sse.h 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718
  1. /* SPDX-License-Identifier: MIT
  2. *
  3. * Permission is hereby granted, free of charge, to any person
  4. * obtaining a copy of this software and associated documentation
  5. * files (the "Software"), to deal in the Software without
  6. * restriction, including without limitation the rights to use, copy,
  7. * modify, merge, publish, distribute, sublicense, and/or sell copies
  8. * of the Software, and to permit persons to whom the Software is
  9. * furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be
  12. * included in all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  15. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  16. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  17. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  18. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  19. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  20. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Copyright:
  24. * 2017-2020 Evan Nemerson <[email protected]>
  25. * 2015-2017 John W. Ratcliff <[email protected]>
  26. * 2015 Brandon Rowlett <[email protected]>
  27. * 2015 Ken Fast <[email protected]>
  28. */
  29. #if !defined(SIMDE_X86_SSE_H)
  30. #define SIMDE_X86_SSE_H
  31. #include "mmx.h"
  32. #if !defined(SIMDE_X86_AVX512F_NATIVE) && defined(SIMDE_ENABLE_NATIVE_ALIASES)
  33. #define SIMDE_X86_AVX512F_ENABLE_NATIVE_ALIASES
  34. #endif
  35. #if defined(_WIN32)
  36. #include <windows.h>
  37. #endif
  38. HEDLEY_DIAGNOSTIC_PUSH
  39. SIMDE_DISABLE_UNWANTED_DIAGNOSTICS
  40. SIMDE_BEGIN_DECLS_
  41. typedef union {
  42. #if defined(SIMDE_VECTOR_SUBSCRIPT)
  43. SIMDE_ALIGN(16) int8_t i8 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  44. SIMDE_ALIGN(16) int16_t i16 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  45. SIMDE_ALIGN(16) int32_t i32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  46. SIMDE_ALIGN(16) int64_t i64 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  47. SIMDE_ALIGN(16) uint8_t u8 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  48. SIMDE_ALIGN(16) uint16_t u16 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  49. SIMDE_ALIGN(16) uint32_t u32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  50. SIMDE_ALIGN(16) uint64_t u64 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  51. #if defined(SIMDE_HAVE_INT128_)
  52. SIMDE_ALIGN(16) simde_int128 i128 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  53. SIMDE_ALIGN(16) simde_uint128 u128 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  54. #endif
  55. SIMDE_ALIGN(16) simde_float32 f32 SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  56. SIMDE_ALIGN(16) int_fast32_t i32f SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  57. SIMDE_ALIGN(16) uint_fast32_t u32f SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  58. #else
  59. SIMDE_ALIGN(16) int8_t i8[16];
  60. SIMDE_ALIGN(16) int16_t i16[8];
  61. SIMDE_ALIGN(16) int32_t i32[4];
  62. SIMDE_ALIGN(16) int64_t i64[2];
  63. SIMDE_ALIGN(16) uint8_t u8[16];
  64. SIMDE_ALIGN(16) uint16_t u16[8];
  65. SIMDE_ALIGN(16) uint32_t u32[4];
  66. SIMDE_ALIGN(16) uint64_t u64[2];
  67. #if defined(SIMDE_HAVE_INT128_)
  68. SIMDE_ALIGN(16) simde_int128 i128[1];
  69. SIMDE_ALIGN(16) simde_uint128 u128[1];
  70. #endif
  71. SIMDE_ALIGN(16) simde_float32 f32[4];
  72. SIMDE_ALIGN(16) int_fast32_t i32f[16 / sizeof(int_fast32_t)];
  73. SIMDE_ALIGN(16) uint_fast32_t u32f[16 / sizeof(uint_fast32_t)];
  74. #endif
  75. SIMDE_ALIGN(16) simde__m64_private m64_private[2];
  76. SIMDE_ALIGN(16) simde__m64 m64[2];
  77. #if defined(SIMDE_X86_SSE_NATIVE)
  78. SIMDE_ALIGN(16) __m128 n;
  79. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  80. SIMDE_ALIGN(16) int8x16_t neon_i8;
  81. SIMDE_ALIGN(16) int16x8_t neon_i16;
  82. SIMDE_ALIGN(16) int32x4_t neon_i32;
  83. SIMDE_ALIGN(16) int64x2_t neon_i64;
  84. SIMDE_ALIGN(16) uint8x16_t neon_u8;
  85. SIMDE_ALIGN(16) uint16x8_t neon_u16;
  86. SIMDE_ALIGN(16) uint32x4_t neon_u32;
  87. SIMDE_ALIGN(16) uint64x2_t neon_u64;
  88. SIMDE_ALIGN(16) float32x4_t neon_f32;
  89. #if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
  90. SIMDE_ALIGN(16) float64x2_t neon_f64;
  91. #endif
  92. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  93. SIMDE_ALIGN(16) v128_t wasm_v128;
  94. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  95. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned char) altivec_u8;
  96. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned short) altivec_u16;
  97. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(unsigned int) altivec_u32;
  98. SIMDE_ALIGN(16)
  99. SIMDE_POWER_ALTIVEC_VECTOR(unsigned long long) altivec_u64;
  100. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed char) altivec_i8;
  101. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed short) altivec_i16;
  102. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(signed int) altivec_i32;
  103. SIMDE_ALIGN(16)
  104. SIMDE_POWER_ALTIVEC_VECTOR(signed long long) altivec_i64;
  105. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(float) altivec_f32;
  106. #if defined(SIMDE_POWER_ALTIVEC_P7_NATIVE)
  107. SIMDE_ALIGN(16) SIMDE_POWER_ALTIVEC_VECTOR(double) altivec_f64;
  108. #endif
  109. #endif
  110. } simde__m128_private;
  111. #if defined(SIMDE_X86_SSE_NATIVE)
  112. typedef __m128 simde__m128;
  113. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  114. typedef float32x4_t simde__m128;
  115. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  116. typedef v128_t simde__m128;
  117. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  118. typedef SIMDE_POWER_ALTIVEC_VECTOR(float) simde__m128;
  119. #elif defined(SIMDE_VECTOR_SUBSCRIPT)
  120. typedef simde_float32 simde__m128 SIMDE_ALIGN(16)
  121. SIMDE_VECTOR(16) SIMDE_MAY_ALIAS;
  122. #else
  123. typedef simde__m128_private simde__m128;
  124. #endif
  125. #if !defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ENABLE_NATIVE_ALIASES)
  126. #define SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES
  127. typedef simde__m128 __m128;
  128. #endif
  129. HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128), "simde__m128 size incorrect");
  130. HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128_private),
  131. "simde__m128_private size incorrect");
  132. #if defined(SIMDE_CHECK_ALIGNMENT) && defined(SIMDE_ALIGN_OF)
  133. HEDLEY_STATIC_ASSERT(SIMDE_ALIGN_OF(simde__m128) == 16,
  134. "simde__m128 is not 16-byte aligned");
  135. HEDLEY_STATIC_ASSERT(SIMDE_ALIGN_OF(simde__m128_private) == 16,
  136. "simde__m128_private is not 16-byte aligned");
  137. #endif
  138. SIMDE_FUNCTION_ATTRIBUTES
  139. simde__m128 simde__m128_from_private(simde__m128_private v)
  140. {
  141. simde__m128 r;
  142. simde_memcpy(&r, &v, sizeof(r));
  143. return r;
  144. }
  145. SIMDE_FUNCTION_ATTRIBUTES
  146. simde__m128_private simde__m128_to_private(simde__m128 v)
  147. {
  148. simde__m128_private r;
  149. simde_memcpy(&r, &v, sizeof(r));
  150. return r;
  151. }
  152. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  153. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int8x16_t, neon, i8)
  154. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int16x8_t, neon, i16)
  155. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int32x4_t, neon, i32)
  156. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, int64x2_t, neon, i64)
  157. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint8x16_t, neon, u8)
  158. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint16x8_t, neon, u16)
  159. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint32x4_t, neon, u32)
  160. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, uint64x2_t, neon, u64)
  161. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, float32x4_t, neon, f32)
  162. #if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
  163. SIMDE_X86_GENERATE_CONVERSION_FUNCTION(m128, float64x2_t, neon, f64)
  164. #endif
  165. #endif /* defined(SIMDE_ARM_NEON_A32V7_NATIVE) */
  166. #if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
  167. HEDLEY_DIAGNOSTIC_POP
  168. #endif
  169. SIMDE_FUNCTION_ATTRIBUTES
  170. simde__m128 simde_mm_set_ps(simde_float32 e3, simde_float32 e2,
  171. simde_float32 e1, simde_float32 e0)
  172. {
  173. #if defined(SIMDE_X86_SSE_NATIVE)
  174. return _mm_set_ps(e3, e2, e1, e0);
  175. #else
  176. simde__m128_private r_;
  177. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  178. SIMDE_ALIGN(16) simde_float32 data[4] = {e0, e1, e2, e3};
  179. r_.neon_f32 = vld1q_f32(data);
  180. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  181. r_.wasm_v128 = wasm_f32x4_make(e0, e1, e2, e3);
  182. #else
  183. r_.f32[0] = e0;
  184. r_.f32[1] = e1;
  185. r_.f32[2] = e2;
  186. r_.f32[3] = e3;
  187. #endif
  188. return simde__m128_from_private(r_);
  189. #endif
  190. }
  191. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  192. #define _mm_set_ps(e3, e2, e1, e0) simde_mm_set_ps(e3, e2, e1, e0)
  193. #endif
  194. SIMDE_FUNCTION_ATTRIBUTES
  195. simde__m128 simde_mm_set_ps1(simde_float32 a)
  196. {
  197. #if defined(SIMDE_X86_SSE_NATIVE)
  198. return _mm_set_ps1(a);
  199. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  200. return vdupq_n_f32(a);
  201. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  202. (void)a;
  203. return vec_splats(a);
  204. #else
  205. return simde_mm_set_ps(a, a, a, a);
  206. #endif
  207. }
  208. #define simde_mm_set1_ps(a) simde_mm_set_ps1(a)
  209. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  210. #define _mm_set_ps1(a) simde_mm_set_ps1(a)
  211. #define _mm_set1_ps(a) simde_mm_set1_ps(a)
  212. #endif
  213. SIMDE_FUNCTION_ATTRIBUTES
  214. simde__m128 simde_mm_move_ss(simde__m128 a, simde__m128 b)
  215. {
  216. #if defined(SIMDE_X86_SSE_NATIVE)
  217. return _mm_move_ss(a, b);
  218. #else
  219. simde__m128_private r_, a_ = simde__m128_to_private(a),
  220. b_ = simde__m128_to_private(b);
  221. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  222. r_.neon_f32 =
  223. vsetq_lane_f32(vgetq_lane_f32(b_.neon_f32, 0), a_.neon_f32, 0);
  224. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  225. SIMDE_POWER_ALTIVEC_VECTOR(unsigned char)
  226. m = {16, 17, 18, 19, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  227. r_.altivec_f32 = vec_perm(a_.altivec_f32, b_.altivec_f32, m);
  228. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  229. r_.wasm_v128 = wasm_v8x16_shuffle(b_.wasm_v128, a_.wasm_v128, 0, 1, 2,
  230. 3, 20, 21, 22, 23, 24, 25, 26, 27, 28,
  231. 29, 30, 31);
  232. #elif defined(SIMDE_SHUFFLE_VECTOR_)
  233. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 4, 1, 2, 3);
  234. #else
  235. r_.f32[0] = b_.f32[0];
  236. r_.f32[1] = a_.f32[1];
  237. r_.f32[2] = a_.f32[2];
  238. r_.f32[3] = a_.f32[3];
  239. #endif
  240. return simde__m128_from_private(r_);
  241. #endif
  242. }
  243. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  244. #define _mm_move_ss(a, b) simde_mm_move_ss((a), (b))
  245. #endif
  246. SIMDE_FUNCTION_ATTRIBUTES
  247. simde__m128 simde_mm_add_ps(simde__m128 a, simde__m128 b)
  248. {
  249. #if defined(SIMDE_X86_SSE_NATIVE)
  250. return _mm_add_ps(a, b);
  251. #else
  252. simde__m128_private r_, a_ = simde__m128_to_private(a),
  253. b_ = simde__m128_to_private(b);
  254. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  255. r_.neon_f32 = vaddq_f32(a_.neon_f32, b_.neon_f32);
  256. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  257. r_.wasm_v128 = wasm_f32x4_add(a_.wasm_v128, b_.wasm_v128);
  258. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  259. r_.altivec_f32 = vec_add(a_.altivec_f32, b_.altivec_f32);
  260. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  261. r_.f32 = a_.f32 + b_.f32;
  262. #else
  263. SIMDE_VECTORIZE
  264. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  265. r_.f32[i] = a_.f32[i] + b_.f32[i];
  266. }
  267. #endif
  268. return simde__m128_from_private(r_);
  269. #endif
  270. }
  271. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  272. #define _mm_add_ps(a, b) simde_mm_add_ps((a), (b))
  273. #endif
  274. SIMDE_FUNCTION_ATTRIBUTES
  275. simde__m128 simde_mm_add_ss(simde__m128 a, simde__m128 b)
  276. {
  277. #if defined(SIMDE_X86_SSE_NATIVE)
  278. return _mm_add_ss(a, b);
  279. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  280. return simde_mm_move_ss(a, simde_mm_add_ps(a, b));
  281. #else
  282. simde__m128_private r_, a_ = simde__m128_to_private(a),
  283. b_ = simde__m128_to_private(b);
  284. r_.f32[0] = a_.f32[0] + b_.f32[0];
  285. r_.f32[1] = a_.f32[1];
  286. r_.f32[2] = a_.f32[2];
  287. r_.f32[3] = a_.f32[3];
  288. return simde__m128_from_private(r_);
  289. #endif
  290. }
  291. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  292. #define _mm_add_ss(a, b) simde_mm_add_ss((a), (b))
  293. #endif
  294. SIMDE_FUNCTION_ATTRIBUTES
  295. simde__m128 simde_mm_and_ps(simde__m128 a, simde__m128 b)
  296. {
  297. #if defined(SIMDE_X86_SSE_NATIVE)
  298. return _mm_and_ps(a, b);
  299. #else
  300. simde__m128_private r_, a_ = simde__m128_to_private(a),
  301. b_ = simde__m128_to_private(b);
  302. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  303. r_.neon_i32 = vandq_s32(a_.neon_i32, b_.neon_i32);
  304. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  305. r_.wasm_v128 = wasm_v128_and(a_.wasm_v128, b_.wasm_v128);
  306. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  307. r_.i32 = a_.i32 & b_.i32;
  308. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  309. r_.altivec_f32 = vec_and(a_.altivec_f32, b_.altivec_f32);
  310. #else
  311. SIMDE_VECTORIZE
  312. for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
  313. r_.i32[i] = a_.i32[i] & b_.i32[i];
  314. }
  315. #endif
  316. return simde__m128_from_private(r_);
  317. #endif
  318. }
  319. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  320. #define _mm_and_ps(a, b) simde_mm_and_ps((a), (b))
  321. #endif
  322. SIMDE_FUNCTION_ATTRIBUTES
  323. simde__m128 simde_mm_andnot_ps(simde__m128 a, simde__m128 b)
  324. {
  325. #if defined(SIMDE_X86_SSE_NATIVE)
  326. return _mm_andnot_ps(a, b);
  327. #else
  328. simde__m128_private r_, a_ = simde__m128_to_private(a),
  329. b_ = simde__m128_to_private(b);
  330. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  331. r_.neon_i32 = vbicq_s32(b_.neon_i32, a_.neon_i32);
  332. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  333. r_.wasm_v128 = wasm_v128_andnot(b_.wasm_v128, a_.wasm_v128);
  334. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  335. r_.altivec_f32 = vec_andc(b_.altivec_f32, a_.altivec_f32);
  336. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  337. r_.i32 = ~a_.i32 & b_.i32;
  338. #else
  339. SIMDE_VECTORIZE
  340. for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
  341. r_.i32[i] = ~(a_.i32[i]) & b_.i32[i];
  342. }
  343. #endif
  344. return simde__m128_from_private(r_);
  345. #endif
  346. }
  347. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  348. #define _mm_andnot_ps(a, b) simde_mm_andnot_ps((a), (b))
  349. #endif
  350. SIMDE_FUNCTION_ATTRIBUTES
  351. simde__m64 simde_mm_avg_pu16(simde__m64 a, simde__m64 b)
  352. {
  353. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  354. return _mm_avg_pu16(a, b);
  355. #else
  356. simde__m64_private r_, a_ = simde__m64_to_private(a),
  357. b_ = simde__m64_to_private(b);
  358. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  359. r_.neon_u16 = vrhadd_u16(b_.neon_u16, a_.neon_u16);
  360. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS) && \
  361. defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR) && \
  362. defined(SIMDE_CONVERT_VECTOR_)
  363. uint32_t wa SIMDE_VECTOR(16);
  364. uint32_t wb SIMDE_VECTOR(16);
  365. uint32_t wr SIMDE_VECTOR(16);
  366. SIMDE_CONVERT_VECTOR_(wa, a_.u16);
  367. SIMDE_CONVERT_VECTOR_(wb, b_.u16);
  368. wr = (wa + wb + 1) >> 1;
  369. SIMDE_CONVERT_VECTOR_(r_.u16, wr);
  370. #else
  371. SIMDE_VECTORIZE
  372. for (size_t i = 0; i < (sizeof(r_.u16) / sizeof(r_.u16[0])); i++) {
  373. r_.u16[i] = (a_.u16[i] + b_.u16[i] + 1) >> 1;
  374. }
  375. #endif
  376. return simde__m64_from_private(r_);
  377. #endif
  378. }
  379. #define simde_m_pavgw(a, b) simde_mm_avg_pu16(a, b)
  380. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  381. #define _mm_avg_pu16(a, b) simde_mm_avg_pu16(a, b)
  382. #define _m_pavgw(a, b) simde_mm_avg_pu16(a, b)
  383. #endif
  384. SIMDE_FUNCTION_ATTRIBUTES
  385. simde__m64 simde_mm_avg_pu8(simde__m64 a, simde__m64 b)
  386. {
  387. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  388. return _mm_avg_pu8(a, b);
  389. #else
  390. simde__m64_private r_, a_ = simde__m64_to_private(a),
  391. b_ = simde__m64_to_private(b);
  392. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  393. r_.neon_u8 = vrhadd_u8(b_.neon_u8, a_.neon_u8);
  394. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS) && \
  395. defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR) && \
  396. defined(SIMDE_CONVERT_VECTOR_)
  397. uint16_t wa SIMDE_VECTOR(16);
  398. uint16_t wb SIMDE_VECTOR(16);
  399. uint16_t wr SIMDE_VECTOR(16);
  400. SIMDE_CONVERT_VECTOR_(wa, a_.u8);
  401. SIMDE_CONVERT_VECTOR_(wb, b_.u8);
  402. wr = (wa + wb + 1) >> 1;
  403. SIMDE_CONVERT_VECTOR_(r_.u8, wr);
  404. #else
  405. SIMDE_VECTORIZE
  406. for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
  407. r_.u8[i] = (a_.u8[i] + b_.u8[i] + 1) >> 1;
  408. }
  409. #endif
  410. return simde__m64_from_private(r_);
  411. #endif
  412. }
