1
0

pulseaudio-output.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #include "obs-internal.h"
  2. #include "pulseaudio-wrapper.h"
  3. #define PULSE_DATA(voidptr) struct audio_monitor *data = voidptr;
  4. #define blog(level, msg, ...) blog(level, "pulse-am: " msg, ##__VA_ARGS__)
  5. struct audio_monitor {
  6. obs_source_t *source;
  7. pa_stream *stream;
  8. char *device;
  9. pa_buffer_attr attr;
  10. enum speaker_layout speakers;
  11. pa_sample_format_t format;
  12. uint_fast32_t samples_per_sec;
  13. uint_fast32_t bytes_per_frame;
  14. uint_fast8_t channels;
  15. uint_fast32_t packets;
  16. uint_fast64_t frames;
  17. struct circlebuf new_data;
  18. audio_resampler_t *resampler;
  19. size_t buffer_size;
  20. size_t bytesRemaining;
  21. bool ignore;
  22. pthread_mutex_t playback_mutex;
  23. };
  24. static enum speaker_layout
  25. pulseaudio_channels_to_obs_speakers(uint_fast32_t channels)
  26. {
  27. switch (channels) {
  28. case 0:
  29. return SPEAKERS_UNKNOWN;
  30. case 1:
  31. return SPEAKERS_MONO;
  32. case 2:
  33. return SPEAKERS_STEREO;
  34. case 3:
  35. return SPEAKERS_2POINT1;
  36. case 4:
  37. return SPEAKERS_4POINT0;
  38. case 5:
  39. return SPEAKERS_4POINT1;
  40. case 6:
  41. return SPEAKERS_5POINT1;
  42. case 8:
  43. return SPEAKERS_7POINT1;
  44. default:
  45. return SPEAKERS_UNKNOWN;
  46. }
  47. }
  48. static enum audio_format
  49. pulseaudio_to_obs_audio_format(pa_sample_format_t format)
  50. {
  51. switch (format) {
  52. case PA_SAMPLE_U8:
  53. return AUDIO_FORMAT_U8BIT;
  54. case PA_SAMPLE_S16LE:
  55. return AUDIO_FORMAT_16BIT;
  56. case PA_SAMPLE_S32LE:
  57. return AUDIO_FORMAT_32BIT;
  58. case PA_SAMPLE_FLOAT32LE:
  59. return AUDIO_FORMAT_FLOAT;
  60. default:
  61. return AUDIO_FORMAT_UNKNOWN;
  62. }
  63. }
  64. static pa_channel_map pulseaudio_channel_map(enum speaker_layout layout)
  65. {
  66. pa_channel_map ret;
  67. ret.map[0] = PA_CHANNEL_POSITION_FRONT_LEFT;
  68. ret.map[1] = PA_CHANNEL_POSITION_FRONT_RIGHT;
  69. ret.map[2] = PA_CHANNEL_POSITION_FRONT_CENTER;
  70. ret.map[3] = PA_CHANNEL_POSITION_LFE;
  71. ret.map[4] = PA_CHANNEL_POSITION_REAR_LEFT;
  72. ret.map[5] = PA_CHANNEL_POSITION_REAR_RIGHT;
  73. ret.map[6] = PA_CHANNEL_POSITION_SIDE_LEFT;
  74. ret.map[7] = PA_CHANNEL_POSITION_SIDE_RIGHT;
  75. switch (layout) {
  76. case SPEAKERS_MONO:
  77. ret.channels = 1;
  78. ret.map[0] = PA_CHANNEL_POSITION_MONO;
  79. break;
  80. case SPEAKERS_STEREO:
  81. ret.channels = 2;
  82. break;
  83. case SPEAKERS_2POINT1:
  84. ret.channels = 3;
  85. ret.map[2] = PA_CHANNEL_POSITION_LFE;
  86. break;
  87. case SPEAKERS_4POINT0:
  88. ret.channels = 4;
  89. ret.map[3] = PA_CHANNEL_POSITION_REAR_CENTER;
  90. break;
  91. case SPEAKERS_4POINT1:
  92. ret.channels = 5;
  93. ret.map[4] = PA_CHANNEL_POSITION_REAR_CENTER;
  94. break;
  95. case SPEAKERS_5POINT1:
  96. ret.channels = 6;
  97. break;
  98. case SPEAKERS_7POINT1:
  99. ret.channels = 8;
  100. break;
  101. case SPEAKERS_UNKNOWN:
  102. default:
  103. ret.channels = 0;
  104. break;
  105. }
  106. return ret;
  107. }
  108. static void process_byte(void *p, size_t frames, size_t channels, float vol)
  109. {
  110. register uint8_t *cur = (uint8_t *)p;
  111. register uint8_t *end = cur + frames * channels;
  112. for (; cur < end; cur++)
