sse.h 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591
  1. /* Permission is hereby granted, free of charge, to any person
  2. * obtaining a copy of this software and associated documentation
  3. * files (the "Software"), to deal in the Software without
  4. * restriction, including without limitation the rights to use, copy,
  5. * modify, merge, publish, distribute, sublicense, and/or sell copies
  6. * of the Software, and to permit persons to whom the Software is
  7. * furnished to do so, subject to the following conditions:
  8. *
  9. * The above copyright notice and this permission notice shall be
  10. * included in all copies or substantial portions of the Software.
  11. *
  12. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  13. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  14. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  15. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  16. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  17. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  18. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  19. * SOFTWARE.
  20. *
  21. * Copyright:
  22. * 2017 Evan Nemerson <[email protected]>
  23. * 2015-2017 John W. Ratcliff <[email protected]>
  24. * 2015 Brandon Rowlett <[email protected]>
  25. * 2015 Ken Fast <[email protected]>
  26. */
  27. #if !defined(SIMDE__SSE_H)
  28. #if !defined(SIMDE__SSE_H)
  29. #define SIMDE__SSE_H
  30. #endif
  31. #include "mmx.h"
  32. #if defined(SIMDE_SSE_NATIVE)
  33. #undef SIMDE_SSE_NATIVE
  34. #endif
  35. #if defined(SIMDE_SSE_FORCE_NATIVE)
  36. #define SIMDE_SSE_NATIVE
  37. #elif defined(__SSE__) && !defined(SIMDE_SSE_NO_NATIVE) && \
  38. !defined(SIMDE_NO_NATIVE)
  39. #define SIMDE_SSE_NATIVE
  40. #elif defined(__ARM_NEON) && !defined(SIMDE_SSE_NO_NEON) && \
  41. !defined(SIMDE_NO_NEON)
  42. #define SIMDE_SSE_NEON
  43. #endif
  44. #if defined(SIMDE_SSE_NATIVE) && !defined(SIMDE_MMX_NATIVE)
  45. #if defined(SIMDE_SSE_FORCE_NATIVE)
  46. #error Native SSE support requires native MMX support
  47. #else
  48. #warning Native SSE support requires native MMX support, disabling
  49. #undef SIMDE_SSE_NATIVE
  50. #endif
  51. #elif defined(SIMDE_SSE_NEON) && !defined(SIMDE_MMX_NEON)
  52. #warning SSE3 NEON support requires MMX NEON support, disabling
  53. #undef SIMDE_SSE3_NEON
  54. #endif
  55. #if defined(SIMDE_SSE_NATIVE)
  56. #include <xmmintrin.h>
  57. #else
  58. #if defined(SIMDE_SSE_NEON)
  59. #include <arm_neon.h>
  60. #endif
  61. #if !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
  62. (__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
  63. #include <stdatomic.h>
  64. #elif defined(_WIN32)
  65. #include <Windows.h>
  66. #endif
  67. #endif
  68. #include <math.h>
  69. #include <fenv.h>
  70. #define SIMDE_ALIGN(alignment) __attribute__((aligned(alignment)))
  71. SIMDE__BEGIN_DECLS
  72. typedef SIMDE_ALIGN(16) union {
  73. #if defined(SIMDE__ENABLE_GCC_VEC_EXT)
  74. int8_t i8 __attribute__((__vector_size__(16), __may_alias__));
  75. int16_t i16 __attribute__((__vector_size__(16), __may_alias__));
  76. int32_t i32 __attribute__((__vector_size__(16), __may_alias__));
  77. int64_t i64 __attribute__((__vector_size__(16), __may_alias__));
  78. uint8_t u8 __attribute__((__vector_size__(16), __may_alias__));
  79. uint16_t u16 __attribute__((__vector_size__(16), __may_alias__));
  80. uint32_t u32 __attribute__((__vector_size__(16), __may_alias__));
  81. uint64_t u64 __attribute__((__vector_size__(16), __may_alias__));
  82. #if defined(SIMDE__HAVE_INT128)
  83. simde_int128 i128 __attribute__((__vector_size__(16), __may_alias__));
  84. simde_uint128 u128 __attribute__((__vector_size__(16), __may_alias__));
  85. #endif
  86. simde_float32 f32 __attribute__((__vector_size__(16), __may_alias__));
  87. #else
  88. int8_t i8[16];
  89. int16_t i16[8];
  90. int32_t i32[4];
  91. int64_t i64[2];
  92. uint8_t u8[16];
  93. uint16_t u16[8];
  94. uint32_t u32[4];
  95. uint64_t u64[2];
  96. #if defined(SIMDE__HAVE_INT128)
  97. simde_int128 i128[1];
  98. simde_uint128 u128[1];
  99. #endif
  100. simde_float32 f32[4];
  101. #endif
  102. #if defined(SIMDE_SSE_NATIVE)
  103. __m128 n;
  104. #elif defined(SIMDE_SSE_NEON)
  105. int8x16_t neon_i8;
  106. int16x8_t neon_i16;
  107. int32x4_t neon_i32;
  108. int64x2_t neon_i64;
  109. uint8x16_t neon_u8;
  110. uint16x8_t neon_u16;
  111. uint32x4_t neon_u32;
  112. uint64x2_t neon_u64;
  113. float32x4_t neon_f32;
  114. #endif
  115. } simde__m128;
  116. #if defined(SIMDE_SSE_NATIVE)
  117. HEDLEY_STATIC_ASSERT(sizeof(__m128) == sizeof(simde__m128),
  118. "__m128 size doesn't match simde__m128 size");
  119. SIMDE__FUNCTION_ATTRIBUTES simde__m128 SIMDE__M128_C(__m128 v)
  120. {
  121. simde__m128 r;
  122. r.n = v;
  123. return r;
  124. }
  125. #elif defined(SIMDE_SSE_NEON)
  126. #define SIMDE__M128_NEON_C(T, expr) \
  127. (simde__m128) { .neon_##T = expr }
  128. #endif
  129. HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128), "simde__m128 size incorrect");
  130. SIMDE__FUNCTION_ATTRIBUTES
  131. simde__m128 simde_mm_add_ps(simde__m128 a, simde__m128 b)
  132. {
  133. simde__m128 r;
  134. #if defined(SIMDE_SSE_NATIVE)
  135. r.n = _mm_add_ps(a.n, b.n);
  136. #elif defined(SIMDE_SSE_NEON)
  137. r.neon_f32 = vaddq_f32(a.neon_f32, b.neon_f32);
  138. #else
  139. SIMDE__VECTORIZE
  140. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  141. r.f32[i] = a.f32[i] + b.f32[i];
  142. }
  143. #endif
  144. return r;
  145. }
  146. SIMDE__FUNCTION_ATTRIBUTES
  147. simde__m128 simde_mm_add_ss(simde__m128 a, simde__m128 b)
  148. {
  149. simde__m128 r;
  150. #if defined(SIMDE_SSE_NATIVE)
  151. r.n = _mm_add_ss(a.n, b.n);
  152. #elif defined(SIMDE_SSE_NEON)
  153. float32_t b0 = vgetq_lane_f32(b.neon_f32, 0);
  154. float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
  155. /* the upper values in the result must be the remnants of <a>. */
  156. r.neon_f32 = vaddq_f32(a.neon_f32, value);
  157. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  158. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32, simde_mm_add_ps(a, b).f32,
  159. 4, 1, 2, 3);
  160. #else
  161. r.f32[0] = a.f32[0] + b.f32[0];
  162. r.f32[1] = a.f32[1];
  163. r.f32[2] = a.f32[2];
  164. r.f32[3] = a.f32[3];
  165. #endif
  166. return r;
  167. }
  168. SIMDE__FUNCTION_ATTRIBUTES
  169. simde__m128 simde_mm_and_ps(simde__m128 a, simde__m128 b)
  170. {
  171. simde__m128 r;
  172. #if defined(SIMDE_SSE_NATIVE)
  173. r.n = _mm_and_ps(a.n, b.n);
  174. #elif defined(SIMDE_SSE_NEON)
  175. r.neon_i32 = vandq_s32(a.neon_i32, b.neon_i32);
  176. #else
  177. SIMDE__VECTORIZE
  178. for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
  179. r.i32[i] = a.i32[i] & b.i32[i];
  180. }
  181. #endif
  182. return r;
  183. }
  184. SIMDE__FUNCTION_ATTRIBUTES
  185. simde__m128 simde_mm_andnot_ps(simde__m128 a, simde__m128 b)
  186. {
  187. simde__m128 r;
  188. #if defined(SIMDE_SSE_NATIVE)
  189. r.n = _mm_andnot_ps(a.n, b.n);
  190. #elif defined(SIMDE_SSE_NEON)
  191. r.neon_i32 = vbicq_s32(b.neon_i32, a.neon_i32);
  192. #else
  193. SIMDE__VECTORIZE
  194. for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
  195. r.i32[i] = ~(a.i32[i]) & b.i32[i];
  196. }
  197. #endif
  198. return r;
  199. }
  200. SIMDE__FUNCTION_ATTRIBUTES
  201. simde__m64 simde_mm_avg_pu16(simde__m64 a, simde__m64 b)
  202. {
  203. simde__m64 r;
  204. #if defined(SIMDE_SSE_NATIVE)
  205. r.n = _mm_avg_pu16(a.n, b.n);
  206. #elif defined(SIMDE_SSE_NEON)
  207. r.neon_u16 = vrhadd_u16(b.neon_u16, a.neon_u16);
  208. #else
  209. SIMDE__VECTORIZE
  210. for (size_t i = 0; i < 4; i++) {
  211. r.u16[i] = (a.u16[i] + b.u16[i] + 1) >> 1;
  212. }
  213. #endif
  214. return r;
  215. }
  216. #define simde_m_pavgw(a, b) simde_mm_avg_pu16(a, b)
  217. SIMDE__FUNCTION_ATTRIBUTES
  218. simde__m64 simde_mm_avg_pu8(simde__m64 a, simde__m64 b)
  219. {
  220. simde__m64 r;
  221. #if defined(SIMDE_SSE_NATIVE)
  222. r.n = _mm_avg_pu8(a.n, b.n);
  223. #elif defined(SIMDE_SSE_NEON)
  224. r.neon_u8 = vrhadd_u8(b.neon_u8, a.neon_u8);
  225. #else
  226. SIMDE__VECTORIZE
  227. for (size_t i = 0; i < 8; i++) {
  228. r.u8[i] = (a.u8[i] + b.u8[i] + 1) >> 1;
  229. }
  230. #endif
  231. return r;
  232. }
  233. #define simde_m_pavgb(a, b) simde_mm_avg_pu8(a, b)
  234. SIMDE__FUNCTION_ATTRIBUTES
  235. simde__m128 simde_mm_cmpeq_ps(simde__m128 a, simde__m128 b)
  236. {
  237. simde__m128 r;
  238. #if defined(SIMDE_SSE_NATIVE)
  239. r.n = _mm_cmpeq_ps(a.n, b.n);
  240. #elif defined(SIMDE_SSE_NEON)
  241. r.neon_u32 = vceqq_f32(a.neon_f32, b.neon_f32);
  242. #else
  243. SIMDE__VECTORIZE
  244. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  245. r.u32[i] = (a.f32[i] == b.f32[i]) ? 0xffffffff : 0;
  246. }
  247. #endif
  248. return r;
  249. }
  250. SIMDE__FUNCTION_ATTRIBUTES
  251. simde__m128 simde_mm_cmpeq_ss(simde__m128 a, simde__m128 b)
  252. {
  253. simde__m128 r;
  254. #if defined(SIMDE_SSE_NATIVE)
