| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207 |
- #ifndef SSE2NEON_H
- #define SSE2NEON_H
- // This header file provides a simple API translation layer
- // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
- //
- // This header file does not yet translate all of the SSE intrinsics.
- //
- // Contributors to this work are:
- // John W. Ratcliff <[email protected]>
- // Brandon Rowlett <[email protected]>
- // Ken Fast <[email protected]>
- // Eric van Beurden <[email protected]>
- // Alexander Potylitsin <[email protected]>
- // Hasindu Gamaarachchi <[email protected]>
- // Jim Huang <[email protected]>
- // Mark Cheng <[email protected]>
- // Malcolm James MacLeod <[email protected]>
- // Devin Hussey (easyaspi314) <[email protected]>
- // Sebastian Pop <[email protected]>
- // Developer Ecosystem Engineering <[email protected]>
- // Danila Kutenin <[email protected]>
- /*
- * sse2neon is freely redistributable under the MIT License.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #if defined(__GNUC__) || defined(__clang__)
- #pragma push_macro("FORCE_INLINE")
- #pragma push_macro("ALIGN_STRUCT")
- #define FORCE_INLINE static inline __attribute__((always_inline))
- #define ALIGN_STRUCT(x) __attribute__((aligned(x)))
- #else
- #error "Macro name collisions may happen with unsupported compiler."
- #ifdef FORCE_INLINE
- #undef FORCE_INLINE
- #endif
- #define FORCE_INLINE static inline
- #ifndef ALIGN_STRUCT
- #define ALIGN_STRUCT(x) __declspec(align(x))
- #endif
- #endif
- #include <stdint.h>
- #include <stdlib.h>
- #include <arm_neon.h>
- /* "__has_builtin" can be used to query support for built-in functions
- * provided by gcc/clang and other compilers that support it.
- */
- #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
- /* Compatibility with gcc <= 9 */
- #if __GNUC__ <= 9
- #define __has_builtin(x) HAS##x
- #define HAS__builtin_popcount 1
- #define HAS__builtin_popcountll 1
- #else
- #define __has_builtin(x) 0
- #endif
- #endif
- /**
- * MACRO for shuffle parameter for _mm_shuffle_ps().
- * Argument fp3 is a digit[0123] that represents the fp from argument "b"
- * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
- * for fp2 in result. fp1 is a digit[0123] that represents the fp from
- * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
- * fp0 is the same for fp0 of result.
- */
- #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
- (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
- /* indicate immediate constant argument in a given range */
- #define __constrange(a, b) const
- /* A few intrinsics accept traditional data types like ints or floats, but
- * most operate on data types that are specific to SSE.
- * If a vector type ends in d, it contains doubles, and if it does not have
- * a suffix, it contains floats. An integer vector type can contain any type
- * of integer, from chars to shorts to unsigned long longs.
- */
- typedef float32x2_t __m64;
- typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
- // On ARM 32-bit architecture, the float64x2_t is not supported.
- // The data type __m128d should be represented in a different way for related
- // intrinsic conversion.
