1
0

audio-io.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /******************************************************************************
  2. Copyright (C) 2013 by Hugh Bailey <[email protected]>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. ******************************************************************************/
  14. #include <math.h>
  15. #include <inttypes.h>
  16. #include "../util/threading.h"
  17. #include "../util/darray.h"
  18. #include "../util/circlebuf.h"
  19. #include "../util/platform.h"
  20. #include "../util/profiler.h"
  21. #include "../util/util_uint64.h"
  22. #include "audio-io.h"
  23. #include "audio-resampler.h"
  24. extern profiler_name_store_t *obs_get_profiler_name_store(void);
  25. /* #define DEBUG_AUDIO */
  26. #define nop() \
  27. do { \
  28. int invalid = 0; \
  29. } while (0)
  30. struct audio_input {
  31. struct audio_convert_info conversion;
  32. audio_resampler_t *resampler;
  33. audio_output_callback_t callback;
  34. void *param;
  35. };
  36. static inline void audio_input_free(struct audio_input *input)
  37. {
  38. audio_resampler_destroy(input->resampler);
  39. }
  40. struct audio_mix {
  41. DARRAY(struct audio_input) inputs;
  42. float buffer[MAX_AUDIO_CHANNELS][AUDIO_OUTPUT_FRAMES];
  43. };
  44. struct audio_output {
  45. struct audio_output_info info;
  46. size_t block_size;
  47. size_t channels;
  48. size_t planes;
  49. pthread_t thread;
  50. os_event_t *stop_event;
  51. bool initialized;
  52. audio_input_callback_t input_cb;
  53. void *input_param;
  54. pthread_mutex_t input_mutex;
  55. struct audio_mix mixes[MAX_AUDIO_MIXES];
  56. };
  57. /* ------------------------------------------------------------------------- */
  58. static bool resample_audio_output(struct audio_input *input,
  59. struct audio_data *data)
  60. {
  61. bool success = true;
  62. if (input->resampler) {
  63. uint8_t *output[MAX_AV_PLANES];
  64. uint32_t frames;
  65. uint64_t offset;
  66. memset(output, 0, sizeof(output));
  67. success = audio_resampler_resample(
  68. input->resampler, output, &frames, &offset,
  69. (const uint8_t *const *)data->data, data->frames);
  70. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  71. data->data[i] = output[i];
  72. data->frames = frames;
  73. data->timestamp -= offset;
  74. }
  75. return success;
  76. }
  77. static inline void do_audio_output(struct audio_output *audio, size_t mix_idx,
  78. uint64_t timestamp, uint32_t frames)
  79. {
  80. struct audio_mix *mix = &audio->mixes[mix_idx];
  81. struct audio_data data;
  82. pthread_mutex_lock(&audio->input_mutex);
  83. for (size_t i = mix->inputs.num; i > 0; i--) {
  84. struct audio_input *input = mix->inputs.array + (i - 1);
  85. for (size_t i = 0; i < audio->planes; i++)
  86. data.data[i] = (uint8_t *)mix->buffer[i];
  87. data.frames = frames;
  88. data.timestamp = timestamp;
  89. if (resample_audio_output(input, &data))
  90. input->callback(input->param, mix_idx, &data);
  91. }
  92. pthread_mutex_unlock(&audio->input_mutex);
  93. }
  94. static inline void clamp_audio_output(struct audio_output *audio, size_t bytes)
  95. {
  96. size_t float_size = bytes / sizeof(float);
  97. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  98. struct audio_mix *mix = &audio->mixes[mix_idx];
  99. /* do not process mixing if a specific mix is inactive */
  100. if (!mix->inputs.num)
  101. continue;
  102. for (size_t plane = 0; plane < audio->planes; plane++) {
  103. float *mix_data = mix->buffer[plane];
  104. float *mix_end = &mix_data[float_size];
  105. while (mix_data < mix_end) {
  106. float val = *mix_data;
  107. val = (val > 1.0f) ? 1.0f : val;
  108. val = (val < -1.0f) ? -1.0f : val;
  109. *(mix_data++) = val;
  110. }
  111. }
  112. }
  113. }
  114. static void input_and_output(struct audio_output *audio, uint64_t audio_time,
  115. uint64_t prev_time)
  116. {
  117. size_t bytes = AUDIO_OUTPUT_FRAMES * audio->block_size;
  118. struct audio_output_data data[MAX_AUDIO_MIXES];
  119. uint32_t active_mixes = 0;
  120. uint64_t new_ts = 0;
  121. bool success;
  122. memset(data, 0, sizeof(data));
  123. #ifdef DEBUG_AUDIO
  124. blog(LOG_DEBUG, "audio_time: %llu, prev_time: %llu, bytes: %lu",
  125. audio_time, prev_time, bytes);
  126. #endif