  255. r.n = _mm_cmpeq_ss(a.n, b.n);
  256. #elif defined(SIMDE_SSE_NEON)
  257. float32x4_t s =
  258. vreinterpretq_f32_u32(vceqq_f32(a.neon_f32, b.neon_f32));
  259. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  260. r.neon_f32 = vextq_f32(t, t, 3);
  261. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  262. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  263. simde_mm_cmpeq_ps(a, b).f32, 4, 1, 2, 3);
  264. #else
  265. r.u32[0] = (a.f32[0] == b.f32[0]) ? 0xffffffff : 0;
  266. SIMDE__VECTORIZE
  267. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  268. r.u32[i] = a.u32[i];
  269. }
  270. #endif
  271. return r;
  272. }
  273. SIMDE__FUNCTION_ATTRIBUTES
  274. simde__m128 simde_mm_cmpge_ps(simde__m128 a, simde__m128 b)
  275. {
  276. simde__m128 r;
  277. #if defined(SIMDE_SSE_NATIVE)
  278. r.n = _mm_cmpge_ps(a.n, b.n);
  279. #elif defined(SIMDE_SSE_NEON)
  280. r.neon_u32 = vcgeq_f32(a.neon_f32, b.neon_f32);
  281. #else
  282. SIMDE__VECTORIZE
  283. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  284. r.u32[i] = (a.f32[i] >= b.f32[i]) ? 0xffffffff : 0;
  285. }
  286. #endif
  287. return r;
  288. }
  289. SIMDE__FUNCTION_ATTRIBUTES
  290. simde__m128 simde_mm_cmpge_ss(simde__m128 a, simde__m128 b)
  291. {
  292. simde__m128 r;
  293. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  294. r.n = _mm_cmpge_ss(a.n, b.n);
  295. #elif defined(SIMDE_SSE_NEON)
  296. float32x4_t s =
  297. vreinterpretq_f32_u32(vcgeq_f32(a.neon_f32, b.neon_f32));
  298. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  299. r.neon_f32 = vextq_f32(t, t, 3);
  300. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  301. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  302. simde_mm_cmpge_ps(a, b).f32, 4, 1, 2, 3);
  303. #else
  304. r.u32[0] = (a.f32[0] >= b.f32[0]) ? 0xffffffff : 0;
  305. SIMDE__VECTORIZE
  306. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  307. r.u32[i] = a.u32[i];
  308. }
  309. #endif
  310. return r;
  311. }
  312. SIMDE__FUNCTION_ATTRIBUTES
  313. simde__m128 simde_mm_cmpgt_ps(simde__m128 a, simde__m128 b)
  314. {
  315. simde__m128 r;
  316. #if defined(SIMDE_SSE_NATIVE)
  317. r.n = _mm_cmpgt_ps(a.n, b.n);
  318. #elif defined(SIMDE_SSE_NEON)
  319. r.neon_u32 = vcgtq_f32(a.neon_f32, b.neon_f32);
  320. #else
  321. SIMDE__VECTORIZE
  322. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  323. r.u32[i] = (a.f32[i] > b.f32[i]) ? 0xffffffff : 0;
  324. }
  325. #endif
  326. return r;
  327. }
  328. SIMDE__FUNCTION_ATTRIBUTES
  329. simde__m128 simde_mm_cmpgt_ss(simde__m128 a, simde__m128 b)
  330. {
  331. simde__m128 r;
  332. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  333. r.n = _mm_cmpgt_ss(a.n, b.n);
  334. #elif defined(SIMDE_SSE_NEON)
  335. float32x4_t s =
  336. vreinterpretq_f32_u32(vcgtq_f32(a.neon_f32, b.neon_f32));
  337. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  338. r.neon_f32 = vextq_f32(t, t, 3);
  339. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  340. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  341. simde_mm_cmpgt_ps(a, b).f32, 4, 1, 2, 3);
  342. #else
  343. r.u32[0] = (a.f32[0] > b.f32[0]) ? 0xffffffff : 0;
  344. SIMDE__VECTORIZE
  345. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  346. r.u32[i] = a.u32[i];
  347. }
  348. #endif
  349. return r;
  350. }
  351. SIMDE__FUNCTION_ATTRIBUTES
  352. simde__m128 simde_mm_cmple_ps(simde__m128 a, simde__m128 b)
  353. {
  354. simde__m128 r;
  355. #if defined(SIMDE_SSE_NATIVE)
  356. r.n = _mm_cmple_ps(a.n, b.n);
  357. #elif defined(SIMDE_SSE_NEON)
  358. r.neon_u32 = vcleq_f32(a.neon_f32, b.neon_f32);
  359. #else
  360. SIMDE__VECTORIZE
  361. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  362. r.u32[i] = (a.f32[i] <= b.f32[i]) ? 0xffffffff : 0;
  363. }
  364. #endif
  365. return r;
  366. }
  367. SIMDE__FUNCTION_ATTRIBUTES
  368. simde__m128 simde_mm_cmple_ss(simde__m128 a, simde__m128 b)
  369. {
  370. simde__m128 r;
  371. #if defined(SIMDE_SSE_NATIVE)
  372. r.n = _mm_cmple_ss(a.n, b.n);
  373. #elif defined(SIMDE_SSE_NEON)
  374. float32x4_t s =
  375. vreinterpretq_f32_u32(vcleq_f32(a.neon_f32, b.neon_f32));
  376. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  377. r.neon_f32 = vextq_f32(t, t, 3);
  378. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  379. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  380. simde_mm_cmple_ps(a, b).f32, 4, 1, 2, 3);
  381. #else
  382. r.u32[0] = (a.f32[0] <= b.f32[0]) ? 0xffffffff : 0;
  383. SIMDE__VECTORIZE
  384. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  385. r.u32[i] = a.u32[i];
  386. }
  387. #endif
  388. return r;
  389. }
  390. SIMDE__FUNCTION_ATTRIBUTES
  391. simde__m128 simde_mm_cmplt_ps(simde__m128 a, simde__m128 b)
  392. {
  393. simde__m128 r;
  394. #if defined(SIMDE_SSE_NATIVE)
  395. r.n = _mm_cmplt_ps(a.n, b.n);
  396. #elif defined(SIMDE_SSE_NEON)
  397. r.neon_u32 = vcltq_f32(a.neon_f32, b.neon_f32);
  398. #else
  399. SIMDE__VECTORIZE
  400. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  401. r.u32[i] = (a.f32[i] < b.f32[i]) ? 0xffffffff : 0;
  402. }
  403. #endif
  404. return r;
  405. }
  406. SIMDE__FUNCTION_ATTRIBUTES
  407. simde__m128 simde_mm_cmplt_ss(simde__m128 a, simde__m128 b)
  408. {
  409. simde__m128 r;
  410. #if defined(SIMDE_SSE_NATIVE)
  411. r.n = _mm_cmplt_ss(a.n, b.n);
  412. #elif defined(SIMDE_SSE_NEON)
  413. float32x4_t s =
  414. vreinterpretq_f32_u32(vcltq_f32(a.neon_f32, b.neon_f32));
  415. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  416. r.neon_f32 = vextq_f32(t, t, 3);
  417. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  418. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  419. simde_mm_cmplt_ps(a, b).f32, 4, 1, 2, 3);
  420. #else
  421. r.u32[0] = (a.f32[0] < b.f32[0]) ? 0xffffffff : 0;
  422. SIMDE__VECTORIZE
  423. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  424. r.u32[i] = a.u32[i];
  425. }
  426. #endif
  427. return r;
  428. }
  429. SIMDE__FUNCTION_ATTRIBUTES
  430. simde__m128 simde_mm_cmpneq_ps(simde__m128 a, simde__m128 b)
  431. {
  432. simde__m128 r;
  433. #if defined(SIMDE_SSE_NATIVE)
  434. r.n = _mm_cmpneq_ps(a.n, b.n);
  435. #elif defined(SIMDE_SSE_NEON)
  436. r.neon_u32 = vmvnq_u32(vceqq_f32(a.neon_f32, b.neon_f32));
  437. #else
  438. SIMDE__VECTORIZE
  439. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  440. r.u32[i] = (a.f32[i] != b.f32[i]) ? 0xffffffff : 0;
  441. }
  442. #endif
  443. return r;
  444. }
  445. SIMDE__FUNCTION_ATTRIBUTES
  446. simde__m128 simde_mm_cmpneq_ss(simde__m128 a, simde__m128 b)
  447. {
  448. simde__m128 r;
  449. #if defined(SIMDE_SSE_NATIVE)
  450. r.n = _mm_cmpneq_ss(a.n, b.n);
  451. #elif defined(SIMDE_SSE_NEON)
  452. float32x4_t e =
  453. vreinterpretq_f32_u32(vceqq_f32(a.neon_f32, b.neon_f32));
  454. float32x4_t s =
  455. vreinterpretq_f32_u32(vmvnq_u32(vreinterpretq_u32_f32(e)));
  456. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  457. r.neon_f32 = vextq_f32(t, t, 3);
  458. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  459. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  460. simde_mm_cmpneq_ps(a, b).f32, 4, 1, 2, 3);
  461. #else
  462. r.u32[0] = (a.f32[0] != b.f32[0]) ? 0xffffffff : 0;
  463. SIMDE__VECTORIZE
  464. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  465. r.u32[i] = a.u32[i];
  466. }
  467. #endif
  468. return r;
  469. }
  470. SIMDE__FUNCTION_ATTRIBUTES
  471. simde__m128 simde_mm_cmpnge_ps(simde__m128 a, simde__m128 b)
  472. {
  473. simde__m128 r;
  474. #if defined(SIMDE_SSE_NATIVE)
  475. r.n = _mm_cmpnge_ps(a.n, b.n);
  476. #elif defined(SIMDE_SSE_NEON)
  477. r.neon_u32 = vcltq_f32(a.neon_f32, b.neon_f32);
  478. #else
  479. r = simde_mm_cmplt_ps(a, b);
  480. #endif
  481. return r;
  482. }
  483. SIMDE__FUNCTION_ATTRIBUTES
  484. simde__m128 simde_mm_cmpnge_ss(simde__m128 a, simde__m128 b)
  485. {
  486. simde__m128 r;
  487. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  488. r.n = _mm_cmpnge_ss(a.n, b.n);
  489. #elif defined(SIMDE_SSE_NEON)
  490. float32x4_t s =
  491. vreinterpretq_f32_u32(vcltq_f32(a.neon_f32, b.neon_f32));
  492. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  493. r.neon_f32 = vextq_f32(t, t, 3);
  494. #else
  495. r = simde_mm_cmplt_ss(a, b);
  496. #endif
  497. return r;
  498. }
  499. SIMDE__FUNCTION_ATTRIBUTES
  500. simde__m128 simde_mm_cmpngt_ps(simde__m128 a, simde__m128 b)
  501. {
  502. simde__m128 r;
  503. #if defined(SIMDE_SSE_NATIVE)
  504. r.n = _mm_cmpngt_ps(a.n, b.n);
  505. #elif defined(SIMDE_SSE_NEON)
  506. r.neon_u32 = vcleq_f32(a.neon_f32, b.neon_f32);
  507. #else
  508. r = simde_mm_cmple_ps(a, b);
  509. #endif
  510. return r;
  511. }
  512. SIMDE__FUNCTION_ATTRIBUTES
  513. simde__m128 simde_mm_cmpngt_ss(simde__m128 a, simde__m128 b)
  514. {
  515. simde__m128 r;
  516. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  517. r.n = _mm_cmpngt_ss(a.n, b.n);
  518. #elif defined(SIMDE_SSE_NEON)
  519. float32x4_t s =