- #if defined(__aarch64__)
- typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
- #else
- typedef float32x4_t __m128d;
- #endif
- typedef int64x1_t __m64i;
- typedef int64x2_t __m128i; /* 128-bit vector containing integers */
- /* type-safe casting between types */
- #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
- #define vreinterpretq_m128_f32(x) (x)
- #define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
- #define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
- #define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
- #define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
- #define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
- #define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
- #define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
- #define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
- #define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
- #define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
- #define vreinterpretq_f32_m128(x) (x)
- #define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
- #define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
- #define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
- #define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
- #define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
- #define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
- #define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
- #define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
- #define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
- #define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
- #define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
- #define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
- #define vreinterpretq_m128i_s64(x) (x)
- #define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
- #define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
- #define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
- #define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
- #define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
- #define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
- #define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
- #define vreinterpretq_s64_m128i(x) (x)
- #define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
- #define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
- #define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
- #define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
- #define vreinterpret_m64i_s8(x) vreinterpret_s64_s8(x)
- #define vreinterpret_m64i_s16(x) vreinterpret_s64_s16(x)
- #define vreinterpret_m64i_s32(x) vreinterpret_s64_s32(x)
- #define vreinterpret_m64i_s64(x) (x)
- #define vreinterpret_m64i_u8(x) vreinterpret_s64_u8(x)
- #define vreinterpret_m64i_u16(x) vreinterpret_s64_u16(x)
- #define vreinterpret_m64i_u32(x) vreinterpret_s64_u32(x)
- #define vreinterpret_m64i_u64(x) vreinterpret_s64_u64(x)
- #define vreinterpret_u8_m64i(x) vreinterpret_u8_s64(x)
- #define vreinterpret_u16_m64i(x) vreinterpret_u16_s64(x)
- #define vreinterpret_u32_m64i(x) vreinterpret_u32_s64(x)
- #define vreinterpret_u64_m64i(x) vreinterpret_u64_s64(x)
- #define vreinterpret_s8_m64i(x) vreinterpret_s8_s64(x)
- #define vreinterpret_s16_m64i(x) vreinterpret_s16_s64(x)
- #define vreinterpret_s32_m64i(x) vreinterpret_s32_s64(x)
- #define vreinterpret_s64_m64i(x) (x)
- // A struct is defined in this header file called 'SIMDVec' which can be used
- // by applications which attempt to access the contents of an _m128 struct
- // directly. It is important to note that accessing the __m128 struct directly
- // is bad coding practice by Microsoft: @see:
- // https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
- //
- // However, some legacy source code may try to access the contents of an __m128
- // struct directly so the developer can use the SIMDVec as an alias for it. Any
- // casting must be done manually by the developer, as you cannot cast or
- // otherwise alias the base NEON data type for intrinsic operations.
- //
- // union intended to allow direct access to an __m128 variable using the names
- // that the MSVC compiler provides. This union should really only be used when
- // trying to access the members of the vector as integer values. GCC/clang
- // allow native access to the float members through a simple array access
- // operator (in C since 4.6, in C++ since 4.8).
- //
- // Ideally direct accesses to SIMD vectors should not be used since it can cause
- // a performance hit. If it really is needed however, the original __m128
- // variable can be aliased with a pointer to this union and used to access
- // individual components. The use of this union should be hidden behind a macro
- // that is used throughout the codebase to access the members instead of always
- // declaring this type of variable.
- typedef union ALIGN_STRUCT(16) SIMDVec {
- float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
- int8_t m128_i8[16]; // as signed 8-bit integers.
- int16_t m128_i16[8]; // as signed 16-bit integers.
- int32_t m128_i32[4]; // as signed 32-bit integers.
- int64_t m128_i64[2]; // as signed 64-bit integers.
- uint8_t m128_u8[16]; // as unsigned 8-bit integers.
- uint16_t m128_u16[8]; // as unsigned 16-bit integers.
- uint32_t m128_u32[4]; // as unsigned 32-bit integers.
- uint64_t m128_u64[2]; // as unsigned 64-bit integers.
- } SIMDVec;
- // casting using SIMDVec
- #define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *)&x)->m128_u64[n])
- #define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *)&x)->m128_u32[n])
- /* Backwards compatibility for compilers with lack of specific type support */
- // Older gcc does not define vld1q_u8_x4 type
- #if defined(__GNUC__) && !defined(__clang__)
- #if __GNUC__ <= 9
- FORCE_INLINE uint8x16x4_t vld1q_u8_x4(const uint8_t *p)
- {
- uint8x16x4_t ret;
- ret.val[0] = vld1q_u8(p + 0);
- ret.val[1] = vld1q_u8(p + 16);
- ret.val[2] = vld1q_u8(p + 32);
- ret.val[3] = vld1q_u8(p + 48);
- return ret;
- }
- #endif
- #endif
- /* Function Naming Conventions
- * The naming convention of SSE intrinsics is straightforward. A generic SSE
- * intrinsic function is given as follows:
- * _mm_<name>_<data_type>
- *
- * The parts of this format are given as follows:
- * 1. <name> describes the operation performed by the intrinsic
- * 2. <data_type> identifies the data type of the function's primary arguments
- *
- * This last part, <data_type>, is a little complicated. It identifies the
- * content of the input values, and can be set to any of the following values:
- * + ps - vectors contain floats (ps stands for packed single-precision)
- * + pd - vectors cantain doubles (pd stands for packed double-precision)
- * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * signed integers
- * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
- * unsigned integers
- * + si128 - unspecified 128-bit vector or 256-bit vector
- * + m128/m128i/m128d - identifies input vector types when they are different
- * than the type of the returned vector
- *
- * For example, _mm_setzero_ps. The _mm implies that the function returns
- * a 128-bit vector. The _ps at the end implies that the argument vectors
- * contain floats.