  127. /* get mixers */
  128. pthread_mutex_lock(&audio->input_mutex);
  129. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++) {
  130. if (audio->mixes[i].inputs.num)
  131. active_mixes |= (1 << i);
  132. }
  133. pthread_mutex_unlock(&audio->input_mutex);
  134. /* clear mix buffers */
  135. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  136. struct audio_mix *mix = &audio->mixes[mix_idx];
  137. memset(mix->buffer, 0, sizeof(mix->buffer));
  138. for (size_t i = 0; i < audio->planes; i++)
  139. data[mix_idx].data[i] = mix->buffer[i];
  140. }
  141. /* get new audio data */
  142. success = audio->input_cb(audio->input_param, prev_time, audio_time,
  143. &new_ts, active_mixes, data);
  144. if (!success)
  145. return;
  146. /* clamps audio data to -1.0..1.0 */
  147. clamp_audio_output(audio, bytes);
  148. /* output */
  149. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++)
  150. do_audio_output(audio, i, new_ts, AUDIO_OUTPUT_FRAMES);
  151. }
  152. static void *audio_thread(void *param)
  153. {
  154. struct audio_output *audio = param;
  155. size_t rate = audio->info.samples_per_sec;
  156. uint64_t samples = 0;
  157. uint64_t start_time = os_gettime_ns();
  158. uint64_t prev_time = start_time;
  159. uint64_t audio_time = prev_time;
  160. uint32_t audio_wait_time = (uint32_t)(
  161. audio_frames_to_ns(rate, AUDIO_OUTPUT_FRAMES) / 1000000);
  162. os_set_thread_name("audio-io: audio thread");
  163. const char *audio_thread_name =
  164. profile_store_name(obs_get_profiler_name_store(),
  165. "audio_thread(%s)", audio->info.name);
  166. while (os_event_try(audio->stop_event) == EAGAIN) {
  167. uint64_t cur_time;
  168. os_sleep_ms(audio_wait_time);
  169. profile_start(audio_thread_name);
  170. cur_time = os_gettime_ns();
  171. while (audio_time <= cur_time) {
  172. samples += AUDIO_OUTPUT_FRAMES;
  173. audio_time =
  174. start_time + audio_frames_to_ns(rate, samples);
  175. input_and_output(audio, audio_time, prev_time);
  176. prev_time = audio_time;
  177. }
  178. profile_end(audio_thread_name);
  179. profile_reenable_thread();
  180. }
  181. return NULL;
  182. }
  183. /* ------------------------------------------------------------------------- */
  184. static size_t audio_get_input_idx(const audio_t *audio, size_t mix_idx,
  185. audio_output_callback_t callback, void *param)
  186. {
  187. const struct audio_mix *mix = &audio->mixes[mix_idx];
  188. for (size_t i = 0; i < mix->inputs.num; i++) {
  189. struct audio_input *input = mix->inputs.array + i;
  190. if (input->callback == callback && input->param == param)
  191. return i;
  192. }
  193. return DARRAY_INVALID;
  194. }
  195. static inline bool audio_input_init(struct audio_input *input,
  196. struct audio_output *audio)
  197. {
  198. if (input->conversion.format != audio->info.format ||
  199. input->conversion.samples_per_sec != audio->info.samples_per_sec ||
  200. input->conversion.speakers != audio->info.speakers) {
  201. struct resample_info from = {
  202. .format = audio->info.format,
  203. .samples_per_sec = audio->info.samples_per_sec,
  204. .speakers = audio->info.speakers};
  205. struct resample_info to = {
  206. .format = input->conversion.format,
  207. .samples_per_sec = input->conversion.samples_per_sec,
  208. .speakers = input->conversion.speakers};
  209. input->resampler = audio_resampler_create(&to, &from);
  210. if (!input->resampler) {
  211. blog(LOG_ERROR, "audio_input_init: Failed to "
  212. "create resampler");
  213. return false;
  214. }
  215. } else {
  216. input->resampler = NULL;
  217. }
  218. return true;
  219. }
  220. bool audio_output_connect(audio_t *audio, size_t mi,
  221. const struct audio_convert_info *conversion,
  222. audio_output_callback_t callback, void *param)
  223. {
  224. bool success = false;
  225. if (!audio || mi >= MAX_AUDIO_MIXES)
  226. return false;
  227. pthread_mutex_lock(&audio->input_mutex);
  228. if (audio_get_input_idx(audio, mi, callback, param) == DARRAY_INVALID) {
  229. struct audio_mix *mix = &audio->mixes[mi];
  230. struct audio_input input;
  231. input.callback = callback;
  232. input.param = param;
  233. if (conversion) {
  234. input.conversion = *conversion;
  235. } else {
  236. input.conversion.format = audio->info.format;