  520. vreinterpretq_f32_u32(vcleq_f32(a.neon_f32, b.neon_f32));
  521. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  522. r.neon_f32 = vextq_f32(t, t, 3);
  523. #else
  524. r = simde_mm_cmple_ss(a, b);
  525. #endif
  526. return r;
  527. }
  528. SIMDE__FUNCTION_ATTRIBUTES
  529. simde__m128 simde_mm_cmpnle_ps(simde__m128 a, simde__m128 b)
  530. {
  531. simde__m128 r;
  532. #if defined(SIMDE_SSE_NATIVE)
  533. r.n = _mm_cmpnle_ps(a.n, b.n);
  534. #elif defined(SIMDE_SSE_NEON)
  535. r.neon_u32 = vcgtq_f32(a.neon_f32, b.neon_f32);
  536. #else
  537. r = simde_mm_cmpgt_ps(a, b);
  538. #endif
  539. return r;
  540. }
  541. SIMDE__FUNCTION_ATTRIBUTES
  542. simde__m128 simde_mm_cmpnle_ss(simde__m128 a, simde__m128 b)
  543. {
  544. simde__m128 r;
  545. #if defined(SIMDE_SSE_NATIVE)
  546. r.n = _mm_cmpnle_ss(a.n, b.n);
  547. #elif defined(SIMDE_SSE_NEON)
  548. float32x4_t s =
  549. vreinterpretq_f32_u32(vcgtq_f32(a.neon_f32, b.neon_f32));
  550. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  551. r.neon_f32 = vextq_f32(t, t, 3);
  552. #else
  553. r = simde_mm_cmpgt_ss(a, b);
  554. #endif
  555. return r;
  556. }
  557. SIMDE__FUNCTION_ATTRIBUTES
  558. simde__m128 simde_mm_cmpnlt_ps(simde__m128 a, simde__m128 b)
  559. {
  560. simde__m128 r;
  561. #if defined(SIMDE_SSE_NATIVE)
  562. r.n = _mm_cmpnlt_ps(a.n, b.n);
  563. #elif defined(SIMDE_SSE_NEON)
  564. r.neon_u32 = vcgeq_f32(a.neon_f32, b.neon_f32);
  565. #else
  566. r = simde_mm_cmpge_ps(a, b);
  567. #endif
  568. return r;
  569. }
  570. SIMDE__FUNCTION_ATTRIBUTES
  571. simde__m128 simde_mm_cmpnlt_ss(simde__m128 a, simde__m128 b)
  572. {
  573. simde__m128 r;
  574. #if defined(SIMDE_SSE_NATIVE)
  575. r.n = _mm_cmpnlt_ss(a.n, b.n);
  576. #else
  577. r = simde_mm_cmpge_ss(a, b);
  578. #endif
  579. return r;
  580. }
  581. SIMDE__FUNCTION_ATTRIBUTES
  582. simde__m128 simde_mm_cmpord_ps(simde__m128 a, simde__m128 b)
  583. {
  584. simde__m128 r;
  585. #if defined(SIMDE_SSE_NATIVE)
  586. r.n = _mm_cmpord_ps(a.n, b.n);
  587. #elif defined(SIMDE_SSE_NEON)
  588. /* Note: NEON does not have ordered compare builtin
  589. Need to compare a eq a and b eq b to check for NaN
  590. Do AND of results to get final */
  591. uint32x4_t ceqaa = vceqq_f32(a.neon_f32, a.neon_f32);
  592. uint32x4_t ceqbb = vceqq_f32(b.neon_f32, b.neon_f32);
  593. r.neon_u32 = vandq_u32(ceqaa, ceqbb);
  594. #else
  595. SIMDE__VECTORIZE
  596. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  597. r.u32[i] = (isnan(a.f32[i]) || isnan(b.f32[i])) ? 0
  598. : 0xffffffff;
  599. }
  600. #endif
  601. return r;
  602. }
  603. SIMDE__FUNCTION_ATTRIBUTES
  604. simde__m128 simde_mm_cmpord_ss(simde__m128 a, simde__m128 b)
  605. {
  606. simde__m128 r;
  607. #if defined(SIMDE_SSE_NATIVE)
  608. r.n = _mm_cmpord_ss(a.n, b.n);
  609. #elif defined(SIMDE_SSE_NEON)
  610. uint32x4_t ceqaa = vceqq_f32(a.neon_f32, a.neon_f32);
  611. uint32x4_t ceqbb = vceqq_f32(b.neon_f32, b.neon_f32);
  612. float32x4_t s = vreinterpretq_f32_u32(vandq_u32(ceqaa, ceqbb));
  613. float32x4_t t = vextq_f32(a.neon_f32, s, 1);
  614. r.neon_f32 = vextq_f32(t, t, 3);
  615. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  616. r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
  617. simde_mm_cmpord_ps(a, b).f32, 4, 1, 2, 3);
  618. #else
  619. r.u32[0] = (isnan(a.f32[0]) || isnan(b.f32[0])) ? 0 : 0xffffffff;
  620. SIMDE__VECTORIZE
  621. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  622. r.f32[i] = a.f32[i];
  623. }
  624. #endif
  625. return r;
  626. }
  627. SIMDE__FUNCTION_ATTRIBUTES
  628. simde__m128 simde_mm_cmpunord_ps(simde__m128 a, simde__m128 b)
  629. {
  630. simde__m128 r;
  631. #if defined(SIMDE_SSE_NATIVE)
  632. r.n = _mm_cmpunord_ps(a.n, b.n);
  633. #else
  634. SIMDE__VECTORIZE
  635. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  636. r.u32[i] = (isnan(a.f32[i]) || isnan(b.f32[i])) ? 0xffffffff
  637. : 0;
  638. }
  639. #endif
  640. return r;
  641. }
  642. SIMDE__FUNCTION_ATTRIBUTES
  643. simde__m128 simde_mm_cmpunord_ss(simde__m128 a, simde__m128 b)
  644. {
  645. simde__m128 r;
  646. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  647. r.n = _mm_cmpunord_ss(a.n, b.n);
  648. #elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
  649. r.f32 = SIMDE__SHUFFLE_VECTOR(
  650. 32, 16, a.f32, simde_mm_cmpunord_ps(a, b).f32, 4, 1, 2, 3);
  651. #else
  652. r.u32[0] = (isnan(a.f32[0]) || isnan(b.f32[0])) ? 0xffffffff : 0;
  653. SIMDE__VECTORIZE
  654. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  655. r.f32[i] = a.f32[i];
  656. }
  657. #endif
  658. return r;
  659. }
  660. SIMDE__FUNCTION_ATTRIBUTES
  661. int simde_mm_comieq_ss(simde__m128 a, simde__m128 b)
  662. {
  663. #if defined(SIMDE_SSE_NATIVE)
  664. return _mm_comieq_ss(a.n, b.n);
  665. #elif defined(SIMDE_SSE_NEON)
  666. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  667. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  668. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  669. uint32x4_t a_eq_b = vceqq_f32(a.neon_f32, b.neon_f32);
  670. return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0) ? 1 : 0;
  671. #else
  672. return a.f32[0] == b.f32[0];
  673. #endif
  674. }
  675. SIMDE__FUNCTION_ATTRIBUTES
  676. int simde_mm_comige_ss(simde__m128 a, simde__m128 b)
  677. {
  678. #if defined(SIMDE_SSE_NATIVE)
  679. return _mm_comige_ss(a.n, b.n);
  680. #elif defined(SIMDE_SSE_NEON)
  681. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  682. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  683. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  684. uint32x4_t a_ge_b = vcgeq_f32(a.neon_f32, b.neon_f32);
  685. return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1
  686. : 0;
  687. #else
  688. return a.f32[0] >= b.f32[0];
  689. #endif
  690. }
  691. SIMDE__FUNCTION_ATTRIBUTES
  692. int simde_mm_comigt_ss(simde__m128 a, simde__m128 b)
  693. {
  694. #if defined(SIMDE_SSE_NATIVE)
  695. return _mm_comigt_ss(a.n, b.n);
  696. #elif defined(SIMDE_SSE_NEON)
  697. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  698. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  699. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  700. uint32x4_t a_gt_b = vcgtq_f32(a.neon_f32, b.neon_f32);
  701. return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1
  702. : 0;
  703. #else
  704. return a.f32[0] > b.f32[0];
  705. #endif
  706. }
  707. SIMDE__FUNCTION_ATTRIBUTES
  708. int simde_mm_comile_ss(simde__m128 a, simde__m128 b)
  709. {
  710. #if defined(SIMDE_SSE_NATIVE)
  711. return _mm_comile_ss(a.n, b.n);
  712. #elif defined(SIMDE_SSE_NEON)
  713. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  714. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  715. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  716. uint32x4_t a_le_b = vcleq_f32(a.neon_f32, b.neon_f32);
  717. return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0) ? 1 : 0;
  718. #else
  719. return a.f32[0] <= b.f32[0];
  720. #endif
  721. }
  722. SIMDE__FUNCTION_ATTRIBUTES
  723. int simde_mm_comilt_ss(simde__m128 a, simde__m128 b)
  724. {
  725. #if defined(SIMDE_SSE_NATIVE)
  726. return _mm_comilt_ss(a.n, b.n);
  727. #elif defined(SIMDE_SSE_NATIVE)
  728. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  729. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  730. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  731. uint32x4_t a_lt_b = vcltq_f32(a.neon_f32, b.neon_f32);
  732. return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0) ? 1 : 0;
  733. #else
  734. return a.f32[0] < b.f32[0];
  735. #endif
  736. }
  737. SIMDE__FUNCTION_ATTRIBUTES
  738. int simde_mm_comineq_ss(simde__m128 a, simde__m128 b)
  739. {
  740. #if defined(SIMDE_SSE_NATIVE)
  741. return _mm_comineq_ss(a.n, b.n);
  742. #elif defined(SIMDE_SSE_NEON)
  743. uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
  744. uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
  745. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  746. uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(a.neon_f32, b.neon_f32));
  747. return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0)
  748. ? 1
  749. : 0;
  750. #else
  751. return a.f32[0] != b.f32[0];
  752. #endif
  753. }
  754. SIMDE__FUNCTION_ATTRIBUTES
  755. simde__m128 simde_mm_cvt_pi2ps(simde__m128 a, simde__m64 b)
  756. {
  757. simde__m128 r;
  758. #if defined(SIMDE_SSE_NATIVE)
  759. r.n = _mm_cvt_pi2ps(a.n, b.n);
  760. #else
  761. r.f32[0] = (simde_float32)b.i32[0];
  762. r.f32[1] = (simde_float32)b.i32[1];
  763. r.i32[2] = a.i32[2];
  764. r.i32[3] = a.i32[3];
  765. #endif
  766. return r;
  767. }
  768. SIMDE__FUNCTION_ATTRIBUTES
  769. simde__m64 simde_mm_cvt_ps2pi(simde__m128 a)
  770. {
  771. simde__m64 r;
  772. #if defined(SIMDE_SSE_NATIVE)
  773. r.n = _mm_cvt_ps2pi(a.n);
  774. #else
  775. SIMDE__VECTORIZE
  776. for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
  777. r.i32[i] = (int32_t)a.f32[i];
  778. }
  779. #endif