  413. #define simde_m_pavgb(a, b) simde_mm_avg_pu8(a, b)
  414. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  415. #define _mm_avg_pu8(a, b) simde_mm_avg_pu8(a, b)
  416. #define _m_pavgb(a, b) simde_mm_avg_pu8(a, b)
  417. #endif
  418. SIMDE_FUNCTION_ATTRIBUTES
  419. simde__m128 simde_mm_cmpeq_ps(simde__m128 a, simde__m128 b)
  420. {
  421. #if defined(SIMDE_X86_SSE_NATIVE)
  422. return _mm_cmpeq_ps(a, b);
  423. #else
  424. simde__m128_private r_, a_ = simde__m128_to_private(a),
  425. b_ = simde__m128_to_private(b);
  426. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  427. r_.neon_u32 = vceqq_f32(a_.neon_f32, b_.neon_f32);
  428. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  429. r_.wasm_v128 = wasm_f32x4_eq(a_.wasm_v128, b_.wasm_v128);
  430. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  431. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpeq(
  432. a_.altivec_f32, b_.altivec_f32);
  433. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  434. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), a_.f32 == b_.f32);
  435. #else
  436. SIMDE_VECTORIZE
  437. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  438. r_.u32[i] = (a_.f32[i] == b_.f32[i]) ? ~UINT32_C(0)
  439. : UINT32_C(0);
  440. }
  441. #endif
  442. return simde__m128_from_private(r_);
  443. #endif
  444. }
  445. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  446. #define _mm_cmpeq_ps(a, b) simde_mm_cmpeq_ps((a), (b))
  447. #endif
  448. SIMDE_FUNCTION_ATTRIBUTES
  449. simde__m128 simde_mm_cmpeq_ss(simde__m128 a, simde__m128 b)
  450. {
  451. #if defined(SIMDE_X86_SSE_NATIVE)
  452. return _mm_cmpeq_ss(a, b);
  453. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  454. return simde_mm_move_ss(a, simde_mm_cmpeq_ps(a, b));
  455. #else
  456. simde__m128_private r_, a_ = simde__m128_to_private(a),
  457. b_ = simde__m128_to_private(b);
  458. r_.u32[0] = (a_.f32[0] == b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  459. SIMDE_VECTORIZE
  460. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  461. r_.u32[i] = a_.u32[i];
  462. }
  463. return simde__m128_from_private(r_);
  464. #endif
  465. }
  466. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  467. #define _mm_cmpeq_ss(a, b) simde_mm_cmpeq_ss((a), (b))
  468. #endif
  469. SIMDE_FUNCTION_ATTRIBUTES
  470. simde__m128 simde_mm_cmpge_ps(simde__m128 a, simde__m128 b)
  471. {
  472. #if defined(SIMDE_X86_SSE_NATIVE)
  473. return _mm_cmpge_ps(a, b);
  474. #else
  475. simde__m128_private r_, a_ = simde__m128_to_private(a),
  476. b_ = simde__m128_to_private(b);
  477. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  478. r_.neon_u32 = vcgeq_f32(a_.neon_f32, b_.neon_f32);
  479. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  480. r_.wasm_v128 = wasm_f32x4_ge(a_.wasm_v128, b_.wasm_v128);
  481. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  482. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpge(
  483. a_.altivec_f32, b_.altivec_f32);
  484. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  485. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 >= b_.f32));
  486. #else
  487. SIMDE_VECTORIZE
  488. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  489. r_.u32[i] = (a_.f32[i] >= b_.f32[i]) ? ~UINT32_C(0)
  490. : UINT32_C(0);
  491. }
  492. #endif
  493. return simde__m128_from_private(r_);
  494. #endif
  495. }
  496. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  497. #define _mm_cmpge_ps(a, b) simde_mm_cmpge_ps((a), (b))
  498. #endif
  499. SIMDE_FUNCTION_ATTRIBUTES
  500. simde__m128 simde_mm_cmpge_ss(simde__m128 a, simde__m128 b)
  501. {
  502. #if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
  503. return _mm_cmpge_ss(a, b);
  504. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  505. return simde_mm_move_ss(a, simde_mm_cmpge_ps(a, b));
  506. #else
  507. simde__m128_private r_, a_ = simde__m128_to_private(a),
  508. b_ = simde__m128_to_private(b);
  509. r_.u32[0] = (a_.f32[0] >= b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  510. SIMDE_VECTORIZE
  511. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  512. r_.u32[i] = a_.u32[i];
  513. }
  514. return simde__m128_from_private(r_);
  515. #endif
  516. }
  517. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  518. #define _mm_cmpge_ss(a, b) simde_mm_cmpge_ss((a), (b))
  519. #endif
  520. SIMDE_FUNCTION_ATTRIBUTES
  521. simde__m128 simde_mm_cmpgt_ps(simde__m128 a, simde__m128 b)
  522. {
  523. #if defined(SIMDE_X86_SSE_NATIVE)
  524. return _mm_cmpgt_ps(a, b);
  525. #else
  526. simde__m128_private r_, a_ = simde__m128_to_private(a),
  527. b_ = simde__m128_to_private(b);
  528. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  529. r_.neon_u32 = vcgtq_f32(a_.neon_f32, b_.neon_f32);
  530. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  531. r_.wasm_v128 = wasm_f32x4_gt(a_.wasm_v128, b_.wasm_v128);
  532. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  533. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpgt(
  534. a_.altivec_f32, b_.altivec_f32);
  535. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  536. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 > b_.f32));
  537. #else
  538. SIMDE_VECTORIZE
  539. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  540. r_.u32[i] = (a_.f32[i] > b_.f32[i]) ? ~UINT32_C(0)
  541. : UINT32_C(0);
  542. }
  543. #endif
  544. return simde__m128_from_private(r_);
  545. #endif
  546. }
  547. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  548. #define _mm_cmpgt_ps(a, b) simde_mm_cmpgt_ps((a), (b))
  549. #endif
  550. SIMDE_FUNCTION_ATTRIBUTES
  551. simde__m128 simde_mm_cmpgt_ss(simde__m128 a, simde__m128 b)
  552. {
  553. #if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
  554. return _mm_cmpgt_ss(a, b);
  555. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  556. return simde_mm_move_ss(a, simde_mm_cmpgt_ps(a, b));
  557. #else
  558. simde__m128_private r_, a_ = simde__m128_to_private(a),
  559. b_ = simde__m128_to_private(b);
  560. r_.u32[0] = (a_.f32[0] > b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  561. SIMDE_VECTORIZE
  562. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  563. r_.u32[i] = a_.u32[i];
  564. }
  565. return simde__m128_from_private(r_);
  566. #endif
  567. }
  568. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  569. #define _mm_cmpgt_ss(a, b) simde_mm_cmpgt_ss((a), (b))
  570. #endif
  571. SIMDE_FUNCTION_ATTRIBUTES
  572. simde__m128 simde_mm_cmple_ps(simde__m128 a, simde__m128 b)
  573. {
  574. #if defined(SIMDE_X86_SSE_NATIVE)
  575. return _mm_cmple_ps(a, b);
  576. #else
  577. simde__m128_private r_, a_ = simde__m128_to_private(a),
  578. b_ = simde__m128_to_private(b);
  579. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  580. r_.neon_u32 = vcleq_f32(a_.neon_f32, b_.neon_f32);
  581. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  582. r_.wasm_v128 = wasm_f32x4_le(a_.wasm_v128, b_.wasm_v128);
  583. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  584. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmple(
  585. a_.altivec_f32, b_.altivec_f32);
  586. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  587. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 <= b_.f32));
  588. #else
  589. SIMDE_VECTORIZE
  590. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  591. r_.u32[i] = (a_.f32[i] <= b_.f32[i]) ? ~UINT32_C(0)
  592. : UINT32_C(0);
  593. }
  594. #endif
  595. return simde__m128_from_private(r_);
  596. #endif
  597. }
  598. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  599. #define _mm_cmple_ps(a, b) simde_mm_cmple_ps((a), (b))
  600. #endif
  601. SIMDE_FUNCTION_ATTRIBUTES
  602. simde__m128 simde_mm_cmple_ss(simde__m128 a, simde__m128 b)
  603. {
  604. #if defined(SIMDE_X86_SSE_NATIVE)
  605. return _mm_cmple_ss(a, b);
  606. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  607. return simde_mm_move_ss(a, simde_mm_cmple_ps(a, b));
  608. #else
  609. simde__m128_private r_, a_ = simde__m128_to_private(a),
  610. b_ = simde__m128_to_private(b);
  611. r_.u32[0] = (a_.f32[0] <= b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  612. SIMDE_VECTORIZE
  613. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  614. r_.u32[i] = a_.u32[i];
  615. }
  616. return simde__m128_from_private(r_);
  617. #endif
  618. }
  619. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  620. #define _mm_cmple_ss(a, b) simde_mm_cmple_ss((a), (b))
  621. #endif
  622. SIMDE_FUNCTION_ATTRIBUTES
  623. simde__m128 simde_mm_cmplt_ps(simde__m128 a, simde__m128 b)
  624. {
  625. #if defined(SIMDE_X86_SSE_NATIVE)
  626. return _mm_cmplt_ps(a, b);
  627. #else
  628. simde__m128_private r_, a_ = simde__m128_to_private(a),
  629. b_ = simde__m128_to_private(b);
  630. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  631. r_.neon_u32 = vcltq_f32(a_.neon_f32, b_.neon_f32);
  632. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  633. r_.wasm_v128 = wasm_f32x4_lt(a_.wasm_v128, b_.wasm_v128);
  634. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  635. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmplt(
  636. a_.altivec_f32, b_.altivec_f32);
  637. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  638. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 < b_.f32));
  639. #else
  640. SIMDE_VECTORIZE
  641. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  642. r_.u32[i] = (a_.f32[i] < b_.f32[i]) ? ~UINT32_C(0)
  643. : UINT32_C(0);
  644. }
  645. #endif
  646. return simde__m128_from_private(r_);
  647. #endif
  648. }
  649. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  650. #define _mm_cmplt_ps(a, b) simde_mm_cmplt_ps((a), (b))
  651. #endif
  652. SIMDE_FUNCTION_ATTRIBUTES
  653. simde__m128 simde_mm_cmplt_ss(simde__m128 a, simde__m128 b)
  654. {
  655. #if defined(SIMDE_X86_SSE_NATIVE)
  656. return _mm_cmplt_ss(a, b);
  657. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  658. return simde_mm_move_ss(a, simde_mm_cmplt_ps(a, b));
  659. #else
  660. simde__m128_private r_, a_ = simde__m128_to_private(a),
  661. b_ = simde__m128_to_private(b);
  662. r_.u32[0] = (a_.f32[0] < b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  663. SIMDE_VECTORIZE
  664. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  665. r_.u32[i] = a_.u32[i];
  666. }
  667. return simde__m128_from_private(r_);
  668. #endif
  669. }
  670. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  671. #define _mm_cmplt_ss(a, b) simde_mm_cmplt_ss((a), (b))
  672. #endif
  673. SIMDE_FUNCTION_ATTRIBUTES
  674. simde__m128 simde_mm_cmpneq_ps(simde__m128 a, simde__m128 b)
  675. {
  676. #if defined(SIMDE_X86_SSE_NATIVE)
  677. return _mm_cmpneq_ps(a, b);
  678. #else
  679. simde__m128_private r_, a_ = simde__m128_to_private(a),
  680. b_ = simde__m128_to_private(b);
  681. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  682. r_.neon_u32 = vmvnq_u32(vceqq_f32(a_.neon_f32, b_.neon_f32));
  683. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  684. r_.wasm_v128 = wasm_f32x4_ne(a_.wasm_v128, b_.wasm_v128);
  685. #elif defined(SIMDE_POWER_ALTIVEC_P9_NATIVE) && SIMDE_ARCH_POWER_CHECK(900) && \
  686. !defined(HEDLEY_IBM_VERSION)
  687. /* vec_cmpne(vector float, vector float) is missing from XL C/C++ v16.1.1,
  688. though the documentation (table 89 on page 432 of the IBM XL C/C++ for
  689. Linux Compiler Reference, Version 16.1.1) shows that it should be
  690. present. Both GCC and clang support it. */
  691. r_.altivec_f32 = (SIMDE_POWER_ALTIVEC_VECTOR(float))vec_cmpne(
  692. a_.altivec_f32, b_.altivec_f32);
  693. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  694. r_.i32 = HEDLEY_STATIC_CAST(__typeof__(r_.i32), (a_.f32 != b_.f32));
  695. #else
  696. SIMDE_VECTORIZE
  697. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  698. r_.u32[i] = (a_.f32[i] != b_.f32[i]) ? ~UINT32_C(0)
  699. : UINT32_C(0);
  700. }
  701. #endif
  702. return simde__m128_from_private(r_);
  703. #endif
  704. }
  705. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  706. #define _mm_cmpneq_ps(a, b) simde_mm_cmpneq_ps((a), (b))
  707. #endif
  708. SIMDE_FUNCTION_ATTRIBUTES
  709. simde__m128 simde_mm_cmpneq_ss(simde__m128 a, simde__m128 b)
  710. {
  711. #if defined(SIMDE_X86_SSE_NATIVE)
  712. return _mm_cmpneq_ss(a, b);
  713. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  714. return simde_mm_move_ss(a, simde_mm_cmpneq_ps(a, b));
  715. #else
  716. simde__m128_private r_, a_ = simde__m128_to_private(a),
  717. b_ = simde__m128_to_private(b);
  718. r_.u32[0] = (a_.f32[0] != b_.f32[0]) ? ~UINT32_C(0) : UINT32_C(0);
  719. SIMDE_VECTORIZE
  720. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  721. r_.u32[i] = a_.u32[i];
  722. }
  723. return simde__m128_from_private(r_);
  724. #endif
  725. }
  726. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  727. #define _mm_cmpneq_ss(a, b) simde_mm_cmpneq_ss((a), (b))
  728. #endif
  729. SIMDE_FUNCTION_ATTRIBUTES
  730. simde__m128 simde_mm_cmpnge_ps(simde__m128 a, simde__m128 b)
  731. {
  732. return simde_mm_cmplt_ps(a, b);
  733. }
  734. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  735. #define _mm_cmpnge_ps(a, b) simde_mm_cmpnge_ps((a), (b))
  736. #endif
  737. SIMDE_FUNCTION_ATTRIBUTES
  738. simde__m128 simde_mm_cmpnge_ss(simde__m128 a, simde__m128 b)
  739. {
  740. return simde_mm_cmplt_ss(a, b);
  741. }
  742. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  743. #define _mm_cmpnge_ss(a, b) simde_mm_cmpnge_ss((a), (b))
  744. #endif
  745. SIMDE_FUNCTION_ATTRIBUTES
  746. simde__m128 simde_mm_cmpngt_ps(simde__m128 a, simde__m128 b)
  747. {
  748. return simde_mm_cmple_ps(a, b);
  749. }
  750. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  751. #define _mm_cmpngt_ps(a, b) simde_mm_cmpngt_ps((a), (b))
  752. #endif
  753. SIMDE_FUNCTION_ATTRIBUTES
  754. simde__m128 simde_mm_cmpngt_ss(simde__m128 a, simde__m128 b)
  755. {
  756. return simde_mm_cmple_ss(a, b);
  757. }
  758. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  759. #define _mm_cmpngt_ss(a, b) simde_mm_cmpngt_ss((a), (b))
  760. #endif
  761. SIMDE_FUNCTION_ATTRIBUTES
  762. simde__m128 simde_mm_cmpnle_ps(simde__m128 a, simde__m128 b)
  763. {
  764. return simde_mm_cmpgt_ps(a, b);
  765. }
  766. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  767. #define _mm_cmpnle_ps(a, b) simde_mm_cmpnle_ps((a), (b))
  768. #endif
  769. SIMDE_FUNCTION_ATTRIBUTES
  770. simde__m128 simde_mm_cmpnle_ss(simde__m128 a, simde__m128 b)
  771. {
  772. return simde_mm_cmpgt_ss(a, b);
  773. }
  774. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  775. #define _mm_cmpnle_ss(a, b) simde_mm_cmpnle_ss((a), (b))
  776. #endif
  777. SIMDE_FUNCTION_ATTRIBUTES
  778. simde__m128 simde_mm_cmpnlt_ps(simde__m128 a, simde__m128 b)
  779. {
  780. return simde_mm_cmpge_ps(a, b);
  781. }
  782. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  783. #define _mm_cmpnlt_ps(a, b) simde_mm_cmpnlt_ps((a), (b))
  784. #endif
  785. SIMDE_FUNCTION_ATTRIBUTES
  786. simde__m128 simde_mm_cmpnlt_ss(simde__m128 a, simde__m128 b)
  787. {
  788. return simde_mm_cmpge_ss(a, b);
  789. }
  790. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  791. #define _mm_cmpnlt_ss(a, b) simde_mm_cmpnlt_ss((a), (b))
  792. #endif
  793. SIMDE_FUNCTION_ATTRIBUTES
  794. simde__m128 simde_mm_cmpord_ps(simde__m128 a, simde__m128 b)
  795. {
  796. #if defined(SIMDE_X86_SSE_NATIVE)
  797. return _mm_cmpord_ps(a, b);
  798. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  799. return wasm_v128_and(wasm_f32x4_eq(a, a), wasm_f32x4_eq(b, b));
  800. #else
  801. simde__m128_private r_, a_ = simde__m128_to_private(a),
  802. b_ = simde__m128_to_private(b);
  803. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  804. /* Note: NEON does not have ordered compare builtin
  805. Need to compare a eq a and b eq b to check for NaN
  806. Do AND of results to get final */
  807. uint32x4_t ceqaa = vceqq_f32(a_.neon_f32, a_.neon_f32);
  808. uint32x4_t ceqbb = vceqq_f32(b_.neon_f32, b_.neon_f32);
  809. r_.neon_u32 = vandq_u32(ceqaa, ceqbb);
  810. #elif defined(simde_math_isnanf)
  811. SIMDE_VECTORIZE
  812. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  813. r_.u32[i] = (simde_math_isnanf(a_.f32[i]) ||
  814. simde_math_isnanf(b_.f32[i]))
  815. ? UINT32_C(0)
  816. : ~UINT32_C(0);
  817. }
  818. #else
  819. HEDLEY_UNREACHABLE();
  820. #endif
  821. return simde__m128_from_private(r_);
  822. #endif
  823. }
  824. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  825. #define _mm_cmpord_ps(a, b) simde_mm_cmpord_ps((a), (b))
  826. #endif
  827. SIMDE_FUNCTION_ATTRIBUTES
  828. simde__m128 simde_mm_cmpunord_ps(simde__m128 a, simde__m128 b)
  829. {
  830. #if defined(SIMDE_X86_SSE_NATIVE)
  831. return _mm_cmpunord_ps(a, b);
  832. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  833. return wasm_v128_or(wasm_f32x4_ne(a, a), wasm_f32x4_ne(b, b));
  834. #else
  835. simde__m128_private r_, a_ = simde__m128_to_private(a),
  836. b_ = simde__m128_to_private(b);
  837. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  838. uint32x4_t ceqaa = vceqq_f32(a_.neon_f32, a_.neon_f32);
  839. uint32x4_t ceqbb = vceqq_f32(b_.neon_f32, b_.neon_f32);
  840. r_.neon_u32 = vmvnq_u32(vandq_u32(ceqaa, ceqbb));
  841. #elif defined(simde_math_isnanf)
  842. SIMDE_VECTORIZE
  843. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  844. r_.u32[i] = (simde_math_isnanf(a_.f32[i]) ||
  845. simde_math_isnanf(b_.f32[i]))
  846. ? ~UINT32_C(0)
  847. : UINT32_C(0);
  848. }
  849. #else
  850. HEDLEY_UNREACHABLE();
  851. #endif
  852. return simde__m128_from_private(r_);