  237. input.conversion.speakers = audio->info.speakers;
  238. input.conversion.samples_per_sec =
  239. audio->info.samples_per_sec;
  240. }
  241. if (input.conversion.format == AUDIO_FORMAT_UNKNOWN)
  242. input.conversion.format = audio->info.format;
  243. if (input.conversion.speakers == SPEAKERS_UNKNOWN)
  244. input.conversion.speakers = audio->info.speakers;
  245. if (input.conversion.samples_per_sec == 0)
  246. input.conversion.samples_per_sec =
  247. audio->info.samples_per_sec;
  248. success = audio_input_init(&input, audio);
  249. if (success)
  250. da_push_back(mix->inputs, &input);
  251. }
  252. pthread_mutex_unlock(&audio->input_mutex);
  253. return success;
  254. }
  255. void audio_output_disconnect(audio_t *audio, size_t mix_idx,
  256. audio_output_callback_t callback, void *param)
  257. {
  258. if (!audio || mix_idx >= MAX_AUDIO_MIXES)
  259. return;
  260. pthread_mutex_lock(&audio->input_mutex);
  261. size_t idx = audio_get_input_idx(audio, mix_idx, callback, param);
  262. if (idx != DARRAY_INVALID) {
  263. struct audio_mix *mix = &audio->mixes[mix_idx];
  264. audio_input_free(mix->inputs.array + idx);
  265. da_erase(mix->inputs, idx);
  266. }
  267. pthread_mutex_unlock(&audio->input_mutex);
  268. }
  269. static inline bool valid_audio_params(const struct audio_output_info *info)
  270. {
  271. return info->format && info->name && info->samples_per_sec > 0 &&
  272. info->speakers > 0;
  273. }
  274. int audio_output_open(audio_t **audio, struct audio_output_info *info)
  275. {
  276. struct audio_output *out;
  277. pthread_mutexattr_t attr;
  278. bool planar = is_audio_planar(info->format);
  279. if (!valid_audio_params(info))
  280. return AUDIO_OUTPUT_INVALIDPARAM;
  281. out = bzalloc(sizeof(struct audio_output));
  282. if (!out)
  283. goto fail;
  284. memcpy(&out->info, info, sizeof(struct audio_output_info));
  285. out->channels = get_audio_channels(info->speakers);
  286. out->planes = planar ? out->channels : 1;
  287. out->input_cb = info->input_callback;
  288. out->input_param = info->input_param;
  289. out->block_size = (planar ? 1 : out->channels) *
  290. get_audio_bytes_per_channel(info->format);
  291. if (pthread_mutexattr_init(&attr) != 0)
  292. goto fail;
  293. if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) != 0)
  294. goto fail;
  295. if (pthread_mutex_init(&out->input_mutex, &attr) != 0)
  296. goto fail;
  297. if (os_event_init(&out->stop_event, OS_EVENT_TYPE_MANUAL) != 0)
  298. goto fail;
  299. if (pthread_create(&out->thread, NULL, audio_thread, out) != 0)
  300. goto fail;
  301. out->initialized = true;
  302. *audio = out;
  303. return AUDIO_OUTPUT_SUCCESS;
  304. fail:
  305. audio_output_close(out);
  306. return AUDIO_OUTPUT_FAIL;
  307. }
  308. void audio_output_close(audio_t *audio)
  309. {
  310. void *thread_ret;
  311. if (!audio)
  312. return;
  313. if (audio->initialized) {
  314. os_event_signal(audio->stop_event);
  315. pthread_join(audio->thread, &thread_ret);
  316. }
  317. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  318. struct audio_mix *mix = &audio->mixes[mix_idx];
  319. for (size_t i = 0; i < mix->inputs.num; i++)
  320. audio_input_free(mix->inputs.array + i);
  321. da_free(mix->inputs);
  322. }
  323. os_event_destroy(audio->stop_event);
  324. bfree(audio);
  325. }
  326. const struct audio_output_info *audio_output_get_info(const audio_t *audio)
  327. {
  328. return audio ? &audio->info : NULL;
  329. }
  330. bool audio_output_active(const audio_t *audio)
  331. {
  332. if (!audio)
  333. return false;
  334. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  335. const struct audio_mix *mix = &audio->mixes[mix_idx];
  336. if (mix->inputs.num != 0)
  337. return true;
  338. }
  339. return false;
  340. }
  341. size_t audio_output_get_block_size(const audio_t *audio)
  342. {
  343. return audio ? audio->block_size : 0;
  344. }
  345. size_t audio_output_get_planes(const audio_t *audio)
  346. {
  347. return audio ? audio->planes : 0;
  348. }
  349. size_t audio_output_get_channels(const audio_t *audio)
  350. {
  351. return audio ? audio->channels : 0;
  352. }
  353. uint32_t audio_output_get_sample_rate(const audio_t *audio)
  354. {
  355. return audio ? audio->info.samples_per_sec : 0;
  356. }