  780. return r;
  781. }
  782. SIMDE__FUNCTION_ATTRIBUTES
  783. simde__m128 simde_mm_cvt_si2ss(simde__m128 a, int32_t b)
  784. {
  785. simde__m128 r;
  786. #if defined(SIMDE_SSE_NATIVE)
  787. r.n = _mm_cvt_si2ss(a.n, b);
  788. #else
  789. r.f32[0] = (simde_float32)b;
  790. r.i32[1] = a.i32[1];
  791. r.i32[2] = a.i32[2];
  792. r.i32[3] = a.i32[3];
  793. #endif
  794. return r;
  795. }
  796. SIMDE__FUNCTION_ATTRIBUTES
  797. int32_t simde_mm_cvt_ss2si(simde__m128 a)
  798. {
  799. #if defined(SIMDE_SSE_NATIVE)
  800. return _mm_cvt_ss2si(a.n);
  801. #else
  802. return (int32_t)a.f32[0];
  803. #endif
  804. }
  805. SIMDE__FUNCTION_ATTRIBUTES
  806. simde__m128 simde_mm_cvtpi16_ps(simde__m64 a)
  807. {
  808. simde__m128 r;
  809. #if defined(SIMDE_SSE_NATIVE)
  810. r.n = _mm_cvtpi16_ps(a.n);
  811. #else
  812. SIMDE__VECTORIZE
  813. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  814. r.f32[i] = (simde_float32)a.i16[i];
  815. }
  816. #endif
  817. return r;
  818. }
  819. SIMDE__FUNCTION_ATTRIBUTES
  820. simde__m128 simde_mm_cvtpi32_ps(simde__m128 a, simde__m64 b)
  821. {
  822. simde__m128 r;
  823. #if defined(SIMDE_SSE_NATIVE)
  824. r.n = _mm_cvtpi32_ps(a.n, b.n);
  825. #else
  826. r.f32[0] = (simde_float32)b.i32[0];
  827. r.f32[1] = (simde_float32)b.i32[1];
  828. r.i32[2] = a.i32[2];
  829. r.i32[3] = a.i32[3];
  830. #endif
  831. return r;
  832. }
  833. SIMDE__FUNCTION_ATTRIBUTES
  834. simde__m128 simde_mm_cvtpi32x2_ps(simde__m64 a, simde__m64 b)
  835. {
  836. simde__m128 r;
  837. #if defined(SIMDE_SSE_NATIVE)
  838. r.n = _mm_cvtpi32x2_ps(a.n, b.n);
  839. #else
  840. r.f32[0] = (simde_float32)a.i32[0];
  841. r.f32[1] = (simde_float32)a.i32[1];
  842. r.f32[2] = (simde_float32)b.i32[0];
  843. r.f32[3] = (simde_float32)b.i32[1];
  844. #endif
  845. return r;
  846. }
  847. SIMDE__FUNCTION_ATTRIBUTES
  848. simde__m128 simde_mm_cvtpi8_ps(simde__m64 a)
  849. {
  850. simde__m128 r;
  851. #if defined(SIMDE_SSE_NATIVE)
  852. r.n = _mm_cvtpi8_ps(a.n);
  853. #else
  854. r.f32[0] = (simde_float32)a.i8[0];
  855. r.f32[1] = (simde_float32)a.i8[1];
  856. r.f32[2] = (simde_float32)a.i8[2];
  857. r.f32[3] = (simde_float32)a.i8[3];
  858. #endif
  859. return r;
  860. }
  861. SIMDE__FUNCTION_ATTRIBUTES
  862. simde__m64 simde_mm_cvtps_pi16(simde__m128 a)
  863. {
  864. simde__m64 r;
  865. #if defined(SIMDE_SSE_NATIVE)
  866. r.n = _mm_cvtps_pi16(a.n);
  867. #else
  868. SIMDE__VECTORIZE
  869. for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
  870. r.i16[i] = (int16_t)a.f32[i];
  871. }
  872. #endif
  873. return r;
  874. }
  875. SIMDE__FUNCTION_ATTRIBUTES
  876. simde__m64 simde_mm_cvtps_pi32(simde__m128 a)
  877. {
  878. simde__m64 r;
  879. #if defined(SIMDE_SSE_NATIVE)
  880. r.n = _mm_cvtps_pi32(a.n);
  881. #else
  882. SIMDE__VECTORIZE
  883. for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
  884. r.i32[i] = (int32_t)a.f32[i];
  885. }
  886. #endif
  887. return r;
  888. }
  889. SIMDE__FUNCTION_ATTRIBUTES
  890. simde__m64 simde_mm_cvtps_pi8(simde__m128 a)
  891. {
  892. simde__m64 r;
  893. #if defined(SIMDE_SSE_NATIVE)
  894. r.n = _mm_cvtps_pi8(a.n);
  895. #else
  896. SIMDE__VECTORIZE
  897. for (size_t i = 0; i < (sizeof(a.f32) / sizeof(a.f32[0])); i++) {
  898. r.i8[i] = (int8_t)a.f32[i];
  899. }
  900. #endif
  901. return r;
  902. }
  903. SIMDE__FUNCTION_ATTRIBUTES
  904. simde__m128 simde_mm_cvtpu16_ps(simde__m64 a)
  905. {
  906. simde__m128 r;
  907. #if defined(SIMDE_SSE_NATIVE)
  908. r.n = _mm_cvtpu16_ps(a.n);
  909. #else
  910. SIMDE__VECTORIZE
  911. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  912. r.f32[i] = (simde_float32)a.u16[i];
  913. }
  914. #endif
  915. return r;
  916. }
  917. SIMDE__FUNCTION_ATTRIBUTES
  918. simde__m128 simde_mm_cvtpu8_ps(simde__m64 a)
  919. {
  920. simde__m128 r;
  921. #if defined(SIMDE_SSE_NATIVE)
  922. r.n = _mm_cvtpu8_ps(a.n);
  923. #else
  924. SIMDE__VECTORIZE
  925. for (size_t i = 0; i < 4; i++) {
  926. r.f32[i] = (simde_float32)a.u8[i];
  927. }
  928. #endif
  929. return r;
  930. }
  931. SIMDE__FUNCTION_ATTRIBUTES
  932. simde__m128 simde_mm_cvtsi32_ss(simde__m128 a, int32_t b)
  933. {
  934. simde__m128 r;
  935. #if defined(SIMDE_SSE_NATIVE)
  936. r.n = _mm_cvtsi32_ss(a.n, b);
  937. #else
  938. r.f32[0] = (simde_float32)b;
  939. SIMDE__VECTORIZE
  940. for (size_t i = 1; i < 4; i++) {
  941. r.i32[i] = a.i32[i];
  942. }
  943. #endif
  944. return r;
  945. }
  946. SIMDE__FUNCTION_ATTRIBUTES
  947. simde__m128 simde_mm_cvtsi64_ss(simde__m128 a, int64_t b)
  948. {
  949. simde__m128 r;
  950. #if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
  951. #if !defined(__PGI)
  952. r.n = _mm_cvtsi64_ss(a.n, b);
  953. #else
  954. r.n = _mm_cvtsi64x_ss(a.n, b);
  955. #endif
  956. #else
  957. r.f32[0] = (simde_float32)b;
  958. SIMDE__VECTORIZE
  959. for (size_t i = 1; i < 4; i++) {
  960. r.i32[i] = a.i32[i];
  961. }
  962. #endif
  963. return r;
  964. }
  965. SIMDE__FUNCTION_ATTRIBUTES
  966. simde_float32 simde_mm_cvtss_f32(simde__m128 a)
  967. {
  968. #if defined(SIMDE_SSE_NATIVE)
  969. return _mm_cvtss_f32(a.n);
  970. #elif defined(SIMDE_SSE_NEON)
  971. return vgetq_lane_f32(a.neon_f32, 0);
  972. #else
  973. return a.f32[0];
  974. #endif
  975. }
  976. SIMDE__FUNCTION_ATTRIBUTES
  977. int32_t simde_mm_cvtss_si32(simde__m128 a)
  978. {
  979. #if defined(SIMDE_SSE_NATIVE)
  980. return _mm_cvtss_si32(a.n);
  981. #else
  982. return (int32_t)a.f32[0];
  983. #endif
  984. }
  985. SIMDE__FUNCTION_ATTRIBUTES
  986. int64_t simde_mm_cvtss_si64(simde__m128 a)
  987. {
  988. #if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
  989. #if !defined(__PGI)
  990. return _mm_cvtss_si64(a.n);
  991. #else
  992. return _mm_cvtss_si64x(a.n);
  993. #endif
  994. #else
  995. return (int64_t)a.f32[0];
  996. #endif
  997. }
  998. SIMDE__FUNCTION_ATTRIBUTES
  999. simde__m64 simde_mm_cvtt_ps2pi(simde__m128 a)
  1000. {
  1001. simde__m64 r;
  1002. #if defined(SIMDE_SSE_NATIVE)
  1003. r.n = _mm_cvtt_ps2pi(a.n);
  1004. #else
  1005. SIMDE__VECTORIZE
  1006. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1007. r.i32[i] = (int32_t)truncf(a.f32[i]);
  1008. }
  1009. #endif
  1010. return r;
  1011. }
  1012. SIMDE__FUNCTION_ATTRIBUTES
  1013. int32_t simde_mm_cvtt_ss2si(simde__m128 a)
  1014. {
  1015. #if defined(SIMDE_SSE_NATIVE)
  1016. return _mm_cvtt_ss2si(a.n);
  1017. #else
  1018. return (int32_t)truncf(a.f32[0]);
  1019. #endif
  1020. }
  1021. SIMDE__FUNCTION_ATTRIBUTES
  1022. simde__m64 simde_mm_cvttps_pi32(simde__m128 a)
  1023. {
  1024. simde__m64 r;
  1025. #if defined(SIMDE_SSE_NATIVE)
  1026. r.n = _mm_cvttps_pi32(a.n);
  1027. #else
  1028. r = simde_mm_cvtt_ps2pi(a);
  1029. #endif
  1030. return r;
  1031. }
  1032. SIMDE__FUNCTION_ATTRIBUTES
  1033. int32_t simde_mm_cvttss_si32(simde__m128 a)
  1034. {
  1035. #if defined(SIMDE_SSE_NATIVE)
  1036. return _mm_cvttss_si32(a.n);
  1037. #else
  1038. return (int32_t)truncf(a.f32[0]);
  1039. #endif
  1040. }
  1041. SIMDE__FUNCTION_ATTRIBUTES
  1042. int64_t simde_mm_cvttss_si64(simde__m128 a)
  1043. {
  1044. #if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
  1045. #if defined(__PGI)
  1046. return _mm_cvttss_si64x(a.n);
  1047. #else
  1048. return _mm_cvttss_si64(a.n);
  1049. #endif
  1050. #else
  1051. return (int64_t)truncf(a.f32[0]);
  1052. #endif
  1053. }
  1054. SIMDE__FUNCTION_ATTRIBUTES
  1055. simde__m128 simde_mm_div_ps(simde__m128 a, simde__m128 b)
  1056. {
  1057. simde__m128 r;
  1058. #if defined(SIMDE_SSE_NATIVE)
  1059. r.n = _mm_div_ps(a.n, b.n);
  1060. #elif defined(SIMDE_SSE_NEON)
  1061. float32x4_t recip0 = vrecpeq_f32(b.neon_f32);
  1062. float32x4_t recip1 = vmulq_f32(recip0, vrecpsq_f32(recip0, b.neon_f32));
  1063. r.neon_f32 = vmulq_f32(a.neon_f32, recip1);
  1064. #else
  1065. SIMDE__VECTORIZE
  1066. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1067. r.f32[i] = a.f32[i] / b.f32[i];
  1068. }
  1069. #endif
  1070. return r;
  1071. }
  1072. SIMDE__FUNCTION_ATTRIBUTES
  1073. simde__m128 simde_mm_div_ss(simde__m128 a, simde__m128 b)
  1074. {
  1075. simde__m128 r;
  1076. #if defined(SIMDE_SSE_NATIVE)
  1077. r.n = _mm_div_ss(a.n, b.n);
  1078. #elif defined(SIMDE_SSE_NEON)
  1079. float32_t value = vgetq_lane_f32(simde_mm_div_ps(a, b).neon_f32, 0);
  1080. r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
  1081. #else
  1082. r.f32[0] = a.f32[0] / b.f32[0];
  1083. SIMDE__VECTORIZE
  1084. for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1085. r.f32[i] = a.f32[i];
  1086. }
  1087. #endif
  1088. return r;
  1089. }
  1090. SIMDE__FUNCTION_ATTRIBUTES
  1091. int32_t simde_mm_extract_pi16(simde__m64 a, const int imm8)
  1092. {
  1093. return a.u16[imm8];
  1094. }
  1095. #if defined(SIMDE_SSE_NATIVE)
  1096. #define simde_mm_extract_pi16(a, imm8) _mm_extract_pi16(a.n, imm8)
  1097. #endif
  1098. #define simde_m_pextrw(a, imm8) simde_mm_extract_pi16(a.n, imm8)
  1099. enum {