- *
- * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
- * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
- * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
- * // Set packed 8-bit integers
- * // 128 bits, 16 chars, per 8 bits
- * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
- * 4, 5, 12, 13, 6, 7, 14, 15);
- * // Shuffle packed 8-bit integers
- * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
- *
- * Data (Number, Binary, Byte Index):
- +------+------+-------------+------+------+-------------+
- | 1 | 2 | 3 | 4 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary
- +------+------+------+------+------+------+------+------+
- | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 5 | 6 | 7 | 8 | Number
- +------+------+------+------+------+------+------+------+
- | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- * Index (Byte Index):
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 |
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 |
- +------+------+------+------+------+------+------+------+
- * Result:
- +------+------+------+------+------+------+------+------+
- | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index
- +------+------+------+------+------+------+------+------+
- | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary
- +------+------+------+------+------+------+------+------+
- | 256 | 2 | 5 | 6 | Number
- +------+------+------+------+------+------+------+------+
- +------+------+------+------+------+------+------+------+
- | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index
- +------+------+------+------+------+------+------+------+
- | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary
- +------+------+------+------+------+------+------+------+
- | 3 | 7 | 4 | 8 | Number
- +------+------+------+------+------+------+-------------+
- */
- /* Set/get methods */
- /* Constants for use with _mm_prefetch. */
- enum _mm_hint {
- _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
- _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
- _MM_HINT_T1 = 2, /* load data to L2 cache only */
- _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
- _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */
- _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */
- _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */
- _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */
- };
- // Loads one cache line of data from address p to a location closer to the
- // processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
- FORCE_INLINE void _mm_prefetch(const void *p, int i)
- {
- (void)i;
- __builtin_prefetch(p);
- }
- // extracts the lower order floating point value from the parameter :
- // https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396
- FORCE_INLINE float _mm_cvtss_f32(__m128 a)
- {
- return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- }
- // Sets the 128-bit value to zero
- // https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_setzero_si128(void)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(0));
- }
- // Clears the four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setzero_ps(void)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(0));
- }
- // Sets the four single-precision, floating-point values to w.
- //
- // r0 := r1 := r2 := r3 := w
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set1_ps(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- // Sets the four single-precision, floating-point values to w.
- // https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps1(float _w)
- {
- return vreinterpretq_m128_f32(vdupq_n_f32(_w));
- }
- // Sets the four single-precision, floating-point values to the four inputs.
- // https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Copy single-precision (32-bit) floating-point element a to the lower element
- // of dst, and zero the upper 3 elements.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss&expand=4901,4895,4901
- FORCE_INLINE __m128 _mm_set_ss(float a)
- {
- float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the four single-precision, floating-point values to the four inputs in
- // reverse order.
- // https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
- {
- float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
- return vreinterpretq_m128_f32(vld1q_f32(data));
- }
- // Sets the 8 signed 16-bit integer values in reverse order.
- //
- // Return Value
- // r0 := w0
- // r1 := w1
- // ...
- // r7 := w7
- FORCE_INLINE __m128i _mm_setr_epi16(short w0, short w1, short w2, short w3,
- short w4, short w5, short w6, short w7)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
- return vreinterpretq_m128i_s16(vld1q_s16((int16_t *)data));
- }
- // Sets the 4 signed 32-bit integer values in reverse order
- // https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Sets the 16 signed 8-bit integer values to b.
- //
- // r0 := b
- // r1 := b
- // ...
- // r15 := b
- //
- // https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
- {
- return vreinterpretq_m128i_s8(vdupq_n_s8(w));
- }
- // Sets the 8 signed 16-bit integer values to w.