  113. *cur = ((int)*cur - 128) * vol + 128;
  114. }
  115. static void process_s16(void *p, size_t frames, size_t channels, float vol)
  116. {
  117. register int16_t *cur = (int16_t *)p;
  118. register int16_t *end = cur + frames * channels;
  119. while (cur < end)
  120. *(cur++) *= vol;
  121. }
  122. static void process_s32(void *p, size_t frames, size_t channels, float vol)
  123. {
  124. register int32_t *cur = (int32_t *)p;
  125. register int32_t *end = cur + frames * channels;
  126. while (cur < end)
  127. *(cur++) *= vol;
  128. }
  129. static void process_float(void *p, size_t frames, size_t channels, float vol)
  130. {
  131. register float *cur = (float *)p;
  132. register float *end = cur + frames * channels;
  133. while (cur < end)
  134. *(cur++) *= vol;
  135. }
  136. void process_volume(const struct audio_monitor *monitor, float vol,
  137. uint8_t *const *resample_data, uint32_t resample_frames)
  138. {
  139. switch (monitor->format) {
  140. case PA_SAMPLE_U8:
  141. process_byte(resample_data[0], resample_frames,
  142. monitor->channels, vol);
  143. break;
  144. case PA_SAMPLE_S16LE:
  145. process_s16(resample_data[0], resample_frames,
  146. monitor->channels, vol);
  147. break;
  148. case PA_SAMPLE_S32LE:
  149. process_s32(resample_data[0], resample_frames,
  150. monitor->channels, vol);
  151. break;
  152. case PA_SAMPLE_FLOAT32LE:
  153. process_float(resample_data[0], resample_frames,
  154. monitor->channels, vol);
  155. break;
  156. default:
  157. // just ignore
  158. break;
  159. }
  160. }
  161. static void do_stream_write(void *param)
  162. {
  163. PULSE_DATA(param);
  164. uint8_t *buffer = NULL;
  165. while (data->new_data.size >= data->buffer_size &&
  166. data->bytesRemaining > 0) {
  167. size_t bytesToFill = data->buffer_size;
  168. if (bytesToFill > data->bytesRemaining)
  169. bytesToFill = data->bytesRemaining;
  170. pulseaudio_lock();
  171. pa_stream_begin_write(data->stream, (void **)&buffer,
  172. &bytesToFill);
  173. pulseaudio_unlock();
  174. circlebuf_pop_front(&data->new_data, buffer, bytesToFill);
  175. pulseaudio_lock();
  176. pa_stream_write(data->stream, buffer, bytesToFill, NULL, 0LL,
  177. PA_SEEK_RELATIVE);
  178. pulseaudio_unlock();
  179. data->bytesRemaining -= bytesToFill;
  180. }
  181. }
  182. static void on_audio_playback(void *param, obs_source_t *source,
  183. const struct audio_data *audio_data, bool muted)
  184. {
  185. struct audio_monitor *monitor = param;
  186. float vol = source->user_volume;
  187. size_t bytes;
  188. uint8_t *resample_data[MAX_AV_PLANES];
  189. uint32_t resample_frames;
  190. uint64_t ts_offset;
  191. bool success;
  192. if (pthread_mutex_trylock(&monitor->playback_mutex) != 0)
  193. return;
  194. if (os_atomic_load_long(&source->activate_refs) == 0)
  195. goto unlock;
  196. success = audio_resampler_resample(
  197. monitor->resampler, resample_data, &resample_frames, &ts_offset,
  198. (const uint8_t *const *)audio_data->data,
  199. (uint32_t)audio_data->frames);
  200. if (!success)
  201. goto unlock;
  202. bytes = monitor->bytes_per_frame * resample_frames;
  203. if (muted) {
  204. memset(resample_data[0], 0, bytes);
  205. } else {
  206. if (!close_float(vol, 1.0f, EPSILON)) {
  207. process_volume(monitor, vol, resample_data,