  853. #endif
  854. }
  855. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  856. #define _mm_cmpunord_ps(a, b) simde_mm_cmpunord_ps((a), (b))
  857. #endif
  858. SIMDE_FUNCTION_ATTRIBUTES
  859. simde__m128 simde_mm_cmpunord_ss(simde__m128 a, simde__m128 b)
  860. {
  861. #if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
  862. return _mm_cmpunord_ss(a, b);
  863. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  864. return simde_mm_move_ss(a, simde_mm_cmpunord_ps(a, b));
  865. #else
  866. simde__m128_private r_, a_ = simde__m128_to_private(a),
  867. b_ = simde__m128_to_private(b);
  868. #if defined(simde_math_isnanf)
  869. r_.u32[0] =
  870. (simde_math_isnanf(a_.f32[0]) || simde_math_isnanf(b_.f32[0]))
  871. ? ~UINT32_C(0)
  872. : UINT32_C(0);
  873. SIMDE_VECTORIZE
  874. for (size_t i = 1; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
  875. r_.u32[i] = a_.u32[i];
  876. }
  877. #else
  878. HEDLEY_UNREACHABLE();
  879. #endif
  880. return simde__m128_from_private(r_);
  881. #endif
  882. }
  883. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  884. #define _mm_cmpunord_ss(a, b) simde_mm_cmpunord_ss((a), (b))
  885. #endif
  886. SIMDE_FUNCTION_ATTRIBUTES
  887. int simde_mm_comieq_ss(simde__m128 a, simde__m128 b)
  888. {
  889. #if defined(SIMDE_X86_SSE_NATIVE)
  890. return _mm_comieq_ss(a, b);
  891. #else
  892. simde__m128_private a_ = simde__m128_to_private(a),
  893. b_ = simde__m128_to_private(b);
  894. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  895. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  896. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  897. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  898. uint32x4_t a_eq_b = vceqq_f32(a_.neon_f32, b_.neon_f32);
  899. return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0);
  900. #else
  901. return a_.f32[0] == b_.f32[0];
  902. #endif
  903. #endif
  904. }
  905. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  906. #define _mm_comieq_ss(a, b) simde_mm_comieq_ss((a), (b))
  907. #endif
  908. SIMDE_FUNCTION_ATTRIBUTES
  909. int simde_mm_comige_ss(simde__m128 a, simde__m128 b)
  910. {
  911. #if defined(SIMDE_X86_SSE_NATIVE)
  912. return _mm_comige_ss(a, b);
  913. #else
  914. simde__m128_private a_ = simde__m128_to_private(a),
  915. b_ = simde__m128_to_private(b);
  916. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  917. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  918. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  919. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  920. uint32x4_t a_ge_b = vcgeq_f32(a_.neon_f32, b_.neon_f32);
  921. return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0);
  922. #else
  923. return a_.f32[0] >= b_.f32[0];
  924. #endif
  925. #endif
  926. }
  927. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  928. #define _mm_comige_ss(a, b) simde_mm_comige_ss((a), (b))
  929. #endif
  930. SIMDE_FUNCTION_ATTRIBUTES
  931. int simde_mm_comigt_ss(simde__m128 a, simde__m128 b)
  932. {
  933. #if defined(SIMDE_X86_SSE_NATIVE)
  934. return _mm_comigt_ss(a, b);
  935. #else
  936. simde__m128_private a_ = simde__m128_to_private(a),
  937. b_ = simde__m128_to_private(b);
  938. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  939. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  940. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  941. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  942. uint32x4_t a_gt_b = vcgtq_f32(a_.neon_f32, b_.neon_f32);
  943. return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0);
  944. #else
  945. return a_.f32[0] > b_.f32[0];
  946. #endif
  947. #endif
  948. }
  949. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  950. #define _mm_comigt_ss(a, b) simde_mm_comigt_ss((a), (b))
  951. #endif
  952. SIMDE_FUNCTION_ATTRIBUTES
  953. int simde_mm_comile_ss(simde__m128 a, simde__m128 b)
  954. {
  955. #if defined(SIMDE_X86_SSE_NATIVE)
  956. return _mm_comile_ss(a, b);
  957. #else
  958. simde__m128_private a_ = simde__m128_to_private(a),
  959. b_ = simde__m128_to_private(b);
  960. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  961. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  962. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  963. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  964. uint32x4_t a_le_b = vcleq_f32(a_.neon_f32, b_.neon_f32);
  965. return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0);
  966. #else
  967. return a_.f32[0] <= b_.f32[0];
  968. #endif
  969. #endif
  970. }
  971. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  972. #define _mm_comile_ss(a, b) simde_mm_comile_ss((a), (b))
  973. #endif
  974. SIMDE_FUNCTION_ATTRIBUTES
  975. int simde_mm_comilt_ss(simde__m128 a, simde__m128 b)
  976. {
  977. #if defined(SIMDE_X86_SSE_NATIVE)
  978. return _mm_comilt_ss(a, b);
  979. #else
  980. simde__m128_private a_ = simde__m128_to_private(a),
  981. b_ = simde__m128_to_private(b);
  982. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  983. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  984. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  985. uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
  986. uint32x4_t a_lt_b = vcltq_f32(a_.neon_f32, b_.neon_f32);
  987. return !!(vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0);
  988. #else
  989. return a_.f32[0] < b_.f32[0];
  990. #endif
  991. #endif
  992. }
  993. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  994. #define _mm_comilt_ss(a, b) simde_mm_comilt_ss((a), (b))
  995. #endif
  996. SIMDE_FUNCTION_ATTRIBUTES
  997. int simde_mm_comineq_ss(simde__m128 a, simde__m128 b)
  998. {
  999. #if defined(SIMDE_X86_SSE_NATIVE)
  1000. return _mm_comineq_ss(a, b);
  1001. #else
  1002. simde__m128_private a_ = simde__m128_to_private(a),
  1003. b_ = simde__m128_to_private(b);
  1004. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1005. uint32x4_t a_not_nan = vceqq_f32(a_.neon_f32, a_.neon_f32);
  1006. uint32x4_t b_not_nan = vceqq_f32(b_.neon_f32, b_.neon_f32);
  1007. uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
  1008. uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(a_.neon_f32, b_.neon_f32));
  1009. return !!(vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0);
  1010. #else
  1011. return a_.f32[0] != b_.f32[0];
  1012. #endif
  1013. #endif
  1014. }
  1015. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1016. #define _mm_comineq_ss(a, b) simde_mm_comineq_ss((a), (b))
  1017. #endif
  1018. SIMDE_FUNCTION_ATTRIBUTES
  1019. simde__m128 simde_mm_cvt_pi2ps(simde__m128 a, simde__m64 b)
  1020. {
  1021. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1022. return _mm_cvt_pi2ps(a, b);
  1023. #else
  1024. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1025. simde__m64_private b_ = simde__m64_to_private(b);
  1026. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1027. r_.neon_f32 = vcombine_f32(vcvt_f32_s32(b_.neon_i32),
  1028. vget_high_f32(a_.neon_f32));
  1029. #elif defined(SIMDE_CONVERT_VECTOR_)
  1030. SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, b_.i32);
  1031. r_.m64_private[1] = a_.m64_private[1];
  1032. #else
  1033. r_.f32[0] = (simde_float32)b_.i32[0];
  1034. r_.f32[1] = (simde_float32)b_.i32[1];
  1035. r_.i32[2] = a_.i32[2];
  1036. r_.i32[3] = a_.i32[3];
  1037. #endif
  1038. return simde__m128_from_private(r_);
  1039. #endif
  1040. }
  1041. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1042. #define _mm_cvt_pi2ps(a, b) simde_mm_cvt_pi2ps((a), b)
  1043. #endif
  1044. SIMDE_FUNCTION_ATTRIBUTES
  1045. simde__m64 simde_mm_cvt_ps2pi(simde__m128 a)
  1046. {
  1047. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1048. return _mm_cvt_ps2pi(a);
  1049. #else
  1050. simde__m64_private r_;
  1051. simde__m128_private a_ = simde__m128_to_private(a);
  1052. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1053. r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
  1054. #elif defined(SIMDE_CONVERT_VECTOR_) && !defined(__clang__)
  1055. SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
  1056. #else
  1057. SIMDE_VECTORIZE
  1058. for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
  1059. r_.i32[i] = HEDLEY_STATIC_CAST(int32_t, a_.f32[i]);
  1060. }
  1061. #endif
  1062. return simde__m64_from_private(r_);
  1063. #endif
  1064. }
  1065. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1066. #define _mm_cvt_ps2pi(a) simde_mm_cvt_ps2pi((a))
  1067. #endif
  1068. SIMDE_FUNCTION_ATTRIBUTES
  1069. simde__m128 simde_mm_cvt_si2ss(simde__m128 a, int32_t b)
  1070. {
  1071. #if defined(SIMDE_X86_SSE_NATIVE)
  1072. return _mm_cvt_si2ss(a, b);
  1073. #else
  1074. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1075. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1076. r_.neon_f32 = vsetq_lane_f32((float)b, a_.neon_f32, 0);
  1077. #else
  1078. r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
  1079. r_.i32[1] = a_.i32[1];
  1080. r_.i32[2] = a_.i32[2];
  1081. r_.i32[3] = a_.i32[3];
  1082. #endif
  1083. return simde__m128_from_private(r_);
  1084. #endif
  1085. }
  1086. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1087. #define _mm_cvt_si2ss(a, b) simde_mm_cvt_si2ss((a), b)
  1088. #endif
  1089. SIMDE_FUNCTION_ATTRIBUTES
  1090. int32_t simde_mm_cvt_ss2si(simde__m128 a)
  1091. {
  1092. #if defined(SIMDE_X86_SSE_NATIVE)
  1093. return _mm_cvt_ss2si(a);
  1094. #else
  1095. simde__m128_private a_ = simde__m128_to_private(a);
  1096. #if defined(SIMDE_ARM_NEON_A32V8_NATIVE) && !defined(SIMDE_BUG_GCC_95399)
  1097. return vgetq_lane_s32(vcvtnq_s32_f32(a_.neon_f32), 0);
  1098. #elif defined(simde_math_nearbyintf)
  1099. return SIMDE_CONVERT_FTOI(int32_t, simde_math_nearbyintf(a_.f32[0]));
  1100. #else
  1101. HEDLEY_UNREACHABLE();
  1102. #endif
  1103. #endif
  1104. }
  1105. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1106. #define _mm_cvt_ss2si(a) simde_mm_cvt_ss2si((a))
  1107. #endif
  1108. SIMDE_FUNCTION_ATTRIBUTES
  1109. simde__m128 simde_mm_cvtpi16_ps(simde__m64 a)
  1110. {
  1111. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1112. return _mm_cvtpi16_ps(a);
  1113. #else
  1114. simde__m128_private r_;
  1115. simde__m64_private a_ = simde__m64_to_private(a);
  1116. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE) && 0 /* TODO */
  1117. r_.neon_f32 = vmovl_s16(
  1118. vget_low_s16(vuzp1q_s16(a_.neon_i16, vmovq_n_s16(0))));
  1119. #elif defined(SIMDE_CONVERT_VECTOR_)
  1120. SIMDE_CONVERT_VECTOR_(r_.f32, a_.i16);
  1121. #else
  1122. SIMDE_VECTORIZE
  1123. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1124. simde_float32 v = a_.i16[i];
  1125. r_.f32[i] = v;
  1126. }
  1127. #endif
  1128. return simde__m128_from_private(r_);
  1129. #endif
  1130. }
  1131. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1132. #define _mm_cvtpi16_ps(a) simde_mm_cvtpi16_ps(a)
  1133. #endif
  1134. SIMDE_FUNCTION_ATTRIBUTES
  1135. simde__m128 simde_mm_cvtpi32_ps(simde__m128 a, simde__m64 b)
  1136. {
  1137. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1138. return _mm_cvtpi32_ps(a, b);
  1139. #else
  1140. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1141. simde__m64_private b_ = simde__m64_to_private(b);
  1142. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1143. r_.neon_f32 = vcombine_f32(vcvt_f32_s32(b_.neon_i32),
  1144. vget_high_f32(a_.neon_f32));
  1145. #elif defined(SIMDE_CONVERT_VECTOR_)
  1146. SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, b_.i32);
  1147. r_.m64_private[1] = a_.m64_private[1];
  1148. #else
  1149. r_.f32[0] = (simde_float32)b_.i32[0];
  1150. r_.f32[1] = (simde_float32)b_.i32[1];
  1151. r_.i32[2] = a_.i32[2];
  1152. r_.i32[3] = a_.i32[3];
  1153. #endif
  1154. return simde__m128_from_private(r_);
  1155. #endif
  1156. }
  1157. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1158. #define _mm_cvtpi32_ps(a, b) simde_mm_cvtpi32_ps((a), b)
  1159. #endif
  1160. SIMDE_FUNCTION_ATTRIBUTES
  1161. simde__m128 simde_mm_cvtpi32x2_ps(simde__m64 a, simde__m64 b)
  1162. {
  1163. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1164. return _mm_cvtpi32x2_ps(a, b);
  1165. #else
  1166. simde__m128_private r_;
  1167. simde__m64_private a_ = simde__m64_to_private(a),
  1168. b_ = simde__m64_to_private(b);
  1169. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1170. r_.neon_f32 = vcvtq_f32_s32(vcombine_s32(a_.neon_i32, b_.neon_i32));
  1171. #elif defined(SIMDE_CONVERT_VECTOR_)
  1172. SIMDE_CONVERT_VECTOR_(r_.m64_private[0].f32, a_.i32);
  1173. SIMDE_CONVERT_VECTOR_(r_.m64_private[1].f32, b_.i32);
  1174. #else
  1175. r_.f32[0] = (simde_float32)a_.i32[0];
  1176. r_.f32[1] = (simde_float32)a_.i32[1];
  1177. r_.f32[2] = (simde_float32)b_.i32[0];
  1178. r_.f32[3] = (simde_float32)b_.i32[1];
  1179. #endif
  1180. return simde__m128_from_private(r_);
  1181. #endif
  1182. }
  1183. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1184. #define _mm_cvtpi32x2_ps(a, b) simde_mm_cvtpi32x2_ps(a, b)
  1185. #endif
  1186. SIMDE_FUNCTION_ATTRIBUTES
  1187. simde__m128 simde_mm_cvtpi8_ps(simde__m64 a)
  1188. {
  1189. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1190. return _mm_cvtpi8_ps(a);
  1191. #else
  1192. simde__m128_private r_;
  1193. simde__m64_private a_ = simde__m64_to_private(a);
  1194. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1195. r_.neon_f32 =
  1196. vcvtq_f32_s32(vmovl_s16(vget_low_s16(vmovl_s8(a_.neon_i8))));
  1197. #else
  1198. r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[0]);
  1199. r_.f32[1] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[1]);
  1200. r_.f32[2] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[2]);
  1201. r_.f32[3] = HEDLEY_STATIC_CAST(simde_float32, a_.i8[3]);
  1202. #endif
  1203. return simde__m128_from_private(r_);
  1204. #endif
  1205. }
  1206. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1207. #define _mm_cvtpi8_ps(a) simde_mm_cvtpi8_ps(a)
  1208. #endif
  1209. SIMDE_FUNCTION_ATTRIBUTES
  1210. simde__m64 simde_mm_cvtps_pi16(simde__m128 a)
  1211. {
  1212. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1213. return _mm_cvtps_pi16(a);
  1214. #else
  1215. simde__m64_private r_;
  1216. simde__m128_private a_ = simde__m128_to_private(a);
  1217. #if defined(SIMDE_CONVERT_VECTOR_)
  1218. SIMDE_CONVERT_VECTOR_(r_.i16, a_.f32);
  1219. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1220. r_.neon_i16 = vmovn_s32(vcvtq_s32_f32(a_.neon_f32));
  1221. #else
  1222. SIMDE_VECTORIZE
  1223. for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
  1224. r_.i16[i] = SIMDE_CONVERT_FTOI(int16_t, a_.f32[i]);
  1225. }
  1226. #endif
  1227. return simde__m64_from_private(r_);
  1228. #endif
  1229. }
  1230. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1231. #define _mm_cvtps_pi16(a) simde_mm_cvtps_pi16((a))
  1232. #endif
  1233. SIMDE_FUNCTION_ATTRIBUTES
  1234. simde__m64 simde_mm_cvtps_pi32(simde__m128 a)
  1235. {
  1236. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1237. return _mm_cvtps_pi32(a);
  1238. #else
  1239. simde__m64_private r_;
  1240. simde__m128_private a_ = simde__m128_to_private(a);
  1241. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1242. r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
  1243. #elif defined(SIMDE_CONVERT_VECTOR_)
  1244. SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
  1245. #else
  1246. SIMDE_VECTORIZE
  1247. for (size_t i = 0; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
  1248. r_.i32[i] = SIMDE_CONVERT_FTOI(int32_t, a_.f32[i]);
  1249. }
  1250. #endif
  1251. return simde__m64_from_private(r_);
  1252. #endif
  1253. }
  1254. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1255. #define _mm_cvtps_pi32(a) simde_mm_cvtps_pi32((a))
  1256. #endif
  1257. SIMDE_FUNCTION_ATTRIBUTES
  1258. simde__m64 simde_mm_cvtps_pi8(simde__m128 a)
  1259. {
  1260. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1261. return _mm_cvtps_pi8(a);
  1262. #else
  1263. simde__m64_private r_;
  1264. simde__m128_private a_ = simde__m128_to_private(a);
  1265. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1266. int16x4_t b = vmovn_s32(vcvtq_s32_f32(a_.neon_f32));
  1267. int16x8_t c = vcombine_s16(b, vmov_n_s16(0));
  1268. r_.neon_i8 = vmovn_s16(c);
  1269. #else
  1270. SIMDE_VECTORIZE
  1271. for (size_t i = 0; i < (sizeof(a_.f32) / sizeof(a_.f32[0])); i++) {
  1272. r_.i8[i] = SIMDE_CONVERT_FTOI(int8_t, a_.f32[i]);
  1273. }
  1274. /* Note: the upper half is undefined */
  1275. #endif
  1276. return simde__m64_from_private(r_);
  1277. #endif
  1278. }
  1279. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1280. #define _mm_cvtps_pi8(a) simde_mm_cvtps_pi8((a))
  1281. #endif
  1282. SIMDE_FUNCTION_ATTRIBUTES
  1283. simde__m128 simde_mm_cvtpu16_ps(simde__m64 a)
  1284. {
  1285. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1286. return _mm_cvtpu16_ps(a);
  1287. #else
  1288. simde__m128_private r_;
  1289. simde__m64_private a_ = simde__m64_to_private(a);
  1290. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1291. r_.neon_f32 = vcvtq_f32_u32(vmovl_u16(a_.neon_u16));
  1292. #elif defined(SIMDE_CONVERT_VECTOR_)
  1293. SIMDE_CONVERT_VECTOR_(r_.f32, a_.u16);
  1294. #else
  1295. SIMDE_VECTORIZE
  1296. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1297. r_.f32[i] = (simde_float32)a_.u16[i];
  1298. }
  1299. #endif
  1300. return simde__m128_from_private(r_);
  1301. #endif
  1302. }
  1303. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1304. #define _mm_cvtpu16_ps(a) simde_mm_cvtpu16_ps(a)
  1305. #endif
  1306. SIMDE_FUNCTION_ATTRIBUTES
  1307. simde__m128 simde_mm_cvtpu8_ps(simde__m64 a)