- //
- // r0 := w
- // r1 := w
- // ...
- // r7 := w
- //
- // https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set1_epi16(short w)
- {
- return vreinterpretq_m128i_s16(vdupq_n_s16(w));
- }
- // Sets the 16 signed 8-bit integer values.
- // https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
- FORCE_INLINE __m128i
- _mm_set_epi8(signed char b15, signed char b14, signed char b13, signed char b12,
- signed char b11, signed char b10, signed char b9, signed char b8,
- signed char b7, signed char b6, signed char b5, signed char b4,
- signed char b3, signed char b2, signed char b1, signed char b0)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t)b0, (int8_t)b1, (int8_t)b2, (int8_t)b3,
- (int8_t)b4, (int8_t)b5, (int8_t)b6, (int8_t)b7,
- (int8_t)b8, (int8_t)b9, (int8_t)b10, (int8_t)b11,
- (int8_t)b12, (int8_t)b13, (int8_t)b14, (int8_t)b15};
- return (__m128i)vld1q_s8(data);
- }
- // Sets the 8 signed 16-bit integer values.
- // https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_set_epi16(short i7, short i6, short i5, short i4,
- short i3, short i2, short i1, short i0)
- {
- int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
- return vreinterpretq_m128i_s16(vld1q_s16(data));
- }
- // Sets the 16 signed 8-bit integer values in reverse order.
- // https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_setr_epi8(
- signed char b0, signed char b1, signed char b2, signed char b3,
- signed char b4, signed char b5, signed char b6, signed char b7,
- signed char b8, signed char b9, signed char b10, signed char b11,
- signed char b12, signed char b13, signed char b14, signed char b15)
- {
- int8_t ALIGN_STRUCT(16)
- data[16] = {(int8_t)b0, (int8_t)b1, (int8_t)b2, (int8_t)b3,
- (int8_t)b4, (int8_t)b5, (int8_t)b6, (int8_t)b7,
- (int8_t)b8, (int8_t)b9, (int8_t)b10, (int8_t)b11,
- (int8_t)b12, (int8_t)b13, (int8_t)b14, (int8_t)b15};
- return (__m128i)vld1q_s8(data);
- }
- // Sets the 4 signed 32-bit integer values to i.
- //
- // r0 := i
- // r1 := i
- // r2 := i
- // r3 := I
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set1_epi32(int _i)
- {
- return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100)
- FORCE_INLINE __m128i _mm_set1_epi64(int64_t _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
- }
- // Sets the 2 signed 64-bit integer values to i.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x&expand=4961
- FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
- {
- return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
- }
- // Sets the 4 signed 32-bit integer values.
- // https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
- {
- int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
- return vreinterpretq_m128i_s32(vld1q_s32(data));
- }
- // Returns the __m128i structure with its two 64-bit integer values
- // initialized to the values of the two 64-bit integers passed in.
- // https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
- FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
- {
- int64_t ALIGN_STRUCT(16) data[2] = {i2, i1};
- return vreinterpretq_m128i_s64(vld1q_s64(data));
- }
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Stores four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
- FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
- {
- vst1q_f32(p, vreinterpretq_f32_m128(a));
- }
- // Stores four 32-bit integer values as (as a __m128i value) at the address p.
- // https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
- FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *)p, vreinterpretq_s32_m128i(a));
- }
- // Stores four 32-bit integer values as (as a __m128i value) at the address p.
- // https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
- FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
- {
- vst1q_s32((int32_t *)p, vreinterpretq_s32_m128i(a));
- }
- // Stores the lower single - precision, floating - point value.
- // https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
- FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
- {
- vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
- }
- // Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
- // https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
- {
- uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
- uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
- *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
- }
- // Stores the lower two single-precision floating point values of a to the
- // address p.
- //
- // *p0 := a0
- // *p1 := a1
- //
- // https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
- FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
- {
- *p = vget_low_f32(a);
- }
- // Stores the upper two single-precision, floating-point values of a to the
- // address p.