  1100. #if defined(SIMDE_SSE_NATIVE)
  1101. simde_MM_ROUND_NEAREST = _MM_ROUND_NEAREST,
  1102. simde_MM_ROUND_DOWN = _MM_ROUND_DOWN,
  1103. simde_MM_ROUND_UP = _MM_ROUND_UP,
  1104. simde_MM_ROUND_TOWARD_ZERO = _MM_ROUND_TOWARD_ZERO
  1105. #else
  1106. simde_MM_ROUND_NEAREST
  1107. #if defined(FE_TONEAREST)
  1108. = FE_TONEAREST
  1109. #endif
  1110. ,
  1111. simde_MM_ROUND_DOWN
  1112. #if defined(FE_DOWNWARD)
  1113. = FE_DOWNWARD
  1114. #endif
  1115. ,
  1116. simde_MM_ROUND_UP
  1117. #if defined(FE_UPWARD)
  1118. = FE_UPWARD
  1119. #endif
  1120. ,
  1121. simde_MM_ROUND_TOWARD_ZERO
  1122. #if defined(FE_TOWARDZERO)
  1123. = FE_TOWARDZERO
  1124. #endif
  1125. #endif
  1126. };
  1127. SIMDE__FUNCTION_ATTRIBUTES
  1128. unsigned int simde_MM_GET_ROUNDING_MODE(void)
  1129. {
  1130. #if defined(SIMDE_SSE_NATIVE)
  1131. return _MM_GET_ROUNDING_MODE();
  1132. #else
  1133. return fegetround();
  1134. #endif
  1135. }
  1136. SIMDE__FUNCTION_ATTRIBUTES
  1137. void simde_MM_SET_ROUNDING_MODE(unsigned int a)
  1138. {
  1139. #if defined(SIMDE_SSE_NATIVE)
  1140. _MM_SET_ROUNDING_MODE(a);
  1141. #else
  1142. fesetround((int)a);
  1143. #endif
  1144. }
  1145. SIMDE__FUNCTION_ATTRIBUTES
  1146. simde__m64 simde_mm_insert_pi16(simde__m64 a, int16_t i, const int imm8)
  1147. {
  1148. simde__m64 r;
  1149. r.i64[0] = a.i64[0];
  1150. r.i16[imm8] = i;
  1151. return r;
  1152. }
  1153. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  1154. #define simde_mm_insert_pi16(a, i, imm8) \
  1155. SIMDE__M64_C(_mm_insert_pi16((a).n, i, imm8));
  1156. #endif
  1157. #define simde_m_pinsrw(a, i, imm8) \
  1158. SIMDE__M64_C(simde_mm_insert_pi16((a).n, i, imm8));
  1159. SIMDE__FUNCTION_ATTRIBUTES
  1160. simde__m128
  1161. simde_mm_load_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1162. {
  1163. simde__m128 r;
  1164. simde_assert_aligned(16, mem_addr);
  1165. #if defined(SIMDE_SSE_NATIVE)
  1166. r.n = _mm_load_ps(mem_addr);
  1167. #elif defined(SIMDE_SSE_NEON)
  1168. r.neon_f32 = vld1q_f32(mem_addr);
  1169. #else
  1170. memcpy(&r, mem_addr, sizeof(r.f32));
  1171. #endif
  1172. return r;
  1173. }
  1174. SIMDE__FUNCTION_ATTRIBUTES
  1175. simde__m128 simde_mm_load_ps1(simde_float32 const *mem_addr)
  1176. {
  1177. simde__m128 r;
  1178. #if defined(SIMDE_SSE_NATIVE)
  1179. r.n = _mm_load_ps1(mem_addr);
  1180. #else
  1181. const simde_float32 v = *mem_addr;
  1182. SIMDE__VECTORIZE
  1183. for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
  1184. r.f32[i] = v;
  1185. }
  1186. #endif
  1187. return r;
  1188. }
  1189. SIMDE__FUNCTION_ATTRIBUTES
  1190. simde__m128 simde_mm_load_ss(simde_float32 const *mem_addr)
  1191. {
  1192. simde__m128 r;
  1193. #if defined(SIMDE_SSE_NATIVE)
  1194. r.n = _mm_load_ss(mem_addr);
  1195. #elif defined(SIMDE_SSE_NEON)
  1196. r.neon_f32 = vsetq_lane_f32(*mem_addr, vdupq_n_f32(0), 0);
  1197. #else
  1198. r.f32[0] = *mem_addr;
  1199. r.i32[1] = 0;
  1200. r.i32[2] = 0;
  1201. r.i32[3] = 0;
  1202. #endif
  1203. return r;
  1204. }
  1205. SIMDE__FUNCTION_ATTRIBUTES
  1206. simde__m128 simde_mm_load1_ps(simde_float32 const *mem_addr)
  1207. {
  1208. simde__m128 r;
  1209. #if defined(SIMDE_SSE_NATIVE)
  1210. r.n = _mm_load1_ps(mem_addr);
  1211. #elif defined(SIMDE_SSE_NEON)
  1212. r.neon_f32 = vld1q_dup_f32(mem_addr);
  1213. #else
  1214. r = simde_mm_load_ps1(mem_addr);
  1215. #endif
  1216. return r;
  1217. }
  1218. SIMDE__FUNCTION_ATTRIBUTES
  1219. simde__m128 simde_mm_loadh_pi(simde__m128 a, simde__m64 const *mem_addr)
  1220. {
  1221. simde__m128 r;
  1222. #if defined(SIMDE_SSE_NATIVE)
  1223. r.n = _mm_loadh_pi(a.n, (__m64 *)mem_addr);
  1224. #else
  1225. r.f32[0] = a.f32[0];
  1226. r.f32[1] = a.f32[1];
  1227. r.f32[2] = mem_addr->f32[0];
  1228. r.f32[3] = mem_addr->f32[1];
  1229. #endif
  1230. return r;
  1231. }
  1232. SIMDE__FUNCTION_ATTRIBUTES
  1233. simde__m128 simde_mm_loadl_pi(simde__m128 a, simde__m64 const *mem_addr)
  1234. {
  1235. simde__m128 r;
  1236. #if defined(SIMDE_SSE_NATIVE)
  1237. r.n = _mm_loadl_pi(a.n, (__m64 *)mem_addr);
  1238. #else
  1239. r.f32[0] = mem_addr->f32[0];
  1240. r.f32[1] = mem_addr->f32[1];
  1241. r.f32[2] = a.f32[2];
  1242. r.f32[3] = a.f32[3];
  1243. #endif
  1244. return r;
  1245. }
  1246. SIMDE__FUNCTION_ATTRIBUTES
  1247. simde__m128
  1248. simde_mm_loadr_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1249. {
  1250. simde__m128 r;
  1251. simde_assert_aligned(16, mem_addr);
  1252. #if defined(SIMDE_SSE_NATIVE)
  1253. r.n = _mm_loadr_ps(mem_addr);
  1254. #else
  1255. r.f32[0] = mem_addr[3];
  1256. r.f32[1] = mem_addr[2];
  1257. r.f32[2] = mem_addr[1];
  1258. r.f32[3] = mem_addr[0];
  1259. #endif
  1260. return r;
  1261. }
  1262. SIMDE__FUNCTION_ATTRIBUTES
  1263. simde__m128
  1264. simde_mm_loadu_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1265. {
  1266. simde__m128 r;
  1267. #if defined(SIMDE_SSE_NATIVE)
  1268. r.n = _mm_loadu_ps(mem_addr);
  1269. #elif defined(SIMDE_SSE_NEON)
  1270. r.neon_f32 = vld1q_f32(mem_addr);
  1271. #else
  1272. r.f32[0] = mem_addr[0];
  1273. r.f32[1] = mem_addr[1];
  1274. r.f32[2] = mem_addr[2];
  1275. r.f32[3] = mem_addr[3];
  1276. #endif
  1277. return r;
  1278. }
  1279. SIMDE__FUNCTION_ATTRIBUTES
  1280. void simde_mm_maskmove_si64(simde__m64 a, simde__m64 mask, char *mem_addr)
  1281. {
  1282. #if defined(SIMDE_SSE_NATIVE)
  1283. _mm_maskmove_si64(a.n, mask.n, mem_addr);
  1284. #else
  1285. SIMDE__VECTORIZE
  1286. for (size_t i = 0; i < (sizeof(a.i8) / sizeof(a.i8[0])); i++)
  1287. if (mask.i8[i] < 0)
  1288. mem_addr[i] = a.i8[i];
  1289. #endif
  1290. }
  1291. #define simde_m_maskmovq(a, mask, mem_addr) \
  1292. simde_mm_maskmove_si64(a, mask, mem_addr)
  1293. SIMDE__FUNCTION_ATTRIBUTES
  1294. simde__m64 simde_mm_max_pi16(simde__m64 a, simde__m64 b)
  1295. {
  1296. simde__m64 r;
  1297. #if defined(SIMDE_SSE_NATIVE)
  1298. r.n = _mm_max_pi16(a.n, b.n);
  1299. #else
  1300. SIMDE__VECTORIZE
  1301. for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
  1302. r.i16[i] = (a.i16[i] > b.i16[i]) ? a.i16[i] : b.i16[i];
  1303. }
  1304. #endif
  1305. return r;
  1306. }
  1307. #define simde_m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
  1308. SIMDE__FUNCTION_ATTRIBUTES
  1309. simde__m128 simde_mm_max_ps(simde__m128 a, simde__m128 b)
  1310. {
  1311. simde__m128 r;
  1312. #if defined(SIMDE_SSE_NATIVE)
  1313. r.n = _mm_max_ps(a.n, b.n);
  1314. #elif defined(SIMDE_SSE_NEON)
  1315. r.neon_f32 = vmaxq_f32(a.neon_f32, b.neon_f32);
  1316. #else
  1317. SIMDE__VECTORIZE
  1318. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1319. r.f32[i] = (a.f32[i] > b.f32[i]) ? a.f32[i] : b.f32[i];
  1320. }
  1321. #endif
  1322. return r;
  1323. }
  1324. SIMDE__FUNCTION_ATTRIBUTES
  1325. simde__m64 simde_mm_max_pu8(simde__m64 a, simde__m64 b)
  1326. {
  1327. simde__m64 r;
  1328. #if defined(SIMDE_SSE_NATIVE)
  1329. r.n = _mm_max_pu8(a.n, b.n);
  1330. #else
  1331. SIMDE__VECTORIZE
  1332. for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
  1333. r.u8[i] = (a.u8[i] > b.u8[i]) ? a.u8[i] : b.u8[i];
  1334. }
  1335. #endif
  1336. return r;
  1337. }
  1338. #define simde_m_pmaxub(a, b) simde_mm_max_pu8(a, b)
  1339. SIMDE__FUNCTION_ATTRIBUTES
  1340. simde__m128 simde_mm_max_ss(simde__m128 a, simde__m128 b)
  1341. {
  1342. simde__m128 r;
  1343. #if defined(SIMDE_SSE_NATIVE)
  1344. r.n = _mm_max_ss(a.n, b.n);
  1345. #elif defined(SIMDE_SSE_NEON)
  1346. float32_t value = vgetq_lane_f32(vmaxq_f32(a.neon_f32, b.neon_f32), 0);
  1347. r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
  1348. #else
  1349. r.f32[0] = (a.f32[0] > b.f32[0]) ? a.f32[0] : b.f32[0];
  1350. r.f32[1] = a.f32[1];
  1351. r.f32[2] = a.f32[2];
  1352. r.f32[3] = a.f32[3];
  1353. #endif
  1354. return r;
  1355. }
  1356. SIMDE__FUNCTION_ATTRIBUTES
  1357. simde__m64 simde_mm_min_pi16(simde__m64 a, simde__m64 b)
  1358. {
  1359. simde__m64 r;
  1360. #if defined(SIMDE_SSE_NATIVE)
  1361. r.n = _mm_min_pi16(a.n, b.n);
  1362. #else
  1363. SIMDE__VECTORIZE
  1364. for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
  1365. r.i16[i] = (a.i16[i] < b.i16[i]) ? a.i16[i] : b.i16[i];
  1366. }
  1367. #endif
  1368. return r;
  1369. }
  1370. #define simde_m_pminsw(a, b) simde_mm_min_pi16(a, b)
  1371. SIMDE__FUNCTION_ATTRIBUTES
  1372. simde__m128 simde_mm_min_ps(simde__m128 a, simde__m128 b)
  1373. {
  1374. simde__m128 r;
  1375. #if defined(SIMDE_SSE_NATIVE)
  1376. r.n = _mm_min_ps(a.n, b.n);
  1377. #elif defined(SIMDE_SSE_NEON)
  1378. r.neon_f32 = vminq_f32(a.neon_f32, b.neon_f32);
  1379. #else
  1380. SIMDE__VECTORIZE
  1381. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1382. r.f32[i] = (a.f32[i] < b.f32[i]) ? a.f32[i] : b.f32[i];
  1383. }
  1384. #endif
  1385. return r;
  1386. }
  1387. SIMDE__FUNCTION_ATTRIBUTES
  1388. simde__m64 simde_mm_min_pu8(simde__m64 a, simde__m64 b)
  1389. {
  1390. simde__m64 r;
  1391. #if defined(SIMDE_SSE_NATIVE)
  1392. r.n = _mm_min_pu8(a.n, b.n);