  1308. {
  1309. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1310. return _mm_cvtpu8_ps(a);
  1311. #else
  1312. simde__m128_private r_;
  1313. simde__m64_private a_ = simde__m64_to_private(a);
  1314. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1315. r_.neon_f32 =
  1316. vcvtq_f32_u32(vmovl_u16(vget_low_u16(vmovl_u8(a_.neon_u8))));
  1317. #else
  1318. SIMDE_VECTORIZE
  1319. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1320. r_.f32[i] = HEDLEY_STATIC_CAST(simde_float32, a_.u8[i]);
  1321. }
  1322. #endif
  1323. return simde__m128_from_private(r_);
  1324. #endif
  1325. }
  1326. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1327. #define _mm_cvtpu8_ps(a) simde_mm_cvtpu8_ps(a)
  1328. #endif
  1329. SIMDE_FUNCTION_ATTRIBUTES
  1330. simde__m128 simde_mm_cvtsi32_ss(simde__m128 a, int32_t b)
  1331. {
  1332. #if defined(SIMDE_X86_SSE_NATIVE)
  1333. return _mm_cvtsi32_ss(a, b);
  1334. #else
  1335. simde__m128_private r_;
  1336. simde__m128_private a_ = simde__m128_to_private(a);
  1337. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1338. r_.neon_f32 = vsetq_lane_f32((simde_float32)b, a_.neon_f32, 0);
  1339. #else
  1340. r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
  1341. SIMDE_VECTORIZE
  1342. for (size_t i = 1; i < (sizeof(r_.i32) / sizeof(r_.i32[0])); i++) {
  1343. r_.i32[i] = a_.i32[i];
  1344. }
  1345. #endif
  1346. return simde__m128_from_private(r_);
  1347. #endif
  1348. }
  1349. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1350. #define _mm_cvtsi32_ss(a, b) simde_mm_cvtsi32_ss((a), b)
  1351. #endif
  1352. SIMDE_FUNCTION_ATTRIBUTES
  1353. simde__m128 simde_mm_cvtsi64_ss(simde__m128 a, int64_t b)
  1354. {
  1355. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
  1356. #if !defined(__PGI)
  1357. return _mm_cvtsi64_ss(a, b);
  1358. #else
  1359. return _mm_cvtsi64x_ss(a, b);
  1360. #endif
  1361. #else
  1362. simde__m128_private r_;
  1363. simde__m128_private a_ = simde__m128_to_private(a);
  1364. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1365. r_.neon_f32 = vsetq_lane_f32((simde_float32)b, a_.neon_f32, 0);
  1366. #else
  1367. r_ = a_;
  1368. r_.f32[0] = HEDLEY_STATIC_CAST(simde_float32, b);
  1369. #endif
  1370. return simde__m128_from_private(r_);
  1371. #endif
  1372. }
  1373. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1374. #define _mm_cvtsi64_ss(a, b) simde_mm_cvtsi64_ss((a), b)
  1375. #endif
  1376. SIMDE_FUNCTION_ATTRIBUTES
  1377. simde_float32 simde_mm_cvtss_f32(simde__m128 a)
  1378. {
  1379. #if defined(SIMDE_X86_SSE_NATIVE)
  1380. return _mm_cvtss_f32(a);
  1381. #else
  1382. simde__m128_private a_ = simde__m128_to_private(a);
  1383. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1384. return vgetq_lane_f32(a_.neon_f32, 0);
  1385. #else
  1386. return a_.f32[0];
  1387. #endif
  1388. #endif
  1389. }
  1390. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1391. #define _mm_cvtss_f32(a) simde_mm_cvtss_f32((a))
  1392. #endif
  1393. SIMDE_FUNCTION_ATTRIBUTES
  1394. int32_t simde_mm_cvtss_si32(simde__m128 a)
  1395. {
  1396. return simde_mm_cvt_ss2si(a);
  1397. }
  1398. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1399. #define _mm_cvtss_si32(a) simde_mm_cvtss_si32((a))
  1400. #endif
  1401. SIMDE_FUNCTION_ATTRIBUTES
  1402. int64_t simde_mm_cvtss_si64(simde__m128 a)
  1403. {
  1404. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
  1405. #if !defined(__PGI)
  1406. return _mm_cvtss_si64(a);
  1407. #else
  1408. return _mm_cvtss_si64x(a);
  1409. #endif
  1410. #else
  1411. simde__m128_private a_ = simde__m128_to_private(a);
  1412. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1413. return SIMDE_CONVERT_FTOI(int64_t, vgetq_lane_f32(a_.neon_f32, 0));
  1414. #else
  1415. return SIMDE_CONVERT_FTOI(int64_t, a_.f32[0]);
  1416. #endif
  1417. #endif
  1418. }
  1419. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1420. #define _mm_cvtss_si64(a) simde_mm_cvtss_si64((a))
  1421. #endif
  1422. SIMDE_FUNCTION_ATTRIBUTES
  1423. simde__m64 simde_mm_cvtt_ps2pi(simde__m128 a)
  1424. {
  1425. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1426. return _mm_cvtt_ps2pi(a);
  1427. #else
  1428. simde__m64_private r_;
  1429. simde__m128_private a_ = simde__m128_to_private(a);
  1430. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1431. r_.neon_i32 = vcvt_s32_f32(vget_low_f32(a_.neon_f32));
  1432. #elif defined(SIMDE_CONVERT_VECTOR_)
  1433. SIMDE_CONVERT_VECTOR_(r_.i32, a_.m64_private[0].f32);
  1434. #else
  1435. SIMDE_VECTORIZE
  1436. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1437. r_.i32[i] = SIMDE_CONVERT_FTOI(int32_t, a_.f32[i]);
  1438. }
  1439. #endif
  1440. return simde__m64_from_private(r_);
  1441. #endif
  1442. }
  1443. #define simde_mm_cvttps_pi32(a) simde_mm_cvtt_ps2pi(a)
  1444. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1445. #define _mm_cvtt_ps2pi(a) simde_mm_cvtt_ps2pi((a))
  1446. #define _mm_cvttps_pi32(a) simde_mm_cvttps_pi32((a))
  1447. #endif
  1448. SIMDE_FUNCTION_ATTRIBUTES
  1449. int32_t simde_mm_cvtt_ss2si(simde__m128 a)
  1450. {
  1451. #if defined(SIMDE_X86_SSE_NATIVE)
  1452. return _mm_cvtt_ss2si(a);
  1453. #else
  1454. simde__m128_private a_ = simde__m128_to_private(a);
  1455. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1456. return SIMDE_CONVERT_FTOI(int32_t, vgetq_lane_f32(a_.neon_f32, 0));
  1457. #else
  1458. return SIMDE_CONVERT_FTOI(int32_t, a_.f32[0]);
  1459. #endif
  1460. #endif
  1461. }
  1462. #define simde_mm_cvttss_si32(a) simde_mm_cvtt_ss2si((a))
  1463. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1464. #define _mm_cvtt_ss2si(a) simde_mm_cvtt_ss2si((a))
  1465. #define _mm_cvttss_si32(a) simde_mm_cvtt_ss2si((a))
  1466. #endif
  1467. SIMDE_FUNCTION_ATTRIBUTES
  1468. int64_t simde_mm_cvttss_si64(simde__m128 a)
  1469. {
  1470. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64) && \
  1471. !defined(_MSC_VER)
  1472. #if defined(__PGI)
  1473. return _mm_cvttss_si64x(a);
  1474. #else
  1475. return _mm_cvttss_si64(a);
  1476. #endif
  1477. #else
  1478. simde__m128_private a_ = simde__m128_to_private(a);
  1479. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1480. return SIMDE_CONVERT_FTOI(int64_t, vgetq_lane_f32(a_.neon_f32, 0));
  1481. #else
  1482. return SIMDE_CONVERT_FTOI(int64_t, a_.f32[0]);
  1483. #endif
  1484. #endif
  1485. }
  1486. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1487. #define _mm_cvttss_si64(a) simde_mm_cvttss_si64((a))
  1488. #endif
  1489. SIMDE_FUNCTION_ATTRIBUTES
  1490. simde__m128 simde_mm_cmpord_ss(simde__m128 a, simde__m128 b)
  1491. {
  1492. #if defined(SIMDE_X86_SSE_NATIVE)
  1493. return _mm_cmpord_ss(a, b);
  1494. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  1495. return simde_mm_move_ss(a, simde_mm_cmpord_ps(a, b));
  1496. #else
  1497. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1498. #if defined(simde_math_isnanf)
  1499. r_.u32[0] = (simde_math_isnanf(simde_mm_cvtss_f32(a)) ||
  1500. simde_math_isnanf(simde_mm_cvtss_f32(b)))
  1501. ? UINT32_C(0)
  1502. : ~UINT32_C(0);
  1503. SIMDE_VECTORIZE
  1504. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1505. r_.u32[i] = a_.u32[i];
  1506. }
  1507. #else
  1508. HEDLEY_UNREACHABLE();
  1509. #endif
  1510. return simde__m128_from_private(r_);
  1511. #endif
  1512. }
  1513. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1514. #define _mm_cmpord_ss(a, b) simde_mm_cmpord_ss((a), (b))
  1515. #endif
  1516. SIMDE_FUNCTION_ATTRIBUTES
  1517. simde__m128 simde_mm_div_ps(simde__m128 a, simde__m128 b)
  1518. {
  1519. #if defined(SIMDE_X86_SSE_NATIVE)
  1520. return _mm_div_ps(a, b);
  1521. #else
  1522. simde__m128_private r_, a_ = simde__m128_to_private(a),
  1523. b_ = simde__m128_to_private(b);
  1524. #if defined(SIMDE_ARM_NEON_A64V8_NATIVE)
  1525. r_.neon_f32 = vdivq_f32(a_.neon_f32, b_.neon_f32);
  1526. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1527. float32x4_t recip0 = vrecpeq_f32(b_.neon_f32);
  1528. float32x4_t recip1 =
  1529. vmulq_f32(recip0, vrecpsq_f32(recip0, b_.neon_f32));
  1530. r_.neon_f32 = vmulq_f32(a_.neon_f32, recip1);
  1531. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  1532. r_.wasm_v128 = wasm_f32x4_div(a_.wasm_v128, b_.wasm_v128);
  1533. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  1534. r_.f32 = a_.f32 / b_.f32;
  1535. #else
  1536. SIMDE_VECTORIZE
  1537. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1538. r_.f32[i] = a_.f32[i] / b_.f32[i];
  1539. }
  1540. #endif
  1541. return simde__m128_from_private(r_);
  1542. #endif
  1543. }
  1544. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1545. #define _mm_div_ps(a, b) simde_mm_div_ps((a), (b))
  1546. #endif
  1547. SIMDE_FUNCTION_ATTRIBUTES
  1548. simde__m128 simde_mm_div_ss(simde__m128 a, simde__m128 b)
  1549. {
  1550. #if defined(SIMDE_X86_SSE_NATIVE)
  1551. return _mm_div_ss(a, b);
  1552. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  1553. return simde_mm_move_ss(a, simde_mm_div_ps(a, b));
  1554. #else
  1555. simde__m128_private r_, a_ = simde__m128_to_private(a),
  1556. b_ = simde__m128_to_private(b);
  1557. r_.f32[0] = a_.f32[0] / b_.f32[0];
  1558. SIMDE_VECTORIZE
  1559. for (size_t i = 1; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1560. r_.f32[i] = a_.f32[i];
  1561. }
  1562. return simde__m128_from_private(r_);
  1563. #endif
  1564. }
  1565. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1566. #define _mm_div_ss(a, b) simde_mm_div_ss((a), (b))
  1567. #endif
  1568. SIMDE_FUNCTION_ATTRIBUTES
  1569. int16_t simde_mm_extract_pi16(simde__m64 a, const int imm8)
  1570. SIMDE_REQUIRE_RANGE(imm8, 0, 3)
  1571. {
  1572. simde__m64_private a_ = simde__m64_to_private(a);
  1573. return a_.i16[imm8];
  1574. }
  1575. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
  1576. !defined(HEDLEY_PGI_VERSION)
  1577. #if HEDLEY_HAS_WARNING("-Wvector-conversion")
  1578. /* https://bugs.llvm.org/show_bug.cgi?id=44589 */
  1579. #define simde_mm_extract_pi16(a, imm8) \
  1580. (HEDLEY_DIAGNOSTIC_PUSH _Pragma( \
  1581. "clang diagnostic ignored \"-Wvector-conversion\"") \
  1582. HEDLEY_STATIC_CAST(int16_t, _mm_extract_pi16((a), (imm8))) \
  1583. HEDLEY_DIAGNOSTIC_POP)
  1584. #else
  1585. #define simde_mm_extract_pi16(a, imm8) \
  1586. HEDLEY_STATIC_CAST(int16_t, _mm_extract_pi16(a, imm8))
  1587. #endif
  1588. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1589. #define simde_mm_extract_pi16(a, imm8) \
  1590. vget_lane_s16(simde__m64_to_private(a).neon_i16, imm8)
  1591. #endif
  1592. #define simde_m_pextrw(a, imm8) simde_mm_extract_pi16(a, imm8)
  1593. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1594. #define _mm_extract_pi16(a, imm8) simde_mm_extract_pi16((a), (imm8))
  1595. #endif
  1596. enum {
  1597. #if defined(SIMDE_X86_SSE_NATIVE)
  1598. SIMDE_MM_ROUND_NEAREST = _MM_ROUND_NEAREST,
  1599. SIMDE_MM_ROUND_DOWN = _MM_ROUND_DOWN,
  1600. SIMDE_MM_ROUND_UP = _MM_ROUND_UP,
  1601. SIMDE_MM_ROUND_TOWARD_ZERO = _MM_ROUND_TOWARD_ZERO
  1602. #else
  1603. SIMDE_MM_ROUND_NEAREST
  1604. #if defined(FE_TONEAREST)
  1605. = FE_TONEAREST
  1606. #endif
  1607. ,
  1608. SIMDE_MM_ROUND_DOWN
  1609. #if defined(FE_DOWNWARD)
  1610. = FE_DOWNWARD
  1611. #endif
  1612. ,
  1613. SIMDE_MM_ROUND_UP
  1614. #if defined(FE_UPWARD)
  1615. = FE_UPWARD
  1616. #endif
  1617. ,
  1618. SIMDE_MM_ROUND_TOWARD_ZERO
  1619. #if defined(FE_TOWARDZERO)
  1620. = FE_TOWARDZERO
  1621. #endif
  1622. #endif
  1623. };
  1624. SIMDE_FUNCTION_ATTRIBUTES
  1625. unsigned int SIMDE_MM_GET_ROUNDING_MODE(void)
  1626. {
  1627. #if defined(SIMDE_X86_SSE_NATIVE)
  1628. return _MM_GET_ROUNDING_MODE();
  1629. #elif defined(SIMDE_HAVE_FENV_H)
  1630. return HEDLEY_STATIC_CAST(unsigned int, fegetround());
  1631. #else
  1632. HEDLEY_UNREACHABLE();
  1633. #endif
  1634. }
  1635. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1636. #define _MM_GET_ROUNDING_MODE() SIMDE_MM_GET_ROUNDING_MODE()
  1637. #endif
  1638. SIMDE_FUNCTION_ATTRIBUTES
  1639. void SIMDE_MM_SET_ROUNDING_MODE(unsigned int a)
  1640. {
  1641. #if defined(SIMDE_X86_SSE_NATIVE)
  1642. _MM_SET_ROUNDING_MODE(a);
  1643. #elif defined(SIMDE_HAVE_FENV_H)
  1644. fesetround(HEDLEY_STATIC_CAST(int, a));
  1645. #endif
  1646. }
  1647. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1648. #define _MM_SET_ROUNDING_MODE(a) SIMDE_MM_SET_ROUNDING_MODE(a)
  1649. #endif
  1650. SIMDE_FUNCTION_ATTRIBUTES
  1651. simde__m64 simde_mm_insert_pi16(simde__m64 a, int16_t i, const int imm8)
  1652. SIMDE_REQUIRE_RANGE(imm8, 0, 3)
  1653. {
  1654. simde__m64_private r_, a_ = simde__m64_to_private(a);
  1655. r_.i64[0] = a_.i64[0];
  1656. r_.i16[imm8] = i;
  1657. return simde__m64_from_private(r_);
  1658. }
  1659. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
  1660. !defined(__PGI)
  1661. #if HEDLEY_HAS_WARNING("-Wvector-conversion")
  1662. /* https://bugs.llvm.org/show_bug.cgi?id=44589 */
  1663. #define ssimde_mm_insert_pi16(a, i, imm8) \
  1664. (HEDLEY_DIAGNOSTIC_PUSH _Pragma( \
  1665. "clang diagnostic ignored \"-Wvector-conversion\"")( \
  1666. _mm_insert_pi16((a), (i), (imm8))) HEDLEY_DIAGNOSTIC_POP)
  1667. #else
  1668. #define simde_mm_insert_pi16(a, i, imm8) _mm_insert_pi16(a, i, imm8)
  1669. #endif
  1670. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1671. #define simde_mm_insert_pi16(a, i, imm8) \
  1672. simde__m64_from_neon_i16( \
  1673. vset_lane_s16((i), simde__m64_to_neon_i16(a), (imm8)))
  1674. #endif
  1675. #define simde_m_pinsrw(a, i, imm8) (simde_mm_insert_pi16(a, i, imm8))
  1676. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1677. #define _mm_insert_pi16(a, i, imm8) simde_mm_insert_pi16(a, i, imm8)
  1678. #define _m_pinsrw(a, i, imm8) simde_mm_insert_pi16(a, i, imm8)
  1679. #endif
  1680. SIMDE_FUNCTION_ATTRIBUTES
  1681. simde__m128
  1682. simde_mm_load_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1683. {
  1684. simde_assert_aligned(16, mem_addr);
  1685. #if defined(SIMDE_X86_SSE_NATIVE)
  1686. return _mm_load_ps(mem_addr);
  1687. #else
  1688. simde__m128_private r_;
  1689. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1690. r_.neon_f32 = vld1q_f32(mem_addr);
  1691. #elif defined(SIMDE_POWER_ALTIVEC_P7_NATIVE)
  1692. r_.altivec_f32 = vec_vsx_ld(0, mem_addr);
  1693. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  1694. r_.altivec_f32 = vec_ld(0, mem_addr);
  1695. #else
  1696. r_ = *SIMDE_ALIGN_CAST(simde__m128_private const *, mem_addr);
  1697. #endif
  1698. return simde__m128_from_private(r_);
  1699. #endif
  1700. }
  1701. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1702. #define _mm_load_ps(mem_addr) simde_mm_load_ps(mem_addr)
  1703. #endif
  1704. SIMDE_FUNCTION_ATTRIBUTES
  1705. simde__m128 simde_mm_load_ps1(simde_float32 const *mem_addr)
  1706. {
  1707. #if defined(SIMDE_X86_SSE_NATIVE)
  1708. return _mm_load_ps1(mem_addr);
  1709. #else
  1710. simde__m128_private r_;
  1711. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1712. r_.neon_f32 = vld1q_dup_f32(mem_addr);
  1713. #else
  1714. r_ = simde__m128_to_private(simde_mm_set1_ps(*mem_addr));
  1715. #endif
  1716. return simde__m128_from_private(r_);
  1717. #endif
  1718. }
  1719. #define simde_mm_load1_ps(mem_addr) simde_mm_load_ps1(mem_addr)
  1720. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1721. #define _mm_load_ps1(mem_addr) simde_mm_load_ps1(mem_addr)
  1722. #define _mm_load1_ps(mem_addr) simde_mm_load_ps1(mem_addr)
  1723. #endif
  1724. SIMDE_FUNCTION_ATTRIBUTES
  1725. simde__m128 simde_mm_load_ss(simde_float32 const *mem_addr)
  1726. {
  1727. #if defined(SIMDE_X86_SSE_NATIVE)
  1728. return _mm_load_ss(mem_addr);
  1729. #else
  1730. simde__m128_private r_;
  1731. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1732. r_.neon_f32 = vsetq_lane_f32(*mem_addr, vdupq_n_f32(0), 0);
  1733. #else
  1734. r_.f32[0] = *mem_addr;
  1735. r_.i32[1] = 0;
  1736. r_.i32[2] = 0;
  1737. r_.i32[3] = 0;
  1738. #endif
  1739. return simde__m128_from_private(r_);
  1740. #endif
  1741. }
  1742. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1743. #define _mm_load_ss(mem_addr) simde_mm_load_ss(mem_addr)
  1744. #endif
  1745. SIMDE_FUNCTION_ATTRIBUTES
  1746. simde__m128 simde_mm_loadh_pi(simde__m128 a, simde__m64 const *mem_addr)
  1747. {
  1748. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1749. return _mm_loadh_pi(a,
  1750. HEDLEY_REINTERPRET_CAST(__m64 const *, mem_addr));
  1751. #else
  1752. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1753. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1754. r_.neon_f32 = vcombine_f32(
  1755. vget_low_f32(a_.neon_f32),
  1756. vld1_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr)));
  1757. #else
  1758. simde__m64_private b_ =
  1759. *HEDLEY_REINTERPRET_CAST(simde__m64_private const *, mem_addr);
  1760. r_.f32[0] = a_.f32[0];
  1761. r_.f32[1] = a_.f32[1];
  1762. r_.f32[2] = b_.f32[0];
  1763. r_.f32[3] = b_.f32[1];
  1764. #endif
  1765. return simde__m128_from_private(r_);
  1766. #endif
  1767. }
  1768. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1769. #define _mm_loadh_pi(a, mem_addr) \
  1770. simde_mm_loadh_pi((a), (simde__m64 const *)(mem_addr))
  1771. #endif
  1772. /* The SSE documentation says that there are no alignment requirements
  1773. for mem_addr. Unfortunately they used the __m64 type for the argument
  1774. which is supposed to be 8-byte aligned, so some compilers (like clang
  1775. with -Wcast-align) will generate a warning if you try to cast, say,
  1776. a simde_float32* to a simde__m64* for this function.