  208. resample_frames);
  209. }
  210. }
  211. circlebuf_push_back(&monitor->new_data, resample_data[0], bytes);
  212. monitor->packets++;
  213. monitor->frames += resample_frames;
  214. unlock:
  215. pthread_mutex_unlock(&monitor->playback_mutex);
  216. do_stream_write(param);
  217. }
  218. static void pulseaudio_stream_write(pa_stream *p, size_t nbytes, void *userdata)
  219. {
  220. UNUSED_PARAMETER(p);
  221. PULSE_DATA(userdata);
  222. pthread_mutex_lock(&data->playback_mutex);
  223. data->bytesRemaining += nbytes;
  224. pthread_mutex_unlock(&data->playback_mutex);
  225. pulseaudio_signal(0);
  226. }
  227. static void pulseaudio_underflow(pa_stream *p, void *userdata)
  228. {
  229. UNUSED_PARAMETER(p);
  230. PULSE_DATA(userdata);
  231. pthread_mutex_lock(&data->playback_mutex);
  232. if (obs_source_active(data->source))
  233. data->attr.tlength = (data->attr.tlength * 3) / 2;
  234. pa_stream_set_buffer_attr(data->stream, &data->attr, NULL, NULL);
  235. pthread_mutex_unlock(&data->playback_mutex);
  236. pulseaudio_signal(0);
  237. }
  238. static void pulseaudio_server_info(pa_context *c, const pa_server_info *i,
  239. void *userdata)
  240. {
  241. UNUSED_PARAMETER(c);
  242. UNUSED_PARAMETER(userdata);
  243. blog(LOG_INFO, "Server name: '%s %s'", i->server_name,
  244. i->server_version);
  245. pulseaudio_signal(0);
  246. }
  247. static void pulseaudio_source_info(pa_context *c, const pa_source_info *i,
  248. int eol, void *userdata)
  249. {
  250. UNUSED_PARAMETER(c);
  251. PULSE_DATA(userdata);
  252. // An error occurred
  253. if (eol < 0) {
  254. data->format = PA_SAMPLE_INVALID;
  255. goto skip;
  256. }
  257. // Terminating call for multi instance callbacks
  258. if (eol > 0)
  259. goto skip;
  260. blog(LOG_INFO, "Audio format: %s, %" PRIu32 " Hz, %" PRIu8 " channels",
  261. pa_sample_format_to_string(i->sample_spec.format),
  262. i->sample_spec.rate, i->sample_spec.channels);
  263. pa_sample_format_t format = i->sample_spec.format;
  264. if (pulseaudio_to_obs_audio_format(format) == AUDIO_FORMAT_UNKNOWN) {
  265. format = PA_SAMPLE_FLOAT32LE;
  266. blog(LOG_INFO,
  267. "Sample format %s not supported by OBS,"
  268. "using %s instead for recording",
  269. pa_sample_format_to_string(i->sample_spec.format),
  270. pa_sample_format_to_string(format));
  271. }
  272. uint8_t channels = i->sample_spec.channels;
  273. if (pulseaudio_channels_to_obs_speakers(channels) == SPEAKERS_UNKNOWN) {
  274. channels = 2;
  275. blog(LOG_INFO,
  276. "%c channels not supported by OBS,"
  277. "using %c instead for recording",
  278. i->sample_spec.channels, channels);
  279. }
  280. data->format = format;
  281. data->samples_per_sec = i->sample_spec.rate;
  282. data->channels = channels;
  283. skip:
  284. pulseaudio_signal(0);
  285. }
  286. static void pulseaudio_stop_playback(struct audio_monitor *monitor)
  287. {
  288. if (monitor->stream) {
  289. /* Stop the stream */
  290. pulseaudio_lock();
  291. pa_stream_disconnect(monitor->stream);
  292. pulseaudio_unlock();
  293. /* Remove the callbacks, to ensure we no longer try to do anything
  294. * with this stream object */
  295. pulseaudio_write_callback(monitor->stream, NULL, NULL);
  296. pulseaudio_set_underflow_callback(monitor->stream, NULL, NULL);