  1393. #else
  1394. SIMDE__VECTORIZE
  1395. for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
  1396. r.u8[i] = (a.u8[i] < b.u8[i]) ? a.u8[i] : b.u8[i];
  1397. }
  1398. #endif
  1399. return r;
  1400. }
  1401. #define simde_m_pminub(a, b) simde_mm_min_pu8(a, b)
  1402. SIMDE__FUNCTION_ATTRIBUTES
  1403. simde__m128 simde_mm_min_ss(simde__m128 a, simde__m128 b)
  1404. {
  1405. simde__m128 r;
  1406. #if defined(SIMDE_SSE_NATIVE)
  1407. r.n = _mm_min_ss(a.n, b.n);
  1408. #elif defined(SIMDE_SSE_NEON)
  1409. float32_t value = vgetq_lane_f32(vminq_f32(a.neon_f32, b.neon_f32), 0);
  1410. r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
  1411. #else
  1412. r.f32[0] = (a.f32[0] < b.f32[0]) ? a.f32[0] : b.f32[0];
  1413. r.f32[1] = a.f32[1];
  1414. r.f32[2] = a.f32[2];
  1415. r.f32[3] = a.f32[3];
  1416. #endif
  1417. return r;
  1418. }
  1419. SIMDE__FUNCTION_ATTRIBUTES
  1420. simde__m128 simde_mm_move_ss(simde__m128 a, simde__m128 b)
  1421. {
  1422. simde__m128 r;
  1423. #if defined(SIMDE_SSE_NATIVE)
  1424. r.n = _mm_move_ss(a.n, b.n);
  1425. #else
  1426. r.f32[0] = b.f32[0];
  1427. r.f32[1] = a.f32[1];
  1428. r.f32[2] = a.f32[2];
  1429. r.f32[3] = a.f32[3];
  1430. #endif
  1431. return r;
  1432. }
  1433. SIMDE__FUNCTION_ATTRIBUTES
  1434. simde__m128 simde_mm_movehl_ps(simde__m128 a, simde__m128 b)
  1435. {
  1436. simde__m128 r;
  1437. #if defined(SIMDE_SSE_NATIVE)
  1438. r.n = _mm_movehl_ps(a.n, b.n);
  1439. #else
  1440. r.f32[0] = b.f32[2];
  1441. r.f32[1] = b.f32[3];
  1442. r.f32[2] = a.f32[2];
  1443. r.f32[3] = a.f32[3];
  1444. #endif
  1445. return r;
  1446. }
  1447. SIMDE__FUNCTION_ATTRIBUTES
  1448. simde__m128 simde_mm_movelh_ps(simde__m128 a, simde__m128 b)
  1449. {
  1450. simde__m128 r;
  1451. #if defined(SIMDE_SSE_NATIVE)
  1452. r.n = _mm_movelh_ps(a.n, b.n);
  1453. #else
  1454. r.f32[0] = a.f32[0];
  1455. r.f32[1] = a.f32[1];
  1456. r.f32[2] = b.f32[0];
  1457. r.f32[3] = b.f32[1];
  1458. #endif
  1459. return r;
  1460. }
  1461. SIMDE__FUNCTION_ATTRIBUTES
  1462. int simde_mm_movemask_pi8(simde__m64 a)
  1463. {
  1464. #if defined(SIMDE_SSE_NATIVE)
  1465. return _mm_movemask_pi8(a.n);
  1466. #else
  1467. int r = 0;
  1468. const size_t nmemb = sizeof(a.i8) / sizeof(a.i8[0]);
  1469. SIMDE__VECTORIZE_REDUCTION(| : r)
  1470. for (size_t i = 0; i < nmemb; i++) {
  1471. r |= (a.u8[nmemb - 1 - i] >> 7) << (nmemb - 1 - i);
  1472. }
  1473. return r;
  1474. #endif
  1475. }
  1476. #define simde_m_pmovmskb(a, b) simde_mm_movemask_pi8(a, b)
  1477. SIMDE__FUNCTION_ATTRIBUTES
  1478. int simde_mm_movemask_ps(simde__m128 a)
  1479. {
  1480. #if defined(SIMDE_SSE_NATIVE)
  1481. return _mm_movemask_ps(a.n);
  1482. #elif defined(SIMDE_SSE_NEON)
  1483. /* TODO: check to see if NEON version is faster than the portable version */
  1484. static const uint32x4_t movemask = {1, 2, 4, 8};
  1485. static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
  1486. 0x80000000};
  1487. uint32x4_t t0 = a.neon_u32;
  1488. uint32x4_t t1 = vtstq_u32(t0, highbit);
  1489. uint32x4_t t2 = vandq_u32(t1, movemask);
  1490. uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
  1491. return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
  1492. #else
  1493. int r = 0;
  1494. SIMDE__VECTORIZE_REDUCTION(| : r)
  1495. for (size_t i = 0; i < sizeof(a.u32) / sizeof(a.u32[0]); i++) {
  1496. r |= (a.u32[i] >> ((sizeof(a.u32[i]) * CHAR_BIT) - 1)) << i;
  1497. }
  1498. return r;
  1499. #endif
  1500. }
  1501. SIMDE__FUNCTION_ATTRIBUTES
  1502. simde__m128 simde_mm_mul_ps(simde__m128 a, simde__m128 b)
  1503. {
  1504. simde__m128 r;
  1505. #if defined(SIMDE_SSE_NATIVE)
  1506. r.n = _mm_mul_ps(a.n, b.n);
  1507. #elif defined(SIMDE_SSE_NEON)
  1508. r.neon_f32 = vmulq_f32(a.neon_f32, b.neon_f32);
  1509. #else
  1510. SIMDE__VECTORIZE
  1511. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1512. r.f32[i] = a.f32[i] * b.f32[i];
  1513. }
  1514. #endif
  1515. return r;
  1516. }
  1517. SIMDE__FUNCTION_ATTRIBUTES
  1518. simde__m128 simde_mm_mul_ss(simde__m128 a, simde__m128 b)
  1519. {
  1520. simde__m128 r;
  1521. #if defined(SIMDE_SSE_NATIVE)
  1522. r.n = _mm_mul_ss(a.n, b.n);
  1523. #else
  1524. r.f32[0] = a.f32[0] * b.f32[0];
  1525. r.f32[1] = a.f32[1];
  1526. r.f32[2] = a.f32[2];
  1527. r.f32[3] = a.f32[3];
  1528. #endif
  1529. return r;
  1530. }
  1531. SIMDE__FUNCTION_ATTRIBUTES
  1532. simde__m64 simde_mm_mulhi_pu16(simde__m64 a, simde__m64 b)
  1533. {
  1534. simde__m64 r;
  1535. #if defined(SIMDE_SSE_NATIVE)
  1536. r.n = _mm_mulhi_pu16(a.n, b.n);
  1537. #else
  1538. SIMDE__VECTORIZE
  1539. for (size_t i = 0; i < (sizeof(r.u16) / sizeof(r.u16[0])); i++) {
  1540. r.u16[i] = (a.u16[i] * b.u16[i]) >> 16;
  1541. }
  1542. #endif
  1543. return r;
  1544. }
  1545. #define simde_m_pmulhuw(a, b) simde_mm_mulhi_pu16(a, b)
  1546. SIMDE__FUNCTION_ATTRIBUTES
  1547. simde__m128 simde_mm_or_ps(simde__m128 a, simde__m128 b)
  1548. {
  1549. simde__m128 r;
  1550. #if defined(SIMDE_SSE_NATIVE)
  1551. r.n = _mm_or_ps(a.n, b.n);
  1552. #elif defined(SIMDE_SSE_NEON)
  1553. r.neon_i32 = vorrq_s32(a.neon_i32, b.neon_i32);
  1554. #else
  1555. SIMDE__VECTORIZE
  1556. for (size_t i = 0; i < (sizeof(r.u32) / sizeof(r.u32[0])); i++) {
  1557. r.u32[i] = a.u32[i] | b.u32[i];
  1558. }
  1559. #endif
  1560. return r;
  1561. }
  1562. SIMDE__FUNCTION_ATTRIBUTES
  1563. void simde_mm_prefetch(char const *p, int i)
  1564. {
  1565. (void)p;
  1566. (void)i;
  1567. }
  1568. #if defined(SIMDE_SSE_NATIVE)
  1569. #define simde_mm_prefetch(p, i) _mm_prefetch(p, i)
  1570. #endif
  1571. SIMDE__FUNCTION_ATTRIBUTES
  1572. simde__m128 simde_mm_rcp_ps(simde__m128 a)
  1573. {
  1574. simde__m128 r;
  1575. #if defined(SIMDE_SSE_NATIVE)
  1576. r.n = _mm_rcp_ps(a.n);
  1577. #elif defined(SIMDE_SSE_NEON)
  1578. float32x4_t recip = vrecpeq_f32(a.neon_f32);
  1579. #if !defined(SIMDE_MM_RCP_PS_ITERS)
  1580. #define SIMDE_MM_RCP_PS_ITERS SIMDE_ACCURACY_ITERS
  1581. #endif
  1582. for (int i = 0; i < SIMDE_MM_RCP_PS_ITERS; ++i) {
  1583. recip = vmulq_f32(recip, vrecpsq_f32(recip, a.neon_f32));
  1584. }
  1585. r.neon_f32 = recip;
  1586. #else
  1587. SIMDE__VECTORIZE
  1588. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1589. r.f32[i] = 1.0f / a.f32[i];
  1590. }
  1591. #endif
  1592. return r;
  1593. }
  1594. SIMDE__FUNCTION_ATTRIBUTES
  1595. simde__m128 simde_mm_rcp_ss(simde__m128 a)
  1596. {
  1597. simde__m128 r;
  1598. #if defined(SIMDE_SSE_NATIVE)
  1599. r.n = _mm_rcp_ss(a.n);
  1600. #else
  1601. r.f32[0] = 1.0f / a.f32[0];
  1602. r.f32[1] = a.f32[1];
  1603. r.f32[2] = a.f32[2];
  1604. r.f32[3] = a.f32[3];
  1605. #endif
  1606. return r;
  1607. }
  1608. SIMDE__FUNCTION_ATTRIBUTES
  1609. simde__m128 simde_mm_rsqrt_ps(simde__m128 a)
  1610. {
  1611. simde__m128 r;
  1612. #if defined(SIMDE_SSE_NATIVE)
  1613. r.n = _mm_rsqrt_ps(a.n);
  1614. #elif defined(SIMDE_SSE_NEON)
  1615. r.neon_f32 = vrsqrteq_f32(a.neon_f32);
  1616. #elif defined(__STDC_IEC_559__)
  1617. /* http://h14s.p5r.org/2012/09/0x5f3759df.html?mwh=1 */
  1618. SIMDE__VECTORIZE
  1619. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1620. r.i32[i] = INT32_C(0x5f3759df) - (a.i32[i] >> 1);
  1621. #if SIMDE_ACCURACY_ITERS > 2
  1622. const float half = SIMDE_FLOAT32_C(0.5) * a.f32[i];
  1623. for (int ai = 2; ai < SIMDE_ACCURACY_ITERS; ai++)
  1624. r.f32[i] *= SIMDE_FLOAT32_C(1.5) -
  1625. (half * r.f32[i] * r.f32[i]);
  1626. #endif
  1627. }
  1628. #else
  1629. SIMDE__VECTORIZE
  1630. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1631. r.f32[i] = 1.0f / sqrtf(a.f32[i]);
  1632. }
  1633. #endif
  1634. return r;
  1635. }
  1636. SIMDE__FUNCTION_ATTRIBUTES
  1637. simde__m128 simde_mm_rsqrt_ss(simde__m128 a)
  1638. {
  1639. simde__m128 r;
  1640. #if defined(SIMDE_SSE_NATIVE)
  1641. r.n = _mm_rsqrt_ss(a.n);
  1642. #elif defined(__STDC_IEC_559__)
  1643. {
  1644. r.i32[0] = INT32_C(0x5f3759df) - (a.i32[0] >> 1);
  1645. #if SIMDE_ACCURACY_ITERS > 2
  1646. float half = SIMDE_FLOAT32_C(0.5) * a.f32[0];
  1647. for (int ai = 2; ai < SIMDE_ACCURACY_ITERS; ai++)
  1648. r.f32[0] *= SIMDE_FLOAT32_C(1.5) -
  1649. (half * r.f32[0] * r.f32[0]);
  1650. #endif
  1651. }
  1652. r.f32[0] = 1.0f / sqrtf(a.f32[0]);
  1653. r.f32[1] = a.f32[1];
  1654. r.f32[2] = a.f32[2];
  1655. r.f32[3] = a.f32[3];
  1656. #else
  1657. r.f32[0] = 1.0f / sqrtf(a.f32[0]);
  1658. r.f32[1] = a.f32[1];
  1659. r.f32[2] = a.f32[2];
  1660. r.f32[3] = a.f32[3];
  1661. #endif
  1662. return r;
  1663. }
  1664. SIMDE__FUNCTION_ATTRIBUTES
  1665. simde__m64 simde_mm_sad_pu8(simde__m64 a, simde__m64 b)
  1666. {
  1667. simde__m64 r;
  1668. #if defined(SIMDE_SSE_NATIVE)
  1669. r.n = _mm_sad_pu8(a.n, b.n);
  1670. #else
  1671. uint16_t sum = 0;
  1672. SIMDE__VECTORIZE_REDUCTION(+ : sum)
  1673. for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
  1674. sum += (uint8_t)abs(a.u8[i] - b.u8[i]);
  1675. }
  1676. r.i16[0] = sum;
  1677. r.i16[1] = 0;