  1777. I think the choice of argument type is unfortunate, but I do think we
  1778. need to stick to it here. If there is demand I can always add something
  1779. like simde_x_mm_loadl_f32(simde__m128, simde_float32 mem_addr[2]) */
  1780. SIMDE_FUNCTION_ATTRIBUTES
  1781. simde__m128 simde_mm_loadl_pi(simde__m128 a, simde__m64 const *mem_addr)
  1782. {
  1783. #if defined(SIMDE_X86_SSE_NATIVE)
  1784. return _mm_loadl_pi(a,
  1785. HEDLEY_REINTERPRET_CAST(__m64 const *, mem_addr));
  1786. #else
  1787. simde__m128_private r_, a_ = simde__m128_to_private(a);
  1788. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1789. r_.neon_f32 = vcombine_f32(
  1790. vld1_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr)),
  1791. vget_high_f32(a_.neon_f32));
  1792. #else
  1793. simde__m64_private b_;
  1794. simde_memcpy(&b_, mem_addr, sizeof(b_));
  1795. r_.i32[0] = b_.i32[0];
  1796. r_.i32[1] = b_.i32[1];
  1797. r_.i32[2] = a_.i32[2];
  1798. r_.i32[3] = a_.i32[3];
  1799. #endif
  1800. return simde__m128_from_private(r_);
  1801. #endif
  1802. }
  1803. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1804. #define _mm_loadl_pi(a, mem_addr) \
  1805. simde_mm_loadl_pi((a), (simde__m64 const *)(mem_addr))
  1806. #endif
  1807. SIMDE_FUNCTION_ATTRIBUTES
  1808. simde__m128
  1809. simde_mm_loadr_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1810. {
  1811. simde_assert_aligned(16, mem_addr);
  1812. #if defined(SIMDE_X86_SSE_NATIVE)
  1813. return _mm_loadr_ps(mem_addr);
  1814. #else
  1815. simde__m128_private r_,
  1816. v_ = simde__m128_to_private(simde_mm_load_ps(mem_addr));
  1817. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1818. r_.neon_f32 = vrev64q_f32(v_.neon_f32);
  1819. r_.neon_f32 = vextq_f32(r_.neon_f32, r_.neon_f32, 2);
  1820. #elif defined(SIMDE_SHUFFLE_VECTOR_)
  1821. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, v_.f32, v_.f32, 3, 2, 1, 0);
  1822. #else
  1823. r_.f32[0] = v_.f32[3];
  1824. r_.f32[1] = v_.f32[2];
  1825. r_.f32[2] = v_.f32[1];
  1826. r_.f32[3] = v_.f32[0];
  1827. #endif
  1828. return simde__m128_from_private(r_);
  1829. #endif
  1830. }
  1831. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1832. #define _mm_loadr_ps(mem_addr) simde_mm_loadr_ps(mem_addr)
  1833. #endif
  1834. SIMDE_FUNCTION_ATTRIBUTES
  1835. simde__m128
  1836. simde_mm_loadu_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
  1837. {
  1838. #if defined(SIMDE_X86_SSE_NATIVE)
  1839. return _mm_loadu_ps(mem_addr);
  1840. #else
  1841. simde__m128_private r_;
  1842. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1843. r_.neon_f32 =
  1844. vld1q_f32(HEDLEY_REINTERPRET_CAST(const float32_t *, mem_addr));
  1845. #else
  1846. r_.f32[0] = mem_addr[0];
  1847. r_.f32[1] = mem_addr[1];
  1848. r_.f32[2] = mem_addr[2];
  1849. r_.f32[3] = mem_addr[3];
  1850. #endif
  1851. return simde__m128_from_private(r_);
  1852. #endif
  1853. }
  1854. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1855. #define _mm_loadu_ps(mem_addr) simde_mm_loadu_ps(mem_addr)
  1856. #endif
  1857. SIMDE_FUNCTION_ATTRIBUTES
  1858. void simde_mm_maskmove_si64(simde__m64 a, simde__m64 mask, int8_t *mem_addr)
  1859. {
  1860. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1861. _mm_maskmove_si64(a, mask, HEDLEY_REINTERPRET_CAST(char *, mem_addr));
  1862. #else
  1863. simde__m64_private a_ = simde__m64_to_private(a),
  1864. mask_ = simde__m64_to_private(mask);
  1865. SIMDE_VECTORIZE
  1866. for (size_t i = 0; i < (sizeof(a_.i8) / sizeof(a_.i8[0])); i++)
  1867. if (mask_.i8[i] < 0)
  1868. mem_addr[i] = a_.i8[i];
  1869. #endif
  1870. }
  1871. #define simde_m_maskmovq(a, mask, mem_addr) \
  1872. simde_mm_maskmove_si64(a, mask, mem_addr)
  1873. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1874. #define _mm_maskmove_si64(a, mask, mem_addr) \
  1875. simde_mm_maskmove_si64( \
  1876. (a), (mask), \
  1877. SIMDE_CHECKED_REINTERPRET_CAST(int8_t *, char *, (mem_addr)))
  1878. #endif
  1879. SIMDE_FUNCTION_ATTRIBUTES
  1880. simde__m64 simde_mm_max_pi16(simde__m64 a, simde__m64 b)
  1881. {
  1882. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1883. return _mm_max_pi16(a, b);
  1884. #else
  1885. simde__m64_private r_, a_ = simde__m64_to_private(a),
  1886. b_ = simde__m64_to_private(b);
  1887. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1888. r_.neon_i16 = vmax_s16(a_.neon_i16, b_.neon_i16);
  1889. #else
  1890. SIMDE_VECTORIZE
  1891. for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
  1892. r_.i16[i] = (a_.i16[i] > b_.i16[i]) ? a_.i16[i] : b_.i16[i];
  1893. }
  1894. #endif
  1895. return simde__m64_from_private(r_);
  1896. #endif
  1897. }
  1898. #define simde_m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
  1899. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1900. #define _mm_max_pi16(a, b) simde_mm_max_pi16(a, b)
  1901. #define _m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
  1902. #endif
  1903. SIMDE_FUNCTION_ATTRIBUTES
  1904. simde__m128 simde_mm_max_ps(simde__m128 a, simde__m128 b)
  1905. {
  1906. #if defined(SIMDE_X86_SSE_NATIVE)
  1907. return _mm_max_ps(a, b);
  1908. #else
  1909. simde__m128_private r_, a_ = simde__m128_to_private(a),
  1910. b_ = simde__m128_to_private(b);
  1911. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1912. r_.neon_f32 = vmaxq_f32(a_.neon_f32, b_.neon_f32);
  1913. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  1914. r_.altivec_f32 = vec_max(a_.altivec_f32, b_.altivec_f32);
  1915. #else
  1916. SIMDE_VECTORIZE
  1917. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  1918. r_.f32[i] = (a_.f32[i] > b_.f32[i]) ? a_.f32[i] : b_.f32[i];
  1919. }
  1920. #endif
  1921. return simde__m128_from_private(r_);
  1922. #endif
  1923. }
  1924. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1925. #define _mm_max_ps(a, b) simde_mm_max_ps((a), (b))
  1926. #endif
  1927. SIMDE_FUNCTION_ATTRIBUTES
  1928. simde__m64 simde_mm_max_pu8(simde__m64 a, simde__m64 b)
  1929. {
  1930. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1931. return _mm_max_pu8(a, b);
  1932. #else
  1933. simde__m64_private r_, a_ = simde__m64_to_private(a),
  1934. b_ = simde__m64_to_private(b);
  1935. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1936. r_.neon_u8 = vmax_u8(a_.neon_u8, b_.neon_u8);
  1937. #else
  1938. SIMDE_VECTORIZE
  1939. for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
  1940. r_.u8[i] = (a_.u8[i] > b_.u8[i]) ? a_.u8[i] : b_.u8[i];
  1941. }
  1942. #endif
  1943. return simde__m64_from_private(r_);
  1944. #endif
  1945. }
  1946. #define simde_m_pmaxub(a, b) simde_mm_max_pu8(a, b)
  1947. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1948. #define _mm_max_pu8(a, b) simde_mm_max_pu8(a, b)
  1949. #define _m_pmaxub(a, b) simde_mm_max_pu8(a, b)
  1950. #endif
  1951. SIMDE_FUNCTION_ATTRIBUTES
  1952. simde__m128 simde_mm_max_ss(simde__m128 a, simde__m128 b)
  1953. {
  1954. #if defined(SIMDE_X86_SSE_NATIVE)
  1955. return _mm_max_ss(a, b);
  1956. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  1957. return simde_mm_move_ss(a, simde_mm_max_ps(a, b));
  1958. #else
  1959. simde__m128_private r_, a_ = simde__m128_to_private(a),
  1960. b_ = simde__m128_to_private(b);
  1961. r_.f32[0] = (a_.f32[0] > b_.f32[0]) ? a_.f32[0] : b_.f32[0];
  1962. r_.f32[1] = a_.f32[1];
  1963. r_.f32[2] = a_.f32[2];
  1964. r_.f32[3] = a_.f32[3];
  1965. return simde__m128_from_private(r_);
  1966. #endif
  1967. }
  1968. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1969. #define _mm_max_ss(a, b) simde_mm_max_ss((a), (b))
  1970. #endif
  1971. SIMDE_FUNCTION_ATTRIBUTES
  1972. simde__m64 simde_mm_min_pi16(simde__m64 a, simde__m64 b)
  1973. {
  1974. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  1975. return _mm_min_pi16(a, b);
  1976. #else
  1977. simde__m64_private r_, a_ = simde__m64_to_private(a),
  1978. b_ = simde__m64_to_private(b);
  1979. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  1980. r_.neon_i16 = vmin_s16(a_.neon_i16, b_.neon_i16);
  1981. #else
  1982. SIMDE_VECTORIZE
  1983. for (size_t i = 0; i < (sizeof(r_.i16) / sizeof(r_.i16[0])); i++) {
  1984. r_.i16[i] = (a_.i16[i] < b_.i16[i]) ? a_.i16[i] : b_.i16[i];
  1985. }
  1986. #endif
  1987. return simde__m64_from_private(r_);
  1988. #endif
  1989. }
  1990. #define simde_m_pminsw(a, b) simde_mm_min_pi16(a, b)
  1991. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  1992. #define _mm_min_pi16(a, b) simde_mm_min_pi16(a, b)
  1993. #define _m_pminsw(a, b) simde_mm_min_pi16(a, b)
  1994. #endif
  1995. SIMDE_FUNCTION_ATTRIBUTES
  1996. simde__m128 simde_mm_min_ps(simde__m128 a, simde__m128 b)
  1997. {
  1998. #if defined(SIMDE_X86_SSE_NATIVE)
  1999. return _mm_min_ps(a, b);
  2000. #else
  2001. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2002. b_ = simde__m128_to_private(b);
  2003. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2004. r_.neon_f32 = vminq_f32(a_.neon_f32, b_.neon_f32);
  2005. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  2006. r_.altivec_f32 = vec_min(a_.altivec_f32, b_.altivec_f32);
  2007. #else
  2008. SIMDE_VECTORIZE
  2009. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2010. r_.f32[i] = (a_.f32[i] < b_.f32[i]) ? a_.f32[i] : b_.f32[i];
  2011. }
  2012. #endif
  2013. return simde__m128_from_private(r_);
  2014. #endif
  2015. }
  2016. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2017. #define _mm_min_ps(a, b) simde_mm_min_ps((a), (b))
  2018. #endif
  2019. SIMDE_FUNCTION_ATTRIBUTES
  2020. simde__m64 simde_mm_min_pu8(simde__m64 a, simde__m64 b)
  2021. {
  2022. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  2023. return _mm_min_pu8(a, b);
  2024. #else
  2025. simde__m64_private r_, a_ = simde__m64_to_private(a),
  2026. b_ = simde__m64_to_private(b);
  2027. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2028. r_.neon_u8 = vmin_u8(a_.neon_u8, b_.neon_u8);
  2029. #else
  2030. SIMDE_VECTORIZE
  2031. for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
  2032. r_.u8[i] = (a_.u8[i] < b_.u8[i]) ? a_.u8[i] : b_.u8[i];
  2033. }
  2034. #endif
  2035. return simde__m64_from_private(r_);
  2036. #endif
  2037. }
  2038. #define simde_m_pminub(a, b) simde_mm_min_pu8(a, b)
  2039. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2040. #define _mm_min_pu8(a, b) simde_mm_min_pu8(a, b)
  2041. #define _m_pminub(a, b) simde_mm_min_pu8(a, b)
  2042. #endif
  2043. SIMDE_FUNCTION_ATTRIBUTES
  2044. simde__m128 simde_mm_min_ss(simde__m128 a, simde__m128 b)
  2045. {
  2046. #if defined(SIMDE_X86_SSE_NATIVE)
  2047. return _mm_min_ss(a, b);
  2048. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2049. return simde_mm_move_ss(a, simde_mm_min_ps(a, b));
  2050. #else
  2051. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2052. b_ = simde__m128_to_private(b);
  2053. r_.f32[0] = (a_.f32[0] < b_.f32[0]) ? a_.f32[0] : b_.f32[0];
  2054. r_.f32[1] = a_.f32[1];
  2055. r_.f32[2] = a_.f32[2];
  2056. r_.f32[3] = a_.f32[3];
  2057. return simde__m128_from_private(r_);
  2058. #endif
  2059. }
  2060. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2061. #define _mm_min_ss(a, b) simde_mm_min_ss((a), (b))
  2062. #endif
  2063. SIMDE_FUNCTION_ATTRIBUTES
  2064. simde__m128 simde_mm_movehl_ps(simde__m128 a, simde__m128 b)
  2065. {
  2066. #if defined(SIMDE_X86_SSE_NATIVE)
  2067. return _mm_movehl_ps(a, b);
  2068. #else
  2069. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2070. b_ = simde__m128_to_private(b);
  2071. #if defined(SIMDE_SHUFFLE_VECTOR_)
  2072. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 6, 7, 2, 3);
  2073. #else
  2074. r_.f32[0] = b_.f32[2];
  2075. r_.f32[1] = b_.f32[3];
  2076. r_.f32[2] = a_.f32[2];
  2077. r_.f32[3] = a_.f32[3];
  2078. #endif
  2079. return simde__m128_from_private(r_);
  2080. #endif
  2081. }
  2082. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2083. #define _mm_movehl_ps(a, b) simde_mm_movehl_ps((a), (b))
  2084. #endif
  2085. SIMDE_FUNCTION_ATTRIBUTES
  2086. simde__m128 simde_mm_movelh_ps(simde__m128 a, simde__m128 b)
  2087. {
  2088. #if defined(SIMDE_X86_SSE_NATIVE)
  2089. return _mm_movelh_ps(a, b);
  2090. #else
  2091. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2092. b_ = simde__m128_to_private(b);
  2093. #if defined(SIMDE_SHUFFLE_VECTOR_)
  2094. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 0, 1, 4, 5);
  2095. #else
  2096. r_.f32[0] = a_.f32[0];
  2097. r_.f32[1] = a_.f32[1];
  2098. r_.f32[2] = b_.f32[0];
  2099. r_.f32[3] = b_.f32[1];
  2100. #endif
  2101. return simde__m128_from_private(r_);
  2102. #endif
  2103. }
  2104. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2105. #define _mm_movelh_ps(a, b) simde_mm_movelh_ps((a), (b))
  2106. #endif
  2107. SIMDE_FUNCTION_ATTRIBUTES
  2108. int simde_mm_movemask_pi8(simde__m64 a)
  2109. {
  2110. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  2111. return _mm_movemask_pi8(a);
  2112. #else
  2113. simde__m64_private a_ = simde__m64_to_private(a);
  2114. int r = 0;
  2115. const size_t nmemb = sizeof(a_.i8) / sizeof(a_.i8[0]);
  2116. SIMDE_VECTORIZE_REDUCTION(| : r)
  2117. for (size_t i = 0; i < nmemb; i++) {
  2118. r |= (a_.u8[nmemb - 1 - i] >> 7) << (nmemb - 1 - i);
  2119. }
  2120. return r;
  2121. #endif
  2122. }
  2123. #define simde_m_pmovmskb(a, b) simde_mm_movemask_pi8(a, b)
  2124. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2125. #define _mm_movemask_pi8(a) simde_mm_movemask_pi8(a)
  2126. #endif
  2127. SIMDE_FUNCTION_ATTRIBUTES
  2128. int simde_mm_movemask_ps(simde__m128 a)
  2129. {
  2130. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  2131. return _mm_movemask_ps(a);
  2132. #else
  2133. int r = 0;
  2134. simde__m128_private a_ = simde__m128_to_private(a);
  2135. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2136. /* TODO: check to see if NEON version is faster than the portable version */
  2137. static const uint32x4_t movemask = {1, 2, 4, 8};
  2138. static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
  2139. 0x80000000};
  2140. uint32x4_t t0 = a_.neon_u32;
  2141. uint32x4_t t1 = vtstq_u32(t0, highbit);
  2142. uint32x4_t t2 = vandq_u32(t1, movemask);
  2143. uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
  2144. r = vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
  2145. #else
  2146. SIMDE_VECTORIZE_REDUCTION(| : r)
  2147. for (size_t i = 0; i < sizeof(a_.u32) / sizeof(a_.u32[0]); i++) {