- //
- // *p0 := a2
- // *p1 := a3
- //
- // https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx
- FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
- {
- *p = vget_high_f32(a);
- }
- // Loads a single single-precision, floating-point value, copying it into all
- // four words
- // https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load1_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_dup_f32(p));
- }
- #define _mm_load_ps1 _mm_load1_ps
- // Sets the lower two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the upper two values are passed
- // through from a.
- //
- // Return Value
- // r0 := *p0
- // r1 := *p1
- // r2 := a2
- // r3 := a3
- //
- // https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vld1_f32((const float32_t *)p), vget_high_f32(a)));
- }
- // Sets the upper two single-precision, floating-point values with 64
- // bits of data loaded from the address p; the lower two values are passed
- // through from a.
- //
- // r0 := a0
- // r1 := a1
- // r2 := *p0
- // r3 := *p1
- //
- // https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx
- FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
- {
- return vreinterpretq_m128_f32(
- vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *)p)));
- }
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_load_ps(const float *p)
- {
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Loads four single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
- {
- // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
- // equivalent for neon
- return vreinterpretq_m128_f32(vld1q_f32(p));
- }
- // Loads a double-precision, floating-point value.
- // The upper double-precision, floating-point is set to zero. The address p does
- // not need to be 16-byte aligned.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/574w9fdd(v%3dvs.100)
- FORCE_INLINE __m128d _mm_load_sd(const double *p)
- {
- #if defined(__aarch64__)
- return vsetq_lane_f64(*p, vdupq_n_f64(0), 0);
- #else
- const float *fp = (const float *)p;
- float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
- return vld1q_f32(data);
- #endif
- }
- // Loads an single - precision, floating - point value into the low word and
- // clears the upper three words.
- // https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_load_ss(const float *p)
- {
- return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
- }
- FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
- {
- /* Load the lower 64 bits of the value pointed to by p into the
- * lower 64 bits of the result, zeroing the upper 64 bits of the result.
- */
- return vreinterpretq_m128i_s32(
- vcombine_s32(vld1_s32((int32_t const *)p), vcreate_s32(0)));
- }
- /* Logic/Binary operations */
- // Compares for inequality.
- // https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vmvnq_u32(vceqq_f32(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
- }
- // Computes the bitwise AND-NOT of the four single-precision, floating-point
- // values of a and b.
- //
- // r0 := ~a0 & b0
- // r1 := ~a1 & b1
- // r2 := ~a2 & b2
- // r3 := ~a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(
- vbicq_s32(vreinterpretq_s32_m128(b),
- vreinterpretq_s32_m128(a))); // *NOTE* argument swap
- }
- // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
- // 128-bit value in a.
- //
- // r := (~a) & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(
- vbicq_s32(vreinterpretq_s32_m128i(b),
- vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
- }
- // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
- // b.
- //
- // r := a & b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vandq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Computes the bitwise AND of the four single-precision, floating-point values
- // of a and b.
- //
- // r0 := a0 & b0
- // r1 := a1 & b1
- // r2 := a2 & b2
- // r3 := a3 & b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(vandq_s32(vreinterpretq_s32_m128(a),
- vreinterpretq_s32_m128(b)));
- }
- // Computes the bitwise OR of the four single-precision, floating-point values
- // of a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(vorrq_s32(vreinterpretq_s32_m128(a),
- vreinterpretq_s32_m128(b)));
- }
- // Computes bitwise EXOR (exclusive-or) of the four single-precision,
- // floating-point values of a and b.
- // https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_s32(veorq_s32(vreinterpretq_s32_m128(a),
- vreinterpretq_s32_m128(b)));
- }
- // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
- //
- // r := a | b
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vorrq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
- // b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(veorq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Moves the upper two values of B into the lower two values of A.
- //
- // r3 := a3
- // r2 := a2
- // r1 := b3
- // r0 := b2
- FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
- }
- // Moves the lower two values of B into the upper two values of A.
- //
- // r3 := b1
- // r2 := b0
- // r1 := a1
- // r0 := a0
- FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
- }
- FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
- {
- return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
- }
- FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
- {
- return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
- }
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of b and places it into the high end of the result.
- FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in high
- // end of result takes the higher two 32 bit values from b and swaps them and
- // places in low end of result.
- FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
- {
- float32x2_t a21 = vget_high_f32(vextq_f32(
- vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
- float32x2_t b03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(b),
- vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
- {
- float32x2_t a03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(a), 3));
- float32x2_t b21 = vget_high_f32(vextq_f32(
- vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
- return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
- }
- // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
- // high
- FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
- {
- float32x2_t a11 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
- {
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
- {
- float32x2_t a00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t b22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
- return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
- {
- float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
- float32x2_t a22 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
- float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
- {
- float32x2_t a33 =
- vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
- float32x2_t b11 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
- return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
- {
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
- float32x2_t b00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
- {
- float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
- }
- FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
- {
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32_t b2 = vgetq_lane_f32(b, 2);
- float32x2_t b00 =
- vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
- float32x2_t b20 = vset_lane_f32(b2, b00, 1);
- return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
- }
- // NEON does not support a general purpose permute intrinsic
- // Selects four specific single-precision, floating-point values from a and b,
- // based on the mask i.
- // https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
- #if 0 /* C version */
- FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a,
- __m128 b,
- __constrange(0, 255) int imm)
- {
- __m128 ret;
- ret[0] = a[imm & 0x3];
- ret[1] = a[(imm >> 2) & 0x3];
- ret[2] = b[(imm >> 4) & 0x03];
- ret[3] = b[(imm >> 6) & 0x03];
- return ret;
- }
- #endif
- #define _mm_shuffle_ps_default(a, b, imm) \
- __extension__({ \
- float32x4_t ret; \
- ret = vmovq_n_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), \
- (imm) & (0x3))); \
- ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), \
- ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), \
- ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), \
- ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128_f32(ret); \
- })
- // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
- // int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- float32x4_t _input1 = vreinterpretq_f32_m128(a); \
- float32x4_t _input2 = vreinterpretq_f32_m128(b); \
- float32x4_t _shuf = __builtin_shufflevector( \
- _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128_f32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_ps(a, b, imm) \
- __extension__({ \
- __m128 ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_ps_1032((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_ps_2301((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_ps_0321((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_ps_2103((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_movelh_ps((a), (b)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_ps_1001((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_ps_0101((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 1, 0): \
- ret = _mm_shuffle_ps_3210((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 1, 1): \
- ret = _mm_shuffle_ps_0011((a), (b)); \
- break; \
- case _MM_SHUFFLE(0, 0, 2, 2): \
- ret = _mm_shuffle_ps_0022((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 2, 0, 0): \
- ret = _mm_shuffle_ps_2200((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 0, 2): \
- ret = _mm_shuffle_ps_3202((a), (b)); \
- break; \
- case _MM_SHUFFLE(3, 2, 3, 2): \
- ret = _mm_movehl_ps((b), (a)); \
- break; \
- case _MM_SHUFFLE(1, 1, 3, 3): \
- ret = _mm_shuffle_ps_1133((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 1, 0): \
- ret = _mm_shuffle_ps_2010((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 0, 1): \
- ret = _mm_shuffle_ps_2001((a), (b)); \
- break; \
- case _MM_SHUFFLE(2, 0, 3, 2): \
- ret = _mm_shuffle_ps_2032((a), (b)); \
- break; \
- default: \
- ret = _mm_shuffle_ps_default((a), (b), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Takes the upper 64 bits of a and places it in the low end of the result
- // Takes the lower 64 bits of a and places it into the high end of the result.
- FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
- }
- // takes the lower two 32-bit values from a and swaps them and places in low end
- // of result takes the higher two 32 bit values from a and swaps them and places
- // in high end of result.
- FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
- }
- // rotates the least significant 32 bits into the most signficant 32 bits, and
- // shifts the rest down
- FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
- {
- return vreinterpretq_m128i_s32(vextq_s32(
- vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
- }
- // rotates the most significant 32 bits into the least signficant 32 bits, and
- // shifts the rest up
- FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
- {
- return vreinterpretq_m128i_s32(vextq_s32(
- vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
- }
- // gets the lower 64 bits of a, and places it in the upper 64 bits
- // gets the lower 64 bits of a and places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
- {
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
- // lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
- }
- // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
- // upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
- // places it in the lower 64 bits
- FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
- {
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
- {
- int32x2_t a11 =
- vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
- int32x2_t a22 =
- vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
- {
- int32x2_t a22 =
- vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
- int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
- return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
- }
- FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
- {
- int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t a33 =
- vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
- return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
- }
- // Shuffle packed 8-bit integers in a according to shuffle control mask in the
- // corresponding 8-bit element of b, and store the results in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8&expand=5146
- FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
- {
- int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
- uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
- uint8x16_t idx_masked =
- vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
- #elif defined(__GNUC__)
- int8x16_t ret;
- // %e and %f represent the even and odd D registers
- // respectively.