  297. /* Unreference the stream and drop it. PA will free it when it can. */
  298. pulseaudio_lock();
  299. pa_stream_unref(monitor->stream);
  300. pulseaudio_unlock();
  301. monitor->stream = NULL;
  302. }
  303. blog(LOG_INFO, "Stopped Monitoring in '%s'", monitor->device);
  304. blog(LOG_INFO,
  305. "Got %" PRIuFAST32 " packets with %" PRIuFAST64 " frames",
  306. monitor->packets, monitor->frames);
  307. monitor->packets = 0;
  308. monitor->frames = 0;
  309. }
  310. static bool audio_monitor_init(struct audio_monitor *monitor,
  311. obs_source_t *source)
  312. {
  313. pthread_mutex_init_value(&monitor->playback_mutex);
  314. monitor->source = source;
  315. const char *id = obs->audio.monitoring_device_id;
  316. if (!id)
  317. return false;
  318. if (source->info.output_flags & OBS_SOURCE_DO_NOT_SELF_MONITOR) {
  319. obs_data_t *s = obs_source_get_settings(source);
  320. const char *s_dev_id = obs_data_get_string(s, "device_id");
  321. bool match = devices_match(s_dev_id, id);
  322. obs_data_release(s);
  323. if (match) {
  324. monitor->ignore = true;
  325. blog(LOG_INFO, "Prevented feedback-loop in '%s'",
  326. s_dev_id);
  327. return true;
  328. }
  329. }
  330. pulseaudio_init();
  331. if (strcmp(id, "default") == 0)
  332. get_default_id(&monitor->device);
  333. else
  334. monitor->device = bstrdup(id);
  335. if (!monitor->device)
  336. return false;
  337. if (pulseaudio_get_server_info(pulseaudio_server_info,
  338. (void *)monitor) < 0) {
  339. blog(LOG_ERROR, "Unable to get server info !");
  340. return false;
  341. }
  342. if (pulseaudio_get_source_info(pulseaudio_source_info, monitor->device,
  343. (void *)monitor) < 0) {
  344. blog(LOG_ERROR, "Unable to get source info !");
  345. return false;
  346. }
  347. if (monitor->format == PA_SAMPLE_INVALID) {
  348. blog(LOG_ERROR,
  349. "An error occurred while getting the source info!");
  350. return false;
  351. }
  352. pa_sample_spec spec;
  353. spec.format = monitor->format;
  354. spec.rate = (uint32_t)monitor->samples_per_sec;
  355. spec.channels = monitor->channels;
  356. if (!pa_sample_spec_valid(&spec)) {
  357. blog(LOG_ERROR, "Sample spec is not valid");
  358. return false;
  359. }
  360. const struct audio_output_info *info =
  361. audio_output_get_info(obs->audio.audio);
  362. struct resample_info from = {.samples_per_sec = info->samples_per_sec,
  363. .speakers = info->speakers,
  364. .format = AUDIO_FORMAT_FLOAT_PLANAR};
  365. struct resample_info to = {
  366. .samples_per_sec = (uint32_t)monitor->samples_per_sec,
  367. .speakers =
  368. pulseaudio_channels_to_obs_speakers(monitor->channels),
  369. .format = pulseaudio_to_obs_audio_format(monitor->format)};
  370. monitor->resampler = audio_resampler_create(&to, &from);
  371. if (!monitor->resampler) {
  372. blog(LOG_WARNING, "%s: %s", __FUNCTION__,
  373. "Failed to create resampler");
  374. return false;
  375. }
  376. monitor->speakers = pulseaudio_channels_to_obs_speakers(spec.channels);
  377. monitor->bytes_per_frame = pa_frame_size(&spec);
  378. pa_channel_map channel_map = pulseaudio_channel_map(monitor->speakers);
  379. monitor->stream = pulseaudio_stream_new(
  380. obs_source_get_name(monitor->source), &spec, &channel_map);
  381. if (!monitor->stream) {
  382. blog(LOG_ERROR, "Unable to create stream");
  383. return false;
  384. }