  2148. r |= (a_.u32[i] >> ((sizeof(a_.u32[i]) * CHAR_BIT) - 1)) << i;
  2149. }
  2150. #endif
  2151. return r;
  2152. #endif
  2153. }
  2154. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2155. #define _mm_movemask_ps(a) simde_mm_movemask_ps((a))
  2156. #endif
  2157. SIMDE_FUNCTION_ATTRIBUTES
  2158. simde__m128 simde_mm_mul_ps(simde__m128 a, simde__m128 b)
  2159. {
  2160. #if defined(SIMDE_X86_SSE_NATIVE)
  2161. return _mm_mul_ps(a, b);
  2162. #else
  2163. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2164. b_ = simde__m128_to_private(b);
  2165. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2166. r_.neon_f32 = vmulq_f32(a_.neon_f32, b_.neon_f32);
  2167. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  2168. r_.wasm_v128 = wasm_f32x4_mul(a_.wasm_v128, b_.wasm_v128);
  2169. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  2170. r_.f32 = a_.f32 * b_.f32;
  2171. #else
  2172. SIMDE_VECTORIZE
  2173. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2174. r_.f32[i] = a_.f32[i] * b_.f32[i];
  2175. }
  2176. #endif
  2177. return simde__m128_from_private(r_);
  2178. #endif
  2179. }
  2180. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2181. #define _mm_mul_ps(a, b) simde_mm_mul_ps((a), (b))
  2182. #endif
  2183. SIMDE_FUNCTION_ATTRIBUTES
  2184. simde__m128 simde_mm_mul_ss(simde__m128 a, simde__m128 b)
  2185. {
  2186. #if defined(SIMDE_X86_SSE_NATIVE)
  2187. return _mm_mul_ss(a, b);
  2188. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2189. return simde_mm_move_ss(a, simde_mm_mul_ps(a, b));
  2190. #else
  2191. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2192. b_ = simde__m128_to_private(b);
  2193. r_.f32[0] = a_.f32[0] * b_.f32[0];
  2194. r_.f32[1] = a_.f32[1];
  2195. r_.f32[2] = a_.f32[2];
  2196. r_.f32[3] = a_.f32[3];
  2197. return simde__m128_from_private(r_);
  2198. #endif
  2199. }
  2200. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2201. #define _mm_mul_ss(a, b) simde_mm_mul_ss((a), (b))
  2202. #endif
  2203. SIMDE_FUNCTION_ATTRIBUTES
  2204. simde__m64 simde_mm_mulhi_pu16(simde__m64 a, simde__m64 b)
  2205. {
  2206. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  2207. return _mm_mulhi_pu16(a, b);
  2208. #else
  2209. simde__m64_private r_, a_ = simde__m64_to_private(a),
  2210. b_ = simde__m64_to_private(b);
  2211. SIMDE_VECTORIZE
  2212. for (size_t i = 0; i < (sizeof(r_.u16) / sizeof(r_.u16[0])); i++) {
  2213. r_.u16[i] = HEDLEY_STATIC_CAST(
  2214. uint16_t, ((HEDLEY_STATIC_CAST(uint32_t, a_.u16[i]) *
  2215. HEDLEY_STATIC_CAST(uint32_t, b_.u16[i])) >>
  2216. UINT32_C(16)));
  2217. }
  2218. return simde__m64_from_private(r_);
  2219. #endif
  2220. }
  2221. #define simde_m_pmulhuw(a, b) simde_mm_mulhi_pu16(a, b)
  2222. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2223. #define _mm_mulhi_pu16(a, b) simde_mm_mulhi_pu16(a, b)
  2224. #endif
  2225. SIMDE_FUNCTION_ATTRIBUTES
  2226. simde__m128 simde_mm_or_ps(simde__m128 a, simde__m128 b)
  2227. {
  2228. #if defined(SIMDE_X86_SSE_NATIVE)
  2229. return _mm_or_ps(a, b);
  2230. #else
  2231. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2232. b_ = simde__m128_to_private(b);
  2233. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2234. r_.neon_i32 = vorrq_s32(a_.neon_i32, b_.neon_i32);
  2235. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  2236. r_.altivec_i32 = vec_or(a_.altivec_i32, b_.altivec_i32);
  2237. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  2238. r_.i32f = a_.i32f | b_.i32f;
  2239. #else
  2240. SIMDE_VECTORIZE
  2241. for (size_t i = 0; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
  2242. r_.u32[i] = a_.u32[i] | b_.u32[i];
  2243. }
  2244. #endif
  2245. return simde__m128_from_private(r_);
  2246. #endif
  2247. }
  2248. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2249. #define _mm_or_ps(a, b) simde_mm_or_ps((a), (b))
  2250. #endif
  2251. SIMDE_FUNCTION_ATTRIBUTES
  2252. void simde_mm_prefetch(char const *p, int i)
  2253. {
  2254. (void)p;
  2255. (void)i;
  2256. }
  2257. #if defined(SIMDE_X86_SSE_NATIVE)
  2258. #define simde_mm_prefetch(p, i) _mm_prefetch(p, i)
  2259. #endif
  2260. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2261. #define _mm_prefetch(p, i) simde_mm_prefetch(p, i)
  2262. #endif
  2263. SIMDE_FUNCTION_ATTRIBUTES
  2264. simde__m128 simde_mm_rcp_ps(simde__m128 a)
  2265. {
  2266. #if defined(SIMDE_X86_SSE_NATIVE)
  2267. return _mm_rcp_ps(a);
  2268. #else
  2269. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2270. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2271. float32x4_t recip = vrecpeq_f32(a_.neon_f32);
  2272. #if SIMDE_ACCURACY_PREFERENCE > 0
  2273. for (int i = 0; i < SIMDE_ACCURACY_PREFERENCE; ++i) {
  2274. recip = vmulq_f32(recip, vrecpsq_f32(recip, a_.neon_f32));
  2275. }
  2276. #endif
  2277. r_.neon_f32 = recip;
  2278. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  2279. r_.altivec_f32 = vec_re(a_.altivec_f32);
  2280. #elif defined(SIMDE_VECTOR_SUBSCRIPT_SCALAR)
  2281. r_.f32 = 1.0f / a_.f32;
  2282. #else
  2283. SIMDE_VECTORIZE
  2284. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2285. r_.f32[i] = 1.0f / a_.f32[i];
  2286. }
  2287. #endif
  2288. return simde__m128_from_private(r_);
  2289. #endif
  2290. }
  2291. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2292. #define _mm_rcp_ps(a) simde_mm_rcp_ps((a))
  2293. #endif
  2294. SIMDE_FUNCTION_ATTRIBUTES
  2295. simde__m128 simde_mm_rcp_ss(simde__m128 a)
  2296. {
  2297. #if defined(SIMDE_X86_SSE_NATIVE)
  2298. return _mm_rcp_ss(a);
  2299. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2300. return simde_mm_move_ss(a, simde_mm_rcp_ps(a));
  2301. #else
  2302. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2303. r_.f32[0] = 1.0f / a_.f32[0];
  2304. r_.f32[1] = a_.f32[1];
  2305. r_.f32[2] = a_.f32[2];
  2306. r_.f32[3] = a_.f32[3];
  2307. return simde__m128_from_private(r_);
  2308. #endif
  2309. }
  2310. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2311. #define _mm_rcp_ss(a) simde_mm_rcp_ss((a))
  2312. #endif
  2313. SIMDE_FUNCTION_ATTRIBUTES
  2314. simde__m128 simde_mm_rsqrt_ps(simde__m128 a)
  2315. {
  2316. #if defined(SIMDE_X86_SSE_NATIVE)
  2317. return _mm_rsqrt_ps(a);
  2318. #else
  2319. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2320. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2321. r_.neon_f32 = vrsqrteq_f32(a_.neon_f32);
  2322. #elif defined(__STDC_IEC_559__)
  2323. /* https://basesandframes.files.wordpress.com/2020/04/even_faster_math_functions_green_2020.pdf
  2324. Pages 100 - 103 */
  2325. SIMDE_VECTORIZE
  2326. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2327. #if SIMDE_ACCURACY_PREFERENCE <= 0
  2328. r_.i32[i] = INT32_C(0x5F37624F) - (a_.i32[i] >> 1);
  2329. #else
  2330. simde_float32 x = a_.f32[i];
  2331. simde_float32 xhalf = SIMDE_FLOAT32_C(0.5) * x;
  2332. int32_t ix;
  2333. simde_memcpy(&ix, &x, sizeof(ix));
  2334. #if SIMDE_ACCURACY_PREFERENCE == 1
  2335. ix = INT32_C(0x5F375A82) - (ix >> 1);
  2336. #else
  2337. ix = INT32_C(0x5F37599E) - (ix >> 1);
  2338. #endif
  2339. simde_memcpy(&x, &ix, sizeof(x));
  2340. #if SIMDE_ACCURACY_PREFERENCE >= 2
  2341. x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
  2342. #endif
  2343. x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
  2344. r_.f32[i] = x;
  2345. #endif
  2346. }
  2347. #elif defined(simde_math_sqrtf)
  2348. SIMDE_VECTORIZE
  2349. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2350. r_.f32[i] = 1.0f / simde_math_sqrtf(a_.f32[i]);
  2351. }
  2352. #else
  2353. HEDLEY_UNREACHABLE();
  2354. #endif
  2355. return simde__m128_from_private(r_);
  2356. #endif
  2357. }
  2358. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2359. #define _mm_rsqrt_ps(a) simde_mm_rsqrt_ps((a))
  2360. #endif
  2361. SIMDE_FUNCTION_ATTRIBUTES
  2362. simde__m128 simde_mm_rsqrt_ss(simde__m128 a)
  2363. {
  2364. #if defined(SIMDE_X86_SSE_NATIVE)
  2365. return _mm_rsqrt_ss(a);
  2366. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2367. return simde_mm_move_ss(a, simde_mm_rsqrt_ps(a));
  2368. #else
  2369. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2370. #if defined(__STDC_IEC_559__)
  2371. {
  2372. #if SIMDE_ACCURACY_PREFERENCE <= 0
  2373. r_.i32[0] = INT32_C(0x5F37624F) - (a_.i32[0] >> 1);
  2374. #else
  2375. simde_float32 x = a_.f32[0];
  2376. simde_float32 xhalf = SIMDE_FLOAT32_C(0.5) * x;
  2377. int32_t ix;
  2378. simde_memcpy(&ix, &x, sizeof(ix));
  2379. #if SIMDE_ACCURACY_PREFERENCE == 1
  2380. ix = INT32_C(0x5F375A82) - (ix >> 1);
  2381. #else
  2382. ix = INT32_C(0x5F37599E) - (ix >> 1);
  2383. #endif
  2384. simde_memcpy(&x, &ix, sizeof(x));
  2385. #if SIMDE_ACCURACY_PREFERENCE >= 2
  2386. x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
  2387. #endif
  2388. x = x * (SIMDE_FLOAT32_C(1.5008909) - xhalf * x * x);
  2389. r_.f32[0] = x;
  2390. #endif
  2391. }
  2392. r_.f32[1] = a_.f32[1];
  2393. r_.f32[2] = a_.f32[2];
  2394. r_.f32[3] = a_.f32[3];
  2395. #elif defined(simde_math_sqrtf)
  2396. r_.f32[0] = 1.0f / simde_math_sqrtf(a_.f32[0]);
  2397. r_.f32[1] = a_.f32[1];
  2398. r_.f32[2] = a_.f32[2];
  2399. r_.f32[3] = a_.f32[3];
  2400. #else
  2401. HEDLEY_UNREACHABLE();
  2402. #endif
  2403. return simde__m128_from_private(r_);
  2404. #endif
  2405. }
  2406. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2407. #define _mm_rsqrt_ss(a) simde_mm_rsqrt_ss((a))
  2408. #endif
  2409. SIMDE_FUNCTION_ATTRIBUTES
  2410. simde__m64 simde_mm_sad_pu8(simde__m64 a, simde__m64 b)
  2411. {
  2412. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  2413. return _mm_sad_pu8(a, b);
  2414. #else
  2415. simde__m64_private r_, a_ = simde__m64_to_private(a),
  2416. b_ = simde__m64_to_private(b);
  2417. uint16_t sum = 0;
  2418. #if defined(SIMDE_HAVE_STDLIB_H)
  2419. SIMDE_VECTORIZE_REDUCTION(+ : sum)
  2420. for (size_t i = 0; i < (sizeof(r_.u8) / sizeof(r_.u8[0])); i++) {
  2421. sum += HEDLEY_STATIC_CAST(uint8_t, abs(a_.u8[i] - b_.u8[i]));
  2422. }
  2423. r_.i16[0] = HEDLEY_STATIC_CAST(int16_t, sum);
  2424. r_.i16[1] = 0;
  2425. r_.i16[2] = 0;
  2426. r_.i16[3] = 0;
  2427. #else
  2428. HEDLEY_UNREACHABLE();
  2429. #endif
  2430. return simde__m64_from_private(r_);
  2431. #endif
  2432. }
  2433. #define simde_m_psadbw(a, b) simde_mm_sad_pu8(a, b)
  2434. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2435. #define _mm_sad_pu8(a, b) simde_mm_sad_pu8(a, b)
  2436. #define _m_psadbw(a, b) simde_mm_sad_pu8(a, b)
  2437. #endif
  2438. SIMDE_FUNCTION_ATTRIBUTES
  2439. simde__m128 simde_mm_set_ss(simde_float32 a)
  2440. {
  2441. #if defined(SIMDE_X86_SSE_NATIVE)
  2442. return _mm_set_ss(a);
  2443. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2444. return vsetq_lane_f32(a, vdupq_n_f32(SIMDE_FLOAT32_C(0.0)), 0);
  2445. #else
  2446. return simde_mm_set_ps(SIMDE_FLOAT32_C(0.0), SIMDE_FLOAT32_C(0.0),
  2447. SIMDE_FLOAT32_C(0.0), a);
  2448. #endif
  2449. }
  2450. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2451. #define _mm_set_ss(a) simde_mm_set_ss(a)
  2452. #endif
  2453. SIMDE_FUNCTION_ATTRIBUTES
  2454. simde__m128 simde_mm_setr_ps(simde_float32 e3, simde_float32 e2,
  2455. simde_float32 e1, simde_float32 e0)
  2456. {
  2457. #if defined(SIMDE_X86_SSE_NATIVE)
  2458. return _mm_setr_ps(e3, e2, e1, e0);
  2459. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2460. SIMDE_ALIGN(16) simde_float32 data[4] = {e3, e2, e1, e0};
  2461. return vld1q_f32(data);
  2462. #else
  2463. return simde_mm_set_ps(e0, e1, e2, e3);
  2464. #endif
  2465. }
  2466. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2467. #define _mm_setr_ps(e3, e2, e1, e0) simde_mm_setr_ps(e3, e2, e1, e0)
  2468. #endif
  2469. SIMDE_FUNCTION_ATTRIBUTES
  2470. simde__m128 simde_mm_setzero_ps(void)
  2471. {
  2472. #if defined(SIMDE_X86_SSE_NATIVE)
  2473. return _mm_setzero_ps();
  2474. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2475. return vdupq_n_f32(SIMDE_FLOAT32_C(0.0));
  2476. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  2477. return vec_splats((float)0);
  2478. #else
  2479. simde__m128 r;
  2480. simde_memset(&r, 0, sizeof(r));
  2481. return r;
  2482. #endif
  2483. }
  2484. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2485. #define _mm_setzero_ps() simde_mm_setzero_ps()
  2486. #endif
  2487. #if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
  2488. HEDLEY_DIAGNOSTIC_PUSH
  2489. SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_
  2490. #endif
  2491. SIMDE_FUNCTION_ATTRIBUTES
  2492. simde__m128 simde_mm_undefined_ps(void)
  2493. {
  2494. simde__m128_private r_;
  2495. #if defined(SIMDE_HAVE_UNDEFINED128)
  2496. r_.n = _mm_undefined_ps();
  2497. #elif !defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
  2498. r_ = simde__m128_to_private(simde_mm_setzero_ps());
  2499. #endif
  2500. return simde__m128_from_private(r_);
  2501. }
  2502. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2503. #define _mm_undefined_ps() simde_mm_undefined_ps()
  2504. #endif
  2505. #if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
  2506. HEDLEY_DIAGNOSTIC_POP
  2507. #endif
  2508. SIMDE_FUNCTION_ATTRIBUTES
  2509. simde__m128 simde_x_mm_setone_ps(void)
  2510. {
  2511. simde__m128 t = simde_mm_setzero_ps();
  2512. return simde_mm_cmpeq_ps(t, t);
  2513. }
  2514. SIMDE_FUNCTION_ATTRIBUTES
  2515. void simde_mm_sfence(void)
  2516. {
  2517. /* TODO: Use Hedley. */
  2518. #if defined(SIMDE_X86_SSE_NATIVE)
  2519. _mm_sfence();
  2520. #elif defined(__GNUC__) && \
  2521. ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
  2522. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  2523. #elif !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
  2524. (__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
  2525. #if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)
  2526. __atomic_thread_fence(__ATOMIC_SEQ_CST);
  2527. #else
  2528. atomic_thread_fence(memory_order_seq_cst);
  2529. #endif
  2530. #elif defined(_MSC_VER)
  2531. MemoryBarrier();
  2532. #elif HEDLEY_HAS_EXTENSION(c_atomic)
  2533. __c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
  2534. #elif defined(__GNUC__) && \
  2535. ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
  2536. __sync_synchronize();
  2537. #elif defined(_OPENMP)
  2538. #pragma omp critical(simde_mm_sfence_)