  1678. r.i16[2] = 0;
  1679. r.i16[3] = 0;
  1680. #endif
  1681. return r;
  1682. }
  1683. #define simde_m_psadbw(a, b) simde_mm_sad_pu8(a, b)
  1684. SIMDE__FUNCTION_ATTRIBUTES
  1685. simde__m128 simde_mm_set_ps(simde_float32 e3, simde_float32 e2,
  1686. simde_float32 e1, simde_float32 e0)
  1687. {
  1688. simde__m128 r;
  1689. #if defined(SIMDE_SSE_NATIVE)
  1690. r.n = _mm_set_ps(e3, e2, e1, e0);
  1691. #elif defined(SIMDE_SSE_NEON)
  1692. SIMDE_ALIGN(16) simde_float32 data[4] = {e0, e1, e2, e3};
  1693. r.neon_f32 = vld1q_f32(data);
  1694. #else
  1695. r.f32[0] = e0;
  1696. r.f32[1] = e1;
  1697. r.f32[2] = e2;
  1698. r.f32[3] = e3;
  1699. #endif
  1700. return r;
  1701. }
  1702. SIMDE__FUNCTION_ATTRIBUTES
  1703. simde__m128 simde_mm_set_ps1(simde_float32 a)
  1704. {
  1705. simde__m128 r;
  1706. #if defined(SIMDE_SSE_NATIVE)
  1707. r.n = _mm_set1_ps(a);
  1708. #elif defined(SIMDE_SSE_NEON)
  1709. r.neon_f32 = vdupq_n_f32(a);
  1710. #else
  1711. r = simde_mm_set_ps(a, a, a, a);
  1712. #endif
  1713. return r;
  1714. }
  1715. #define simde_mm_set1_ps(a) simde_mm_set_ps1(a)
  1716. SIMDE__FUNCTION_ATTRIBUTES
  1717. simde__m128 simde_mm_set_ss(simde_float32 a)
  1718. {
  1719. simde__m128 r;
  1720. #if defined(SIMDE_SSE_NATIVE)
  1721. r.n = _mm_set_ss(a);
  1722. #else
  1723. r = simde_mm_set_ps(0, 0, 0, a);
  1724. #endif
  1725. return r;
  1726. }
  1727. SIMDE__FUNCTION_ATTRIBUTES
  1728. simde__m128 simde_mm_setr_ps(simde_float32 e3, simde_float32 e2,
  1729. simde_float32 e1, simde_float32 e0)
  1730. {
  1731. simde__m128 r;
  1732. #if defined(SIMDE_SSE_NATIVE)
  1733. r.n = _mm_setr_ps(e3, e2, e1, e0);
  1734. #elif defined(SIMDE_SSE_NEON)
  1735. SIMDE_ALIGN(16) simde_float32 data[4] = {e3, e2, e1, e0};
  1736. r.neon_f32 = vld1q_f32(data);
  1737. #else
  1738. r = simde_mm_set_ps(e0, e1, e2, e3);
  1739. #endif
  1740. return r;
  1741. }
  1742. SIMDE__FUNCTION_ATTRIBUTES
  1743. simde__m128 simde_mm_setzero_ps(void)
  1744. {
  1745. simde__m128 r;
  1746. #if defined(SIMDE_SSE_NATIVE)
  1747. r.n = _mm_setzero_ps();
  1748. #elif defined(SIMDE_SSE_NEON)
  1749. r.neon_f32 = vdupq_n_f32(0.0f);
  1750. #else
  1751. r = simde_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f);
  1752. #endif
  1753. return r;
  1754. }
  1755. SIMDE__FUNCTION_ATTRIBUTES
  1756. void simde_mm_sfence(void)
  1757. {
  1758. /* TODO: Use Hedley. */
  1759. #if defined(SIMDE_SSE_NATIVE)
  1760. _mm_sfence();
  1761. #elif defined(__GNUC__) && \
  1762. ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
  1763. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  1764. #elif !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
  1765. (__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
  1766. #if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)
  1767. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  1768. #else
  1769. atomic_thread_fence(memory_order_seq_cst);
  1770. #endif
  1771. #elif defined(_MSC_VER)
  1772. MemoryBarrier();
  1773. #elif defined(__GNUC__) && \
  1774. ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
  1775. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  1776. #elif HEDLEY_CLANG_HAS_FEATURE(c_atomic)
  1777. __c11_atomic_thread_fence(__ATOMIC_SEQ_CST)
  1778. #elif defined(__GNUC__) && \
  1779. ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
  1780. __sync_synchronize();
  1781. #elif (defined(__SUNPRO_C) && (__SUNPRO_C >= 0x5140)) || \
  1782. (defined(__SUNPRO_CC) && (__SUNPRO_CC >= 0x5140))
  1783. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  1784. #elif defined(_OPENMP)
  1785. #pragma omp critical(simde_mm_sfence_)
  1786. {
  1787. }
  1788. #endif
  1789. }
  1790. #define SIMDE_MM_SHUFFLE(z, y, x, w) \
  1791. (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
  1792. SIMDE__FUNCTION_ATTRIBUTES
  1793. simde__m64 simde_mm_shuffle_pi16(simde__m64 a, const int imm8)
  1794. {
  1795. simde__m64 r;
  1796. for (size_t i = 0; i < sizeof(r.u16) / sizeof(r.u16[0]); i++) {
  1797. r.i16[i] = a.i16[(imm8 >> (i * 2)) & 3];
  1798. }
  1799. return r;
  1800. }
  1801. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  1802. #define simde_mm_shuffle_pi16(a, imm8) SIMDE__M64_C(_mm_shuffle_pi16(a.n, imm8))
  1803. #elif defined(SIMDE__SHUFFLE_VECTOR)
  1804. #define simde_mm_shuffle_pi16(a, imm8) \
  1805. ({ \
  1806. const simde__m64 simde__tmp_a_ = a; \
  1807. (simde__m64){.i16 = SIMDE__SHUFFLE_VECTOR( \
  1808. 16, 8, (simde__tmp_a_).i16, \
  1809. (simde__tmp_a_).i16, (((imm8)) & 3), \
  1810. (((imm8) >> 2) & 3), (((imm8) >> 4) & 3), \
  1811. (((imm8) >> 6) & 3))}; \
  1812. })
  1813. #endif
  1814. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  1815. #define simde_m_pshufw(a, imm8) SIMDE__M64_C(_m_pshufw(a.n, imm8))
  1816. #else
  1817. #define simde_m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
  1818. #endif
  1819. SIMDE__FUNCTION_ATTRIBUTES
  1820. simde__m128 simde_mm_shuffle_ps(simde__m128 a, simde__m128 b, const int imm8)
  1821. {
  1822. simde__m128 r;
  1823. r.f32[0] = a.f32[(imm8 >> 0) & 3];
  1824. r.f32[1] = a.f32[(imm8 >> 2) & 3];
  1825. r.f32[2] = b.f32[(imm8 >> 4) & 3];
  1826. r.f32[3] = b.f32[(imm8 >> 6) & 3];
  1827. return r;
  1828. }
  1829. #if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
  1830. #define simde_mm_shuffle_ps(a, b, imm8) \
  1831. SIMDE__M128_C(_mm_shuffle_ps(a.n, b.n, imm8))
  1832. #elif defined(SIMDE__SHUFFLE_VECTOR)
  1833. #define simde_mm_shuffle_ps(a, b, imm8) \
  1834. ({ \
  1835. (simde__m128){.f32 = SIMDE__SHUFFLE_VECTOR( \
  1836. 32, 16, (a).f32, (b).f32, \
  1837. (((imm8)) & 3), (((imm8) >> 2) & 3), \
  1838. (((imm8) >> 4) & 3) + 4, \
  1839. (((imm8) >> 6) & 3) + 4)}; \
  1840. })
  1841. #endif
  1842. SIMDE__FUNCTION_ATTRIBUTES
  1843. simde__m128 simde_mm_sqrt_ps(simde__m128 a)
  1844. {
  1845. simde__m128 r;
  1846. #if defined(SIMDE_SSE_NATIVE)
  1847. r.n = _mm_sqrt_ps(a.n);
  1848. #elif defined(SIMDE_SSE_NEON)
  1849. float32x4_t recipsq = vrsqrteq_f32(a.neon_f32);
  1850. float32x4_t sq = vrecpeq_f32(recipsq);
  1851. /* ??? use step versions of both sqrt and recip for better accuracy? */
  1852. r.neon_f32 = sq;
  1853. #else
  1854. SIMDE__VECTORIZE
  1855. for (size_t i = 0; i < sizeof(r.f32) / sizeof(r.f32[0]); i++) {
  1856. r.f32[i] = sqrtf(a.f32[i]);
  1857. }
  1858. #endif
  1859. return r;
  1860. }
  1861. SIMDE__FUNCTION_ATTRIBUTES
  1862. simde__m128 simde_mm_sqrt_ss(simde__m128 a)
  1863. {
  1864. simde__m128 r;
  1865. #if defined(SIMDE_SSE_NATIVE)
  1866. r.n = _mm_sqrt_ss(a.n);
  1867. #elif defined(SIMDE_SSE_NEON)
  1868. float32_t value = vgetq_lane_f32(simde_mm_sqrt_ps(a).neon_f32, 0);
  1869. r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
  1870. #else
  1871. r.f32[0] = sqrtf(a.f32[0]);
  1872. r.f32[1] = a.f32[1];
  1873. r.f32[2] = a.f32[2];
  1874. r.f32[3] = a.f32[3];
  1875. #endif
  1876. return r;
  1877. }
  1878. SIMDE__FUNCTION_ATTRIBUTES
  1879. void simde_mm_store_ps(simde_float32 mem_addr[4], simde__m128 a)
  1880. {
  1881. simde_assert_aligned(16, mem_addr);
  1882. #if defined(SIMDE_SSE_NATIVE)
  1883. _mm_store_ps(mem_addr, a.n);
  1884. #elif defined(SIMDE_SSE_NEON)
  1885. vst1q_f32(mem_addr, a.neon_f32);
  1886. #else
  1887. SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
  1888. for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
  1889. mem_addr[i] = a.f32[i];
  1890. }
  1891. #endif
  1892. }
  1893. SIMDE__FUNCTION_ATTRIBUTES
  1894. void simde_mm_store_ps1(simde_float32 mem_addr[4], simde__m128 a)
  1895. {
  1896. simde_assert_aligned(16, mem_addr);
  1897. #if defined(SIMDE_SSE_NATIVE)
  1898. _mm_store_ps1(mem_addr, a.n);
  1899. #else
  1900. SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
  1901. for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
  1902. mem_addr[i] = a.f32[0];
  1903. }
  1904. #endif
  1905. }
  1906. SIMDE__FUNCTION_ATTRIBUTES
  1907. void simde_mm_store_ss(simde_float32 *mem_addr, simde__m128 a)
  1908. {
  1909. #if defined(SIMDE_SSE_NATIVE)
  1910. _mm_store_ss(mem_addr, a.n);
  1911. #elif defined(SIMDE_SSE_NEON)
  1912. vst1q_lane_f32(mem_addr, a.neon_f32, 0);
  1913. #else
  1914. *mem_addr = a.f32[0];
  1915. #endif
  1916. }
  1917. SIMDE__FUNCTION_ATTRIBUTES
  1918. void simde_mm_store1_ps(simde_float32 mem_addr[4], simde__m128 a)
  1919. {
  1920. simde_assert_aligned(16, mem_addr);
  1921. #if defined(SIMDE_SSE_NATIVE)
  1922. _mm_store1_ps(mem_addr, a.n);
  1923. #else
  1924. simde_mm_store_ps1(mem_addr, a);
  1925. #endif
  1926. }
  1927. SIMDE__FUNCTION_ATTRIBUTES
  1928. void simde_mm_storeh_pi(simde__m64 *mem_addr, simde__m128 a)
  1929. {
  1930. #if defined(SIMDE_SSE_NATIVE)
  1931. _mm_storeh_pi(&(mem_addr->n), a.n);
  1932. #else
  1933. mem_addr->f32[0] = a.f32[2];
  1934. mem_addr->f32[1] = a.f32[3];
  1935. #endif
  1936. }
  1937. SIMDE__FUNCTION_ATTRIBUTES
  1938. void simde_mm_storel_pi(simde__m64 *mem_addr, simde__m128 a)
  1939. {
  1940. #if defined(SIMDE_SSE_NATIVE)