  385. monitor->attr.fragsize = (uint32_t)-1;
  386. monitor->attr.maxlength = (uint32_t)-1;
  387. monitor->attr.minreq = (uint32_t)-1;
  388. monitor->attr.prebuf = (uint32_t)-1;
  389. monitor->attr.tlength = pa_usec_to_bytes(25000, &spec);
  390. monitor->buffer_size =
  391. monitor->bytes_per_frame * pa_usec_to_bytes(5000, &spec);
  392. pa_stream_flags_t flags = PA_STREAM_INTERPOLATE_TIMING |
  393. PA_STREAM_AUTO_TIMING_UPDATE;
  394. if (pthread_mutex_init(&monitor->playback_mutex, NULL) != 0) {
  395. blog(LOG_WARNING, "%s: %s", __FUNCTION__,
  396. "Failed to init mutex");
  397. return false;
  398. }
  399. int_fast32_t ret = pulseaudio_connect_playback(
  400. monitor->stream, monitor->device, &monitor->attr, flags);
  401. if (ret < 0) {
  402. pulseaudio_stop_playback(monitor);
  403. blog(LOG_ERROR, "Unable to connect to stream");
  404. return false;
  405. }
  406. blog(LOG_INFO, "Started Monitoring in '%s'", monitor->device);
  407. return true;
  408. }
  409. static void audio_monitor_init_final(struct audio_monitor *monitor)
  410. {
  411. if (monitor->ignore)
  412. return;
  413. obs_source_add_audio_capture_callback(monitor->source,
  414. on_audio_playback, monitor);
  415. pulseaudio_write_callback(monitor->stream, pulseaudio_stream_write,
  416. (void *)monitor);
  417. pulseaudio_set_underflow_callback(monitor->stream, pulseaudio_underflow,
  418. (void *)monitor);
  419. }
  420. static inline void audio_monitor_free(struct audio_monitor *monitor)
  421. {
  422. if (monitor->ignore)
  423. return;
  424. if (monitor->source)
  425. obs_source_remove_audio_capture_callback(
  426. monitor->source, on_audio_playback, monitor);
  427. audio_resampler_destroy(monitor->resampler);
  428. circlebuf_free(&monitor->new_data);
  429. if (monitor->stream)
  430. pulseaudio_stop_playback(monitor);
  431. pulseaudio_unref();
  432. bfree(monitor->device);
  433. }
  434. struct audio_monitor *audio_monitor_create(obs_source_t *source)
  435. {
  436. struct audio_monitor monitor = {0};
  437. struct audio_monitor *out;
  438. if (!audio_monitor_init(&monitor, source))
  439. goto fail;
  440. out = bmemdup(&monitor, sizeof(monitor));
  441. pthread_mutex_lock(&obs->audio.monitoring_mutex);
  442. da_push_back(obs->audio.monitors, &out);
  443. pthread_mutex_unlock(&obs->audio.monitoring_mutex);
  444. audio_monitor_init_final(out);
  445. return out;
  446. fail:
  447. audio_monitor_free(&monitor);
  448. return NULL;
  449. }
  450. void audio_monitor_reset(struct audio_monitor *monitor)
  451. {
  452. struct audio_monitor new_monitor = {0};
  453. bool success;
  454. audio_monitor_free(monitor);
  455. pthread_mutex_lock(&monitor->playback_mutex);
  456. success = audio_monitor_init(&new_monitor, monitor->source);
  457. pthread_mutex_unlock(&monitor->playback_mutex);
  458. if (success) {
  459. *monitor = new_monitor;
  460. audio_monitor_init_final(monitor);
  461. } else {
  462. audio_monitor_free(&new_monitor);
  463. }
  464. }
  465. void audio_monitor_destroy(struct audio_monitor *monitor)
  466. {
  467. if (monitor) {
  468. audio_monitor_free(monitor);
  469. pthread_mutex_lock(&obs->audio.monitoring_mutex);
  470. da_erase_item(obs->audio.monitors, &monitor);
  471. pthread_mutex_unlock(&obs->audio.monitoring_mutex);
  472. bfree(monitor);
  473. }
  474. }