  2539. {
  2540. }
  2541. #endif
  2542. }
  2543. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2544. #define _mm_sfence() simde_mm_sfence()
  2545. #endif
  2546. #define SIMDE_MM_SHUFFLE(z, y, x, w) \
  2547. (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
  2548. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2549. #define _MM_SHUFFLE(z, y, x, w) SIMDE_MM_SHUFFLE(z, y, x, w)
  2550. #endif
  2551. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE) && \
  2552. !defined(__PGI)
  2553. #define simde_mm_shuffle_pi16(a, imm8) _mm_shuffle_pi16(a, imm8)
  2554. #elif defined(SIMDE_SHUFFLE_VECTOR_)
  2555. #define simde_mm_shuffle_pi16(a, imm8) \
  2556. (__extension__({ \
  2557. const simde__m64_private simde__tmp_a_ = \
  2558. simde__m64_to_private(a); \
  2559. simde__m64_from_private((simde__m64_private){ \
  2560. .i16 = SIMDE_SHUFFLE_VECTOR_( \
  2561. 16, 8, (simde__tmp_a_).i16, \
  2562. (simde__tmp_a_).i16, (((imm8)) & 3), \
  2563. (((imm8) >> 2) & 3), (((imm8) >> 4) & 3), \
  2564. (((imm8) >> 6) & 3))}); \
  2565. }))
  2566. #else
  2567. SIMDE_FUNCTION_ATTRIBUTES
  2568. simde__m64 simde_mm_shuffle_pi16(simde__m64 a, const int imm8)
  2569. SIMDE_REQUIRE_RANGE(imm8, 0, 255)
  2570. {
  2571. simde__m64_private r_;
  2572. simde__m64_private a_ = simde__m64_to_private(a);
  2573. for (size_t i = 0; i < sizeof(r_.i16) / sizeof(r_.i16[0]); i++) {
  2574. r_.i16[i] = a_.i16[(imm8 >> (i * 2)) & 3];
  2575. }
  2576. HEDLEY_DIAGNOSTIC_PUSH
  2577. #if HEDLEY_HAS_WARNING("-Wconditional-uninitialized")
  2578. #pragma clang diagnostic ignored "-Wconditional-uninitialized"
  2579. #endif
  2580. return simde__m64_from_private(r_);
  2581. HEDLEY_DIAGNOSTIC_POP
  2582. }
  2583. #endif
  2584. #if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
  2585. #define simde_m_pshufw(a, imm8) _m_pshufw(a, imm8)
  2586. #else
  2587. #define simde_m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
  2588. #endif
  2589. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2590. #define _mm_shuffle_pi16(a, imm8) simde_mm_shuffle_pi16(a, imm8)
  2591. #define _m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
  2592. #endif
  2593. #if defined(SIMDE_X86_SSE_NATIVE) && !defined(__PGI)
  2594. #define simde_mm_shuffle_ps(a, b, imm8) _mm_shuffle_ps(a, b, imm8)
  2595. #elif defined(SIMDE_SHUFFLE_VECTOR_)
  2596. #define simde_mm_shuffle_ps(a, b, imm8) \
  2597. (__extension__({ \
  2598. simde__m128_from_private((simde__m128_private){ \
  2599. .f32 = SIMDE_SHUFFLE_VECTOR_( \
  2600. 32, 16, simde__m128_to_private(a).f32, \
  2601. simde__m128_to_private(b).f32, (((imm8)) & 3), \
  2602. (((imm8) >> 2) & 3), (((imm8) >> 4) & 3) + 4, \
  2603. (((imm8) >> 6) & 3) + 4)}); \
  2604. }))
  2605. #else
  2606. SIMDE_FUNCTION_ATTRIBUTES
  2607. simde__m128 simde_mm_shuffle_ps(simde__m128 a, simde__m128 b, const int imm8)
  2608. SIMDE_REQUIRE_RANGE(imm8, 0, 255)
  2609. {
  2610. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2611. b_ = simde__m128_to_private(b);
  2612. r_.f32[0] = a_.f32[(imm8 >> 0) & 3];
  2613. r_.f32[1] = a_.f32[(imm8 >> 2) & 3];
  2614. r_.f32[2] = b_.f32[(imm8 >> 4) & 3];
  2615. r_.f32[3] = b_.f32[(imm8 >> 6) & 3];
  2616. return simde__m128_from_private(r_);
  2617. }
  2618. #endif
  2619. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2620. #define _mm_shuffle_ps(a, b, imm8) simde_mm_shuffle_ps((a), (b), imm8)
  2621. #endif
  2622. SIMDE_FUNCTION_ATTRIBUTES
  2623. simde__m128 simde_mm_sqrt_ps(simde__m128 a)
  2624. {
  2625. #if defined(SIMDE_X86_SSE_NATIVE)
  2626. return _mm_sqrt_ps(a);
  2627. #else
  2628. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2629. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2630. float32x4_t recipsq = vrsqrteq_f32(a_.neon_f32);
  2631. float32x4_t sq = vrecpeq_f32(recipsq);
  2632. /* ??? use step versions of both sqrt and recip for better accuracy? */
  2633. r_.neon_f32 = sq;
  2634. #elif defined(simde_math_sqrt)
  2635. SIMDE_VECTORIZE
  2636. for (size_t i = 0; i < sizeof(r_.f32) / sizeof(r_.f32[0]); i++) {
  2637. r_.f32[i] = simde_math_sqrtf(a_.f32[i]);
  2638. }
  2639. #else
  2640. HEDLEY_UNREACHABLE();
  2641. #endif
  2642. return simde__m128_from_private(r_);
  2643. #endif
  2644. }
  2645. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2646. #define _mm_sqrt_ps(a) simde_mm_sqrt_ps((a))
  2647. #endif
  2648. SIMDE_FUNCTION_ATTRIBUTES
  2649. simde__m128 simde_mm_sqrt_ss(simde__m128 a)
  2650. {
  2651. #if defined(SIMDE_X86_SSE_NATIVE)
  2652. return _mm_sqrt_ss(a);
  2653. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2654. return simde_mm_move_ss(a, simde_mm_sqrt_ps(a));
  2655. #else
  2656. simde__m128_private r_, a_ = simde__m128_to_private(a);
  2657. #if defined(simde_math_sqrtf)
  2658. r_.f32[0] = simde_math_sqrtf(a_.f32[0]);
  2659. r_.f32[1] = a_.f32[1];
  2660. r_.f32[2] = a_.f32[2];
  2661. r_.f32[3] = a_.f32[3];
  2662. #else
  2663. HEDLEY_UNREACHABLE();
  2664. #endif
  2665. return simde__m128_from_private(r_);
  2666. #endif
  2667. }
  2668. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2669. #define _mm_sqrt_ss(a) simde_mm_sqrt_ss((a))
  2670. #endif
  2671. SIMDE_FUNCTION_ATTRIBUTES
  2672. void simde_mm_store_ps(simde_float32 mem_addr[4], simde__m128 a)
  2673. {
  2674. simde_assert_aligned(16, mem_addr);
  2675. #if defined(SIMDE_X86_SSE_NATIVE)
  2676. _mm_store_ps(mem_addr, a);
  2677. #else
  2678. simde__m128_private a_ = simde__m128_to_private(a);
  2679. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2680. vst1q_f32(mem_addr, a_.neon_f32);
  2681. #elif defined(SIMDE_POWER_ALTIVE_P7_NATIVE)
  2682. vec_vsx_st(a_.altivec_32, 0, mem_addr);
  2683. #elif defined(SIMDE_POWER_ALTIVE_P5_NATIVE)
  2684. vec_st(a_.altivec_32, 0, mem_addr);
  2685. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  2686. wasm_v128_store(mem_addr, a_.wasm_v128);
  2687. #else
  2688. SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
  2689. for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
  2690. mem_addr[i] = a_.f32[i];
  2691. }
  2692. #endif
  2693. #endif
  2694. }
  2695. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2696. #define _mm_store_ps(mem_addr, a) \
  2697. simde_mm_store_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
  2698. float *, simde_float32 *, mem_addr), \
  2699. (a))
  2700. #endif
  2701. SIMDE_FUNCTION_ATTRIBUTES
  2702. void simde_mm_store_ps1(simde_float32 mem_addr[4], simde__m128 a)
  2703. {
  2704. simde_assert_aligned(16, mem_addr);
  2705. #if defined(SIMDE_X86_SSE_NATIVE)
  2706. _mm_store_ps1(mem_addr, a);
  2707. #else
  2708. simde__m128_private a_ = simde__m128_to_private(a);
  2709. SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
  2710. for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
  2711. mem_addr[i] = a_.f32[0];
  2712. }
  2713. #endif
  2714. }
  2715. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2716. #define _mm_store_ps1(mem_addr, a) \
  2717. simde_mm_store_ps1(SIMDE_CHECKED_REINTERPRET_CAST( \
  2718. float *, simde_float32 *, mem_addr), \
  2719. (a))
  2720. #endif
  2721. SIMDE_FUNCTION_ATTRIBUTES
  2722. void simde_mm_store_ss(simde_float32 *mem_addr, simde__m128 a)
  2723. {
  2724. #if defined(SIMDE_X86_SSE_NATIVE)
  2725. _mm_store_ss(mem_addr, a);
  2726. #else
  2727. simde__m128_private a_ = simde__m128_to_private(a);
  2728. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2729. vst1q_lane_f32(mem_addr, a_.neon_f32, 0);
  2730. #else
  2731. *mem_addr = a_.f32[0];
  2732. #endif
  2733. #endif
  2734. }
  2735. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2736. #define _mm_store_ss(mem_addr, a) \
  2737. simde_mm_store_ss(SIMDE_CHECKED_REINTERPRET_CAST( \
  2738. float *, simde_float32 *, mem_addr), \
  2739. (a))
  2740. #endif
  2741. SIMDE_FUNCTION_ATTRIBUTES
  2742. void simde_mm_store1_ps(simde_float32 mem_addr[4], simde__m128 a)
  2743. {
  2744. simde_assert_aligned(16, mem_addr);
  2745. #if defined(SIMDE_X86_SSE_NATIVE)
  2746. _mm_store1_ps(mem_addr, a);
  2747. #else
  2748. simde_mm_store_ps1(mem_addr, a);
  2749. #endif
  2750. }
  2751. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2752. #define _mm_store1_ps(mem_addr, a) \
  2753. simde_mm_store1_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
  2754. float *, simde_float32 *, mem_addr), \
  2755. (a))
  2756. #endif
  2757. SIMDE_FUNCTION_ATTRIBUTES
  2758. void simde_mm_storeh_pi(simde__m64 *mem_addr, simde__m128 a)
  2759. {
  2760. #if defined(SIMDE_X86_SSE_NATIVE)
  2761. _mm_storeh_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
  2762. #else
  2763. simde__m64_private *dest_ =
  2764. HEDLEY_REINTERPRET_CAST(simde__m64_private *, mem_addr);
  2765. simde__m128_private a_ = simde__m128_to_private(a);
  2766. dest_->f32[0] = a_.f32[2];
  2767. dest_->f32[1] = a_.f32[3];
  2768. #endif
  2769. }
  2770. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2771. #define _mm_storeh_pi(mem_addr, a) simde_mm_storeh_pi(mem_addr, (a))
  2772. #endif
  2773. SIMDE_FUNCTION_ATTRIBUTES
  2774. void simde_mm_storel_pi(simde__m64 *mem_addr, simde__m128 a)
  2775. {
  2776. #if defined(SIMDE_X86_SSE_NATIVE)
  2777. _mm_storel_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
  2778. #else
  2779. simde__m64_private *dest_ =
  2780. HEDLEY_REINTERPRET_CAST(simde__m64_private *, mem_addr);
  2781. simde__m128_private a_ = simde__m128_to_private(a);
  2782. dest_->f32[0] = a_.f32[0];
  2783. dest_->f32[1] = a_.f32[1];
  2784. #endif
  2785. }
  2786. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2787. #define _mm_storel_pi(mem_addr, a) simde_mm_storel_pi(mem_addr, (a))
  2788. #endif
  2789. SIMDE_FUNCTION_ATTRIBUTES
  2790. void simde_mm_storer_ps(simde_float32 mem_addr[4], simde__m128 a)
  2791. {
  2792. simde_assert_aligned(16, mem_addr);
  2793. #if defined(SIMDE_X86_SSE_NATIVE)
  2794. _mm_storer_ps(mem_addr, a);
  2795. #else
  2796. simde__m128_private a_ = simde__m128_to_private(a);
  2797. #if defined(SIMDE_SHUFFLE_VECTOR_)
  2798. a_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, a_.f32, 3, 2, 1, 0);
  2799. simde_mm_store_ps(mem_addr, simde__m128_from_private(a_));
  2800. #else
  2801. SIMDE_VECTORIZE_ALIGNED(mem_addr : 16)
  2802. for (size_t i = 0; i < sizeof(a_.f32) / sizeof(a_.f32[0]); i++) {
  2803. mem_addr[i] =
  2804. a_.f32[((sizeof(a_.f32) / sizeof(a_.f32[0])) - 1) - i];
  2805. }
  2806. #endif
  2807. #endif
  2808. }
  2809. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2810. #define _mm_storer_ps(mem_addr, a) \
  2811. simde_mm_storer_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
  2812. float *, simde_float32 *, mem_addr), \
  2813. (a))
  2814. #endif
  2815. SIMDE_FUNCTION_ATTRIBUTES
  2816. void simde_mm_storeu_ps(simde_float32 mem_addr[4], simde__m128 a)
  2817. {
  2818. #if defined(SIMDE_X86_SSE_NATIVE)
  2819. _mm_storeu_ps(mem_addr, a);
  2820. #else
  2821. simde__m128_private a_ = simde__m128_to_private(a);
  2822. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2823. vst1q_f32(mem_addr, a_.neon_f32);
  2824. #else
  2825. simde_memcpy(mem_addr, &a_, sizeof(a_));
  2826. #endif
  2827. #endif
  2828. }
  2829. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2830. #define _mm_storeu_ps(mem_addr, a) \
  2831. simde_mm_storeu_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
  2832. float *, simde_float32 *, mem_addr), \
  2833. (a))
  2834. #endif
  2835. SIMDE_FUNCTION_ATTRIBUTES
  2836. simde__m128 simde_mm_sub_ps(simde__m128 a, simde__m128 b)
  2837. {
  2838. #if defined(SIMDE_X86_SSE_NATIVE)
  2839. return _mm_sub_ps(a, b);
  2840. #else
  2841. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2842. b_ = simde__m128_to_private(b);
  2843. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  2844. r_.neon_f32 = vsubq_f32(a_.neon_f32, b_.neon_f32);
  2845. #elif defined(SIMDE_WASM_SIMD128_NATIVE)
  2846. r_.wasm_v128 = wasm_f32x4_sub(a_.wasm_v128, b_.wasm_v128);
  2847. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  2848. r_.f32 = a_.f32 - b_.f32;
  2849. #else
  2850. SIMDE_VECTORIZE
  2851. for (size_t i = 0; i < (sizeof(r_.f32) / sizeof(r_.f32[0])); i++) {
  2852. r_.f32[i] = a_.f32[i] - b_.f32[i];
  2853. }
  2854. #endif
  2855. return simde__m128_from_private(r_);
  2856. #endif
  2857. }
  2858. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2859. #define _mm_sub_ps(a, b) simde_mm_sub_ps((a), (b))
  2860. #endif
  2861. SIMDE_FUNCTION_ATTRIBUTES
  2862. simde__m128 simde_mm_sub_ss(simde__m128 a, simde__m128 b)
  2863. {
  2864. #if defined(SIMDE_X86_SSE_NATIVE)
  2865. return _mm_sub_ss(a, b);
  2866. #elif defined(SIMDE_ASSUME_VECTORIZATION)
  2867. return simde_mm_move_ss(a, simde_mm_sub_ps(a, b));
  2868. #else
  2869. simde__m128_private r_, a_ = simde__m128_to_private(a),
  2870. b_ = simde__m128_to_private(b);
  2871. r_.f32[0] = a_.f32[0] - b_.f32[0];
  2872. r_.f32[1] = a_.f32[1];
  2873. r_.f32[2] = a_.f32[2];
  2874. r_.f32[3] = a_.f32[3];
  2875. return simde__m128_from_private(r_);
  2876. #endif
  2877. }
  2878. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2879. #define _mm_sub_ss(a, b) simde_mm_sub_ss((a), (b))
  2880. #endif
  2881. SIMDE_FUNCTION_ATTRIBUTES
  2882. int simde_mm_ucomieq_ss(simde__m128 a, simde__m128 b)
  2883. {
  2884. #if defined(SIMDE_X86_SSE_NATIVE)
  2885. return _mm_ucomieq_ss(a, b);
  2886. #else
  2887. simde__m128_private a_ = simde__m128_to_private(a),
  2888. b_ = simde__m128_to_private(b);
  2889. int r;
  2890. #if defined(SIMDE_HAVE_FENV_H)
  2891. fenv_t envp;
  2892. int x = feholdexcept(&envp);
  2893. r = a_.f32[0] == b_.f32[0];
  2894. if (HEDLEY_LIKELY(x == 0))
  2895. fesetenv(&envp);
  2896. #else
  2897. r = a_.f32[0] == b_.f32[0];
  2898. #endif
  2899. return r;
  2900. #endif
  2901. }
  2902. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2903. #define _mm_ucomieq_ss(a, b) simde_mm_ucomieq_ss((a), (b))
  2904. #endif
  2905. SIMDE_FUNCTION_ATTRIBUTES
  2906. int simde_mm_ucomige_ss(simde__m128 a, simde__m128 b)
  2907. {
  2908. #if defined(SIMDE_X86_SSE_NATIVE)
  2909. return _mm_ucomige_ss(a, b);
  2910. #else
  2911. simde__m128_private a_ = simde__m128_to_private(a),
  2912. b_ = simde__m128_to_private(b);
  2913. int r;
  2914. #if defined(SIMDE_HAVE_FENV_H)
  2915. fenv_t envp;
  2916. int x = feholdexcept(&envp);
  2917. r = a_.f32[0] >= b_.f32[0];
  2918. if (HEDLEY_LIKELY(x == 0))
