_defaults = upward_compressor_defaults,
  478. .get_properties = expander_properties,
  479. };