  1941. _mm_storel_pi(&(mem_addr->n), a.n);
  1942. #else
  1943. mem_addr->f32[0] = a.f32[0];
  1944. mem_addr->f32[1] = a.f32[1];
  1945. #endif
  1946. }
  1947. SIMDE__FUNCTION_ATTRIBUTES
  1948. void simde_mm_storer_ps(simde_float32 mem_addr[4], simde__m128 a)
  1949. {
  1950. simde_assert_aligned(16, mem_addr);
  1951. #if defined(SIMDE_SSE_NATIVE)
  1952. _mm_storer_ps(mem_addr, a.n);
  1953. #else
  1954. SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
  1955. for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
  1956. mem_addr[i] =
  1957. a.f32[((sizeof(a.f32) / sizeof(a.f32[0])) - 1) - i];
  1958. }
  1959. #endif
  1960. }
  1961. SIMDE__FUNCTION_ATTRIBUTES
  1962. void simde_mm_storeu_ps(simde_float32 mem_addr[4], simde__m128 a)
  1963. {
  1964. #if defined(SIMDE_SSE_NATIVE)
  1965. _mm_storeu_ps(mem_addr, a.n);
  1966. #elif defined(SIMDE_SSE_NEON)
  1967. vst1q_f32(mem_addr, a.neon_f32);
  1968. #else
  1969. SIMDE__VECTORIZE
  1970. for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
  1971. mem_addr[i] = a.f32[i];
  1972. }
  1973. #endif
  1974. }
  1975. SIMDE__FUNCTION_ATTRIBUTES
  1976. simde__m128 simde_mm_sub_ps(simde__m128 a, simde__m128 b)
  1977. {
  1978. simde__m128 r;
  1979. #if defined(SIMDE_SSE_NATIVE)
  1980. r.n = _mm_sub_ps(a.n, b.n);
  1981. #elif defined(SIMDE_SSE_NEON)
  1982. r.neon_f32 = vsubq_f32(a.neon_f32, b.neon_f32);
  1983. #else
  1984. SIMDE__VECTORIZE
  1985. for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
  1986. r.f32[i] = a.f32[i] - b.f32[i];
  1987. }
  1988. #endif
  1989. return r;
  1990. }
  1991. SIMDE__FUNCTION_ATTRIBUTES
  1992. simde__m128 simde_mm_sub_ss(simde__m128 a, simde__m128 b)
  1993. {
  1994. simde__m128 r;
  1995. #if defined(SIMDE_SSE_NATIVE)
  1996. r.n = _mm_sub_ss(a.n, b.n);
  1997. #else
  1998. r.f32[0] = a.f32[0] - b.f32[0];
  1999. r.f32[1] = a.f32[1];
  2000. r.f32[2] = a.f32[2];
  2001. r.f32[3] = a.f32[3];
  2002. #endif
  2003. return r;
  2004. }
  2005. SIMDE__FUNCTION_ATTRIBUTES
  2006. int simde_mm_ucomieq_ss(simde__m128 a, simde__m128 b)
  2007. {
  2008. #if defined(SIMDE_SSE_NATIVE)
  2009. return _mm_ucomieq_ss(a.n, b.n);
  2010. #else
  2011. fenv_t envp;
  2012. int x = feholdexcept(&envp);
  2013. int r = a.f32[0] == b.f32[0];
  2014. if (HEDLEY_LIKELY(x == 0))
  2015. fesetenv(&envp);
  2016. return r;
  2017. #endif
  2018. }
  2019. SIMDE__FUNCTION_ATTRIBUTES
  2020. int simde_mm_ucomige_ss(simde__m128 a, simde__m128 b)
  2021. {
  2022. #if defined(SIMDE_SSE_NATIVE)
  2023. return _mm_ucomige_ss(a.n, b.n);
  2024. #else
  2025. fenv_t envp;
  2026. int x = feholdexcept(&envp);
  2027. int r = a.f32[0] >= b.f32[0];
  2028. if (HEDLEY_LIKELY(x == 0))
  2029. fesetenv(&envp);
  2030. return r;
  2031. #endif
  2032. }
  2033. SIMDE__FUNCTION_ATTRIBUTES
  2034. int simde_mm_ucomigt_ss(simde__m128 a, simde__m128 b)
  2035. {
  2036. #if defined(SIMDE_SSE_NATIVE)
  2037. return _mm_ucomigt_ss(a.n, b.n);
  2038. #else
  2039. fenv_t envp;
  2040. int x = feholdexcept(&envp);
  2041. int r = a.f32[0] > b.f32[0];
  2042. if (HEDLEY_LIKELY(x == 0))
  2043. fesetenv(&envp);
  2044. return r;
  2045. #endif
  2046. }
  2047. SIMDE__FUNCTION_ATTRIBUTES
  2048. int simde_mm_ucomile_ss(simde__m128 a, simde__m128 b)
  2049. {
  2050. #if defined(SIMDE_SSE_NATIVE)
  2051. return _mm_ucomile_ss(a.n, b.n);
  2052. #else
  2053. fenv_t envp;
  2054. int x = feholdexcept(&envp);
  2055. int r = a.f32[0] <= b.f32[0];
  2056. if (HEDLEY_LIKELY(x == 0))
  2057. fesetenv(&envp);
  2058. return r;
  2059. #endif
  2060. }
  2061. SIMDE__FUNCTION_ATTRIBUTES
  2062. int simde_mm_ucomilt_ss(simde__m128 a, simde__m128 b)
  2063. {
  2064. #if defined(SIMDE_SSE_NATIVE)
  2065. return _mm_ucomilt_ss(a.n, b.n);
  2066. #else
  2067. fenv_t envp;
  2068. int x = feholdexcept(&envp);
  2069. int r = a.f32[0] < b.f32[0];
  2070. if (HEDLEY_LIKELY(x == 0))
  2071. fesetenv(&envp);
  2072. return r;
  2073. #endif
  2074. }
  2075. SIMDE__FUNCTION_ATTRIBUTES
  2076. int simde_mm_ucomineq_ss(simde__m128 a, simde__m128 b)
  2077. {
  2078. #if defined(SIMDE_SSE_NATIVE)
  2079. return _mm_ucomineq_ss(a.n, b.n);
  2080. #else
  2081. fenv_t envp;
  2082. int x = feholdexcept(&envp);
  2083. int r = a.f32[0] != b.f32[0];
  2084. if (HEDLEY_LIKELY(x == 0))
  2085. fesetenv(&envp);
  2086. return r;
  2087. #endif
  2088. }
  2089. #if defined(SIMDE_SSE_NATIVE)
  2090. #if defined(__has_builtin)
  2091. #if __has_builtin(__builtin_ia32_undef128)
  2092. #define SIMDE__HAVE_UNDEFINED128
  2093. #endif
  2094. #elif !defined(__PGI) && !defined(SIMDE_BUG_GCC_REV_208793)
  2095. #define SIMDE__HAVE_UNDEFINED128
  2096. #endif
  2097. #endif
  2098. SIMDE__FUNCTION_ATTRIBUTES
  2099. simde__m128 simde_mm_undefined_ps(void)
  2100. {
  2101. simde__m128 r;
  2102. #if defined(SIMDE__HAVE_UNDEFINED128)
  2103. r.n = _mm_undefined_ps();
  2104. #else
  2105. r = simde_mm_setzero_ps();
  2106. #endif
  2107. return r;
  2108. }
  2109. SIMDE__FUNCTION_ATTRIBUTES
  2110. simde__m128 simde_mm_unpackhi_ps(simde__m128 a, simde__m128 b)
  2111. {
  2112. simde__m128 r;
  2113. #if defined(SIMDE_SSE_NATIVE)
  2114. r.n = _mm_unpackhi_ps(a.n, b.n);
  2115. #elif defined(SIMDE_SSE_NEON)
  2116. float32x2_t a1 = vget_high_f32(a.neon_f32);
  2117. float32x2_t b1 = vget_high_f32(b.neon_f32);
  2118. float32x2x2_t result = vzip_f32(a1, b1);
  2119. r.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
  2120. #else
  2121. r.f32[0] = a.f32[2];
  2122. r.f32[1] = b.f32[2];
  2123. r.f32[2] = a.f32[3];
  2124. r.f32[3] = b.f32[3];
  2125. #endif
  2126. return r;
  2127. }
  2128. SIMDE__FUNCTION_ATTRIBUTES
  2129. simde__m128 simde_mm_unpacklo_ps(simde__m128 a, simde__m128 b)
  2130. {
  2131. simde__m128 r;
  2132. #if defined(SIMDE_SSE_NATIVE)
  2133. r.n = _mm_unpacklo_ps(a.n, b.n);
  2134. #elif defined(SIMDE_SSE_NEON)
  2135. float32x2_t a1 = vget_low_f32(a.neon_f32);
  2136. float32x2_t b1 = vget_low_f32(b.neon_f32);
  2137. float32x2x2_t result = vzip_f32(a1, b1);
  2138. r.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
  2139. #else
  2140. r.f32[0] = a.f32[0];
  2141. r.f32[1] = b.f32[0];
  2142. r.f32[2] = a.f32[1];
  2143. r.f32[3] = b.f32[1];
  2144. #endif
  2145. return r;
  2146. }
  2147. SIMDE__FUNCTION_ATTRIBUTES
  2148. simde__m128 simde_mm_xor_ps(simde__m128 a, simde__m128 b)
  2149. {
  2150. simde__m128 r;
  2151. #if defined(SIMDE_SSE_NATIVE)
  2152. r.n = _mm_xor_ps(a.n, b.n);
  2153. #elif defined(SIMDE_SSE_NEON)
  2154. r.neon_i32 = veorq_s32(a.neon_i32, b.neon_i32);
  2155. #else
  2156. SIMDE__VECTORIZE
  2157. for (size_t i = 0; i < (sizeof(r.u32) / sizeof(r.u32[0])); i++) {
  2158. r.u32[i] = a.u32[i] ^ b.u32[i];
  2159. }
  2160. #endif
  2161. return r;
  2162. }
  2163. SIMDE__FUNCTION_ATTRIBUTES
  2164. void simde_mm_stream_pi(simde__m64 *mem_addr, simde__m64 a)
  2165. {
  2166. #if defined(SIMDE_SSE_NATIVE)
  2167. _mm_stream_pi(&(mem_addr->n), a.n);
  2168. #else
  2169. mem_addr->i64[0] = a.i64[0];
  2170. #endif
  2171. }
  2172. SIMDE__FUNCTION_ATTRIBUTES
  2173. void simde_mm_stream_ps(simde_float32 mem_addr[4], simde__m128 a)
  2174. {
  2175. simde_assert_aligned(16, mem_addr);
  2176. #if defined(SIMDE_SSE_NATIVE)
  2177. _mm_stream_ps(mem_addr, a.n);
  2178. #else
  2179. SIMDE__ASSUME_ALIGNED(mem_addr, 16);
  2180. memcpy(mem_addr, &a, sizeof(a));
  2181. #endif
  2182. }
  2183. SIMDE__FUNCTION_ATTRIBUTES
  2184. uint32_t simde_mm_getcsr(void)
  2185. {
  2186. #if defined(SIMDE_SSE_NATIVE)
  2187. return _mm_getcsr();
  2188. #else
  2189. uint32_t r = 0;
  2190. int rounding_mode = fegetround();
  2191. switch (rounding_mode) {
  2192. case FE_TONEAREST:
  2193. break;
  2194. case FE_UPWARD:
  2195. r |= 2 << 13;
  2196. break;
  2197. case FE_DOWNWARD:
  2198. r |= 1 << 13;
  2199. break;
  2200. case FE_TOWARDZERO:
  2201. r = 3 << 13;
  2202. break;
  2203. }
  2204. return r;
  2205. #endif
  2206. }
  2207. SIMDE__FUNCTION_ATTRIBUTES
  2208. void simde_mm_setcsr(uint32_t a)
  2209. {
  2210. #if defined(SIMDE_SSE_NATIVE)
  2211. _mm_setcsr(a);
  2212. #else
  2213. switch ((a >> 13) & 3) {
  2214. case 0:
  2215. fesetround(FE_TONEAREST);
  2216. break;
  2217. case 1:
  2218. fesetround(FE_DOWNWARD);
  2219. break;
  2220. case 2:
  2221. fesetround(FE_UPWARD);
  2222. break;
  2223. case 3:
  2224. fesetround(FE_TOWARDZERO);
  2225. break;
  2226. }
  2227. #endif
  2228. }
  2229. #define SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
  2230. do { \
  2231. simde__m128 tmp3, tmp2, tmp1, tmp0; \
  2232. tmp0 = simde_mm_unpacklo_ps((row0), (row1)); \
  2233. tmp2 = simde_mm_unpacklo_ps((row2), (row3)); \
  2234. tmp1 = simde_mm_unpackhi_ps((row0), (row1)); \
  2235. tmp3 = simde_mm_unpackhi_ps((row2), (row3)); \
  2236. row0 = simde_mm_movelh_ps(tmp0, tmp2); \
  2237. row1 = simde_mm_movehl_ps(tmp2, tmp0); \
  2238. row2 = simde_mm_movelh_ps(tmp1, tmp3); \
  2239. row3 = simde_mm_movehl_ps(tmp3, tmp1); \
  2240. } while (0)
  2241. SIMDE__END_DECLS
  2242. #endif /* !defined(SIMDE__SSE_H) */