  2919. fesetenv(&envp);
  2920. #else
  2921. r = a_.f32[0] >= b_.f32[0];
  2922. #endif
  2923. return r;
  2924. #endif
  2925. }
  2926. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2927. #define _mm_ucomige_ss(a, b) simde_mm_ucomige_ss((a), (b))
  2928. #endif
  2929. SIMDE_FUNCTION_ATTRIBUTES
  2930. int simde_mm_ucomigt_ss(simde__m128 a, simde__m128 b)
  2931. {
  2932. #if defined(SIMDE_X86_SSE_NATIVE)
  2933. return _mm_ucomigt_ss(a, b);
  2934. #else
  2935. simde__m128_private a_ = simde__m128_to_private(a),
  2936. b_ = simde__m128_to_private(b);
  2937. int r;
  2938. #if defined(SIMDE_HAVE_FENV_H)
  2939. fenv_t envp;
  2940. int x = feholdexcept(&envp);
  2941. r = a_.f32[0] > b_.f32[0];
  2942. if (HEDLEY_LIKELY(x == 0))
  2943. fesetenv(&envp);
  2944. #else
  2945. r = a_.f32[0] > b_.f32[0];
  2946. #endif
  2947. return r;
  2948. #endif
  2949. }
  2950. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2951. #define _mm_ucomigt_ss(a, b) simde_mm_ucomigt_ss((a), (b))
  2952. #endif
  2953. SIMDE_FUNCTION_ATTRIBUTES
  2954. int simde_mm_ucomile_ss(simde__m128 a, simde__m128 b)
  2955. {
  2956. #if defined(SIMDE_X86_SSE_NATIVE)
  2957. return _mm_ucomile_ss(a, b);
  2958. #else
  2959. simde__m128_private a_ = simde__m128_to_private(a),
  2960. b_ = simde__m128_to_private(b);
  2961. int r;
  2962. #if defined(SIMDE_HAVE_FENV_H)
  2963. fenv_t envp;
  2964. int x = feholdexcept(&envp);
  2965. r = a_.f32[0] <= b_.f32[0];
  2966. if (HEDLEY_LIKELY(x == 0))
  2967. fesetenv(&envp);
  2968. #else
  2969. r = a_.f32[0] <= b_.f32[0];
  2970. #endif
  2971. return r;
  2972. #endif
  2973. }
  2974. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2975. #define _mm_ucomile_ss(a, b) simde_mm_ucomile_ss((a), (b))
  2976. #endif
  2977. SIMDE_FUNCTION_ATTRIBUTES
  2978. int simde_mm_ucomilt_ss(simde__m128 a, simde__m128 b)
  2979. {
  2980. #if defined(SIMDE_X86_SSE_NATIVE)
  2981. return _mm_ucomilt_ss(a, b);
  2982. #else
  2983. simde__m128_private a_ = simde__m128_to_private(a),
  2984. b_ = simde__m128_to_private(b);
  2985. int r;
  2986. #if defined(SIMDE_HAVE_FENV_H)
  2987. fenv_t envp;
  2988. int x = feholdexcept(&envp);
  2989. r = a_.f32[0] < b_.f32[0];
  2990. if (HEDLEY_LIKELY(x == 0))
  2991. fesetenv(&envp);
  2992. #else
  2993. r = a_.f32[0] < b_.f32[0];
  2994. #endif
  2995. return r;
  2996. #endif
  2997. }
  2998. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  2999. #define _mm_ucomilt_ss(a, b) simde_mm_ucomilt_ss((a), (b))
  3000. #endif
  3001. SIMDE_FUNCTION_ATTRIBUTES
  3002. int simde_mm_ucomineq_ss(simde__m128 a, simde__m128 b)
  3003. {
  3004. #if defined(SIMDE_X86_SSE_NATIVE)
  3005. return _mm_ucomineq_ss(a, b);
  3006. #else
  3007. simde__m128_private a_ = simde__m128_to_private(a),
  3008. b_ = simde__m128_to_private(b);
  3009. int r;
  3010. #if defined(SIMDE_HAVE_FENV_H)
  3011. fenv_t envp;
  3012. int x = feholdexcept(&envp);
  3013. r = a_.f32[0] != b_.f32[0];
  3014. if (HEDLEY_LIKELY(x == 0))
  3015. fesetenv(&envp);
  3016. #else
  3017. r = a_.f32[0] != b_.f32[0];
  3018. #endif
  3019. return r;
  3020. #endif
  3021. }
  3022. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3023. #define _mm_ucomineq_ss(a, b) simde_mm_ucomineq_ss((a), (b))
  3024. #endif
  3025. #if defined(SIMDE_X86_SSE_NATIVE)
  3026. #if defined(__has_builtin)
  3027. #if __has_builtin(__builtin_ia32_undef128)
  3028. #define SIMDE_HAVE_UNDEFINED128
  3029. #endif
  3030. #elif !defined(__PGI) && !defined(SIMDE_BUG_GCC_REV_208793) && \
  3031. !defined(_MSC_VER)
  3032. #define SIMDE_HAVE_UNDEFINED128
  3033. #endif
  3034. #endif
  3035. #if defined(SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_)
  3036. HEDLEY_DIAGNOSTIC_PUSH
  3037. SIMDE_DIAGNOSTIC_DISABLE_UNINITIALIZED_
  3038. #endif
  3039. SIMDE_FUNCTION_ATTRIBUTES
  3040. simde__m128 simde_mm_unpackhi_ps(simde__m128 a, simde__m128 b)
  3041. {
  3042. #if defined(SIMDE_X86_SSE_NATIVE)
  3043. return _mm_unpackhi_ps(a, b);
  3044. #else
  3045. simde__m128_private r_, a_ = simde__m128_to_private(a),
  3046. b_ = simde__m128_to_private(b);
  3047. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  3048. float32x2_t a1 = vget_high_f32(a_.neon_f32);
  3049. float32x2_t b1 = vget_high_f32(b_.neon_f32);
  3050. float32x2x2_t result = vzip_f32(a1, b1);
  3051. r_.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
  3052. #elif defined(SIMDE_SHUFFLE_VECTOR_)
  3053. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 2, 6, 3, 7);
  3054. #else
  3055. r_.f32[0] = a_.f32[2];
  3056. r_.f32[1] = b_.f32[2];
  3057. r_.f32[2] = a_.f32[3];
  3058. r_.f32[3] = b_.f32[3];
  3059. #endif
  3060. return simde__m128_from_private(r_);
  3061. #endif
  3062. }
  3063. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3064. #define _mm_unpackhi_ps(a, b) simde_mm_unpackhi_ps((a), (b))
  3065. #endif
  3066. SIMDE_FUNCTION_ATTRIBUTES
  3067. simde__m128 simde_mm_unpacklo_ps(simde__m128 a, simde__m128 b)
  3068. {
  3069. #if defined(SIMDE_X86_SSE_NATIVE)
  3070. return _mm_unpacklo_ps(a, b);
  3071. #else
  3072. simde__m128_private r_, a_ = simde__m128_to_private(a),
  3073. b_ = simde__m128_to_private(b);
  3074. #if defined(SIMDE_SHUFFLE_VECTOR_)
  3075. r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 0, 4, 1, 5);
  3076. #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  3077. float32x2_t a1 = vget_low_f32(a_.neon_f32);
  3078. float32x2_t b1 = vget_low_f32(b_.neon_f32);
  3079. float32x2x2_t result = vzip_f32(a1, b1);
  3080. r_.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
  3081. #else
  3082. r_.f32[0] = a_.f32[0];
  3083. r_.f32[1] = b_.f32[0];
  3084. r_.f32[2] = a_.f32[1];
  3085. r_.f32[3] = b_.f32[1];
  3086. #endif
  3087. return simde__m128_from_private(r_);
  3088. #endif
  3089. }
  3090. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3091. #define _mm_unpacklo_ps(a, b) simde_mm_unpacklo_ps((a), (b))
  3092. #endif
  3093. SIMDE_FUNCTION_ATTRIBUTES
  3094. simde__m128 simde_mm_xor_ps(simde__m128 a, simde__m128 b)
  3095. {
  3096. #if defined(SIMDE_X86_SSE_NATIVE)
  3097. return _mm_xor_ps(a, b);
  3098. #else
  3099. simde__m128_private r_, a_ = simde__m128_to_private(a),
  3100. b_ = simde__m128_to_private(b);
  3101. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  3102. r_.neon_i32 = veorq_s32(a_.neon_i32, b_.neon_i32);
  3103. #elif defined(SIMDE_POWER_ALTIVEC_P5_NATIVE)
  3104. r_.altivec_i32 = vec_xor(a_.altivec_i32, b_.altivec_i32);
  3105. #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS)
  3106. r_.i32f = a_.i32f ^ b_.i32f;
  3107. #else
  3108. SIMDE_VECTORIZE
  3109. for (size_t i = 0; i < (sizeof(r_.u32) / sizeof(r_.u32[0])); i++) {
  3110. r_.u32[i] = a_.u32[i] ^ b_.u32[i];
  3111. }
  3112. #endif
  3113. return simde__m128_from_private(r_);
  3114. #endif
  3115. }
  3116. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3117. #define _mm_xor_ps(a, b) simde_mm_xor_ps((a), (b))
  3118. #endif
  3119. SIMDE_FUNCTION_ATTRIBUTES
  3120. void simde_mm_stream_pi(simde__m64 *mem_addr, simde__m64 a)
  3121. {
  3122. #if defined(SIMDE_X86_SSE_NATIVE) && defined(SIMDE_X86_MMX_NATIVE)
  3123. _mm_stream_pi(HEDLEY_REINTERPRET_CAST(__m64 *, mem_addr), a);
  3124. #else
  3125. simde__m64_private *dest = HEDLEY_REINTERPRET_CAST(simde__m64_private *,
  3126. mem_addr),
  3127. a_ = simde__m64_to_private(a);
  3128. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  3129. dest->i64[0] = vget_lane_s64(a_.neon_i64, 0);
  3130. #else
  3131. dest->i64[0] = a_.i64[0];
  3132. #endif
  3133. #endif
  3134. }
  3135. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3136. #define _mm_stream_pi(mem_addr, a) simde_mm_stream_pi(mem_addr, (a))
  3137. #endif
  3138. SIMDE_FUNCTION_ATTRIBUTES
  3139. void simde_mm_stream_ps(simde_float32 mem_addr[4], simde__m128 a)
  3140. {
  3141. simde_assert_aligned(16, mem_addr);
  3142. #if defined(SIMDE_X86_SSE_NATIVE)
  3143. _mm_stream_ps(mem_addr, a);
  3144. #else
  3145. simde__m128_private a_ = simde__m128_to_private(a);
  3146. #if defined(SIMDE_ARM_NEON_A32V7_NATIVE)
  3147. vst1q_f32(SIMDE_ASSUME_ALIGNED(16, mem_addr), a_.neon_f32);
  3148. #else
  3149. simde_memcpy(SIMDE_ASSUME_ALIGNED(16, mem_addr), &a_, sizeof(a_));
  3150. #endif
  3151. #endif
  3152. }
  3153. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3154. #define _mm_stream_ps(mem_addr, a) \
  3155. simde_mm_stream_ps(SIMDE_CHECKED_REINTERPRET_CAST( \
  3156. float *, simde_float32 *, mem_addr), \
  3157. (a))
  3158. #endif
  3159. SIMDE_FUNCTION_ATTRIBUTES
  3160. uint32_t simde_mm_getcsr(void)
  3161. {
  3162. #if defined(SIMDE_X86_SSE_NATIVE)
  3163. return _mm_getcsr();
  3164. #else
  3165. uint32_t r = 0;
  3166. #if defined(SIMDE_HAVE_FENV_H)
  3167. int rounding_mode = fegetround();
  3168. switch (rounding_mode) {
  3169. #if defined(FE_TONEAREST)
  3170. case FE_TONEAREST:
  3171. break;
  3172. #endif
  3173. #if defined(FE_UPWARD)
  3174. case FE_UPWARD:
  3175. r |= 2 << 13;
  3176. break;
  3177. #endif
  3178. #if defined(FE_DOWNWARD)
  3179. case FE_DOWNWARD:
  3180. r |= 1 << 13;
  3181. break;
  3182. #endif
  3183. #if defined(FE_TOWARDZERO)
  3184. case FE_TOWARDZERO:
  3185. r = 3 << 13;
  3186. break;
  3187. #endif
  3188. }
  3189. #else
  3190. HEDLEY_UNREACHABLE();
  3191. #endif
  3192. return r;
  3193. #endif
  3194. }
  3195. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3196. #define _mm_getcsr() simde_mm_getcsr()
  3197. #endif
  3198. SIMDE_FUNCTION_ATTRIBUTES
  3199. void simde_mm_setcsr(uint32_t a)
  3200. {
  3201. #if defined(SIMDE_X86_SSE_NATIVE)
  3202. _mm_setcsr(a);
  3203. #else
  3204. switch ((a >> 13) & 3) {
  3205. #if defined(FE_TONEAREST)
  3206. case 0:
  3207. fesetround(FE_TONEAREST);
  3208. #endif
  3209. #if defined(FE_DOWNWARD)
  3210. break;
  3211. case 1:
  3212. fesetround(FE_DOWNWARD);
  3213. #endif
  3214. #if defined(FE_UPWARD)
  3215. break;
  3216. case 2:
  3217. fesetround(FE_UPWARD);
  3218. #endif
  3219. #if defined(FE_TOWARDZERO)
  3220. break;
  3221. case 3:
  3222. fesetround(FE_TOWARDZERO);
  3223. break;
  3224. #endif
  3225. }
  3226. #endif
  3227. }
  3228. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3229. #define _mm_setcsr(a) simde_mm_setcsr(a)
  3230. #endif
  3231. #define SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
  3232. do { \
  3233. simde__m128 tmp3, tmp2, tmp1, tmp0; \
  3234. tmp0 = simde_mm_unpacklo_ps((row0), (row1)); \
  3235. tmp2 = simde_mm_unpacklo_ps((row2), (row3)); \
  3236. tmp1 = simde_mm_unpackhi_ps((row0), (row1)); \
  3237. tmp3 = simde_mm_unpackhi_ps((row2), (row3)); \
  3238. row0 = simde_mm_movelh_ps(tmp0, tmp2); \
  3239. row1 = simde_mm_movehl_ps(tmp2, tmp0); \
  3240. row2 = simde_mm_movelh_ps(tmp1, tmp3); \
  3241. row3 = simde_mm_movehl_ps(tmp3, tmp1); \
  3242. } while (0)
  3243. #if defined(SIMDE_X86_SSE_ENABLE_NATIVE_ALIASES)
  3244. #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
  3245. SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3)
  3246. #endif
  3247. #if defined(_MM_EXCEPT_INVALID)
  3248. #define SIMDE_MM_EXCEPT_INVALID _MM_EXCEPT_INVALID
  3249. #else
  3250. #define SIMDE_MM_EXCEPT_INVALID (0x0001)
  3251. #endif
  3252. #if defined(_MM_EXCEPT_DENORM)
  3253. #define SIMDE_MM_EXCEPT_DENORM _MM_EXCEPT_DENORM
  3254. #else
  3255. #define SIMDE_MM_EXCEPT_DENORM (0x0002)
  3256. #endif
  3257. #if defined(_MM_EXCEPT_DIV_ZERO)
  3258. #define SIMDE_MM_EXCEPT_DIV_ZERO _MM_EXCEPT_DIV_ZERO
  3259. #else
  3260. #define SIMDE_MM_EXCEPT_DIV_ZERO (0x0004)
  3261. #endif
  3262. #if defined(_MM_EXCEPT_OVERFLOW)
  3263. #define SIMDE_MM_EXCEPT_OVERFLOW _MM_EXCEPT_OVERFLOW
  3264. #else
  3265. #define SIMDE_MM_EXCEPT_OVERFLOW (0x0008)
  3266. #endif
  3267. #if defined(_MM_EXCEPT_UNDERFLOW)
  3268. #define SIMDE_MM_EXCEPT_UNDERFLOW _MM_EXCEPT_UNDERFLOW
  3269. #else
  3270. #define SIMDE_MM_EXCEPT_UNDERFLOW (0x0010)
  3271. #endif
  3272. #if defined(_MM_EXCEPT_INEXACT)
  3273. #define SIMDE_MM_EXCEPT_INEXACT _MM_EXCEPT_INEXACT
  3274. #else
  3275. #define SIMDE_MM_EXCEPT_INEXACT (0x0020)
  3276. #endif
  3277. #if defined(_MM_EXCEPT_MASK)
  3278. #define SIMDE_MM_EXCEPT_MASK _MM_EXCEPT_MASK
  3279. #else
  3280. #define SIMDE_MM_EXCEPT_MASK \
  3281. (SIMDE_MM_EXCEPT_INVALID | SIMDE_MM_EXCEPT_DENORM | \
  3282. SIMDE_MM_EXCEPT_DIV_ZERO | SIMDE_MM_EXCEPT_OVERFLOW | \
  3283. SIMDE_MM_EXCEPT_UNDERFLOW | SIMDE_MM_EXCEPT_INEXACT)
  3284. #endif
  3285. #if defined(_MM_MASK_INVALID)
  3286. #define SIMDE_MM_MASK_INVALID _MM_MASK_INVALID
  3287. #else
  3288. #define SIMDE_MM_MASK_INVALID (0x0080)
  3289. #endif
  3290. #if defined(_MM_MASK_DENORM)
  3291. #define SIMDE_MM_MASK_DENORM _MM_MASK_DENORM
  3292. #else
  3293. #define SIMDE_MM_MASK_DENORM (0x0100)
  3294. #endif
  3295. #if defined(_MM_MASK_DIV_ZERO)
  3296. #define SIMDE_MM_MASK_DIV_ZERO _MM_MASK_DIV_ZERO
  3297. #else
  3298. #define SIMDE_MM_MASK_DIV_ZERO (0x0200)
  3299. #endif
  3300. #if defined(_MM_MASK_OVERFLOW)
  3301. #define SIMDE_MM_MASK_OVERFLOW _MM_MASK_OVERFLOW
  3302. #else
  3303. #define SIMDE_MM_MASK_OVERFLOW (0x0400)
  3304. #endif
  3305. #if defined(_MM_MASK_UNDERFLOW)
  3306. #define SIMDE_MM_MASK_UNDERFLOW _MM_MASK_UNDERFLOW
  3307. #else
  3308. #define SIMDE_MM_MASK_UNDERFLOW (0x0800)
  3309. #endif
  3310. #if defined(_MM_MASK_INEXACT)
  3311. #define SIMDE_MM_MASK_INEXACT _MM_MASK_INEXACT
  3312. #else
  3313. #define SIMDE_MM_MASK_INEXACT (0x1000)
  3314. #endif
  3315. #if defined(_MM_MASK_MASK)
  3316. #define SIMDE_MM_MASK_MASK _MM_MASK_MASK
  3317. #else
  3318. #define SIMDE_MM_MASK_MASK \
  3319. (SIMDE_MM_MASK_INVALID | SIMDE_MM_MASK_DENORM | \
  3320. SIMDE_MM_MASK_DIV_ZERO | SIMDE_MM_MASK_OVERFLOW | \
  3321. SIMDE_MM_MASK_UNDERFLOW | SIMDE_MM_MASK_INEXACT)
  3322. #endif
  3323. #if defined(_MM_FLUSH_ZERO_MASK)
  3324. #define SIMDE_MM_FLUSH_ZERO_MASK _MM_FLUSH_ZERO_MASK
  3325. #else
  3326. #define SIMDE_MM_FLUSH_ZERO_MASK (0x8000)
  3327. #endif
  3328. #if defined(_MM_FLUSH_ZERO_ON)
  3329. #define SIMDE_MM_FLUSH_ZERO_ON _MM_FLUSH_ZERO_ON
  3330. #else
  3331. #define SIMDE_MM_FLUSH_ZERO_ON (0x8000)
  3332. #endif
  3333. #if defined(_MM_FLUSH_ZERO_OFF)
  3334. #define SIMDE_MM_FLUSH_ZERO_OFF _MM_FLUSH_ZERO_OFF
  3335. #else
  3336. #define SIMDE_MM_FLUSH_ZERO_OFF (0x0000)
  3337. #endif
  3338. SIMDE_END_DECLS_
  3339. HEDLEY_DIAGNOSTIC_POP
  3340. #endif /* !defined(SIMDE_X86_SSE_H) */