- __asm__ __volatile__("vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
- "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
- : [ret] "=&w"(ret)
- : [tbl] "w"(tbl), [idx] "w"(idx_masked));
- return vreinterpretq_m128i_s8(ret);
- #else
- // use this line if testing on aarch64
- int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
- return vreinterpretq_m128i_s8(
- vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
- vtbl2_s8(a_split, vget_high_u8(idx_masked))));
- #endif
- }
- #if 0 /* C version */
- FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a,
- __constrange(0, 255) int imm)
- {
- __m128i ret;
- ret[0] = a[imm & 0x3];
- ret[1] = a[(imm >> 2) & 0x3];
- ret[2] = a[(imm >> 4) & 0x03];
- ret[3] = a[(imm >> 6) & 0x03];
- return ret;
- }
- #endif
- #define _mm_shuffle_epi32_default(a, imm) \
- __extension__({ \
- int32x4_t ret; \
- ret = vmovq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
- (imm) & (0x3))); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
- ((imm) >> 2) & 0x3), \
- ret, 1); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
- ((imm) >> 4) & 0x3), \
- ret, 2); \
- ret = vsetq_lane_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
- ((imm) >> 6) & 0x3), \
- ret, 3); \
- vreinterpretq_m128i_s32(ret); \
- })
- // FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
- // int imm)
- #if defined(__aarch64__)
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32( \
- vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
- })
- #else
- #define _mm_shuffle_epi32_splat(a, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32(vdupq_n_s32( \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
- })
- #endif
- // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
- // https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
- // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- int32x4_t _input = vreinterpretq_s32_m128i(a); \
- int32x4_t _shuf = __builtin_shufflevector( \
- _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
- ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
- vreinterpretq_m128i_s32(_shuf); \
- })
- #else // generic
- #define _mm_shuffle_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- switch (imm) { \
- case _MM_SHUFFLE(1, 0, 3, 2): \
- ret = _mm_shuffle_epi_1032((a)); \
- break; \
- case _MM_SHUFFLE(2, 3, 0, 1): \
- ret = _mm_shuffle_epi_2301((a)); \
- break; \
- case _MM_SHUFFLE(0, 3, 2, 1): \
- ret = _mm_shuffle_epi_0321((a)); \
- break; \
- case _MM_SHUFFLE(2, 1, 0, 3): \
- ret = _mm_shuffle_epi_2103((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 1, 0): \
- ret = _mm_shuffle_epi_1010((a)); \
- break; \
- case _MM_SHUFFLE(1, 0, 0, 1): \
- ret = _mm_shuffle_epi_1001((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 0, 1): \
- ret = _mm_shuffle_epi_0101((a)); \
- break; \
- case _MM_SHUFFLE(2, 2, 1, 1): \
- ret = _mm_shuffle_epi_2211((a)); \
- break; \
- case _MM_SHUFFLE(0, 1, 2, 2): \
- ret = _mm_shuffle_epi_0122((a)); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 2): \
- ret = _mm_shuffle_epi_3332((a)); \
- break; \
- case _MM_SHUFFLE(0, 0, 0, 0): \
- ret = _mm_shuffle_epi32_splat((a), 0); \
- break; \
- case _MM_SHUFFLE(1, 1, 1, 1): \
- ret = _mm_shuffle_epi32_splat((a), 1); \
- break; \
- case _MM_SHUFFLE(2, 2, 2, 2): \
- ret = _mm_shuffle_epi32_splat((a), 2); \
- break; \
- case _MM_SHUFFLE(3, 3, 3, 3): \
- ret = _mm_shuffle_epi32_splat((a), 3); \
- break; \
- default: \
- ret = _mm_shuffle_epi32_default((a), (imm)); \
- break; \
- } \
- ret; \
- })
- #endif
- // Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100)
- // FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflelo_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t lowBits = vget_low_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), \
- ret, 0); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, 1); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, 2); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, 3); \
- vreinterpretq_m128i_s16(ret); \
- })
- // FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflelo_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
- (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, \
- 7); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
- #endif
- // Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified
- // by imm.
- // https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
- // __constrange(0,255) int
- // imm)
- #define _mm_shufflehi_epi16_function(a, imm) \
- __extension__({ \
- int16x8_t ret = vreinterpretq_s16_m128i(a); \
- int16x4_t highBits = vget_high_s16(ret); \
- ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), \
- ret, 4); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, 5); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, 6); \
- ret = vsetq_lane_s16( \
- vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, 7); \
- vreinterpretq_m128i_s16(ret); \
- })
- // FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
- // __constrange(0,255) int imm)
- #if __has_builtin(__builtin_shufflevector)
- #define _mm_shufflehi_epi16(a, imm) \
- __extension__({ \
- int16x8_t _input = vreinterpretq_s16_m128i(a); \
- int16x8_t _shuf = __builtin_shufflevector( \
- _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
- (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
- (((imm) >> 6) & 0x3) + 4); \
- vreinterpretq_m128i_s16(_shuf); \
- })
- #else // generic
- #define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
- #endif
- // Blend packed 16-bit integers from a and b using control mask imm8, and store
- // the results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // IF imm8[j]
- // dst[i+15:i] := b[i+15:i]
- // ELSE
- // dst[i+15:i] := a[i+15:i]
- // FI
- // ENDFOR
- // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
- // __constrange(0,255) int imm)
- #define _mm_blend_epi16(a, b, imm) \
- __extension__({ \
- const uint16_t _mask[8] = { \
- ((imm) & (1 << 0)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 1)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 2)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 3)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 4)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 5)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 6)) ? 0xFFFF : 0x0000, \
- ((imm) & (1 << 7)) ? 0xFFFF : 0x0000}; \
- uint16x8_t _mask_vec = vld1q_u16(_mask); \
- uint16x8_t _a = vreinterpretq_u16_m128i(a); \
- uint16x8_t _b = vreinterpretq_u16_m128i(b); \
- vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \
- })
- // Blend packed 8-bit integers from a and b using mask, and store the results in
- // dst.
- //
- // FOR j := 0 to 15
- // i := j*8
- // IF mask[i+7]
- // dst[i+7:i] := b[i+7:i]
- // ELSE
- // dst[i+7:i] := a[i+7:i]
- // FI
- // ENDFOR
- FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
- {
- // Use a signed shift right to create a mask with the sign bit
- uint8x16_t mask = vreinterpretq_u8_s8(
- vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
- uint8x16_t a = vreinterpretq_u8_m128i(_a);
- uint8x16_t b = vreinterpretq_u8_m128i(_b);
- return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
- }
- /* Shifts */
- // Shifts the 4 signed 32-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // r2 := a2 >> count
- // r3 := a3 >> count immediate
- FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, int count)
- {
- return (__m128i)vshlq_s32((int32x4_t)a, vdupq_n_s32(-count));
- }
- // Shifts the 8 signed 16-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // ...
- // r7 := a7 >> count
- FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int count)
- {
- return (__m128i)vshlq_s16((int16x8_t)a, vdupq_n_s16(-count));
- }
- // Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // ...
- // r7 := a7 << count
- //
- // https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
- #define _mm_slli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 31) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s16(vshlq_n_s16( \
- vreinterpretq_s16_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
- // shifting in zeros. :
- // https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
- // FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_slli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 31) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s32(vshlq_n_s32( \
- vreinterpretq_s32_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
- // store the results in dst.
- #define _mm_slli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 63) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s64(vshlq_n_s64( \
- vreinterpretq_s64_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- // ...
- // r7 := srl(a7, count)
- //
- // https://msdn.microsoft.com/en-us/library/6tcwd38t(v=vs.90).aspx
- #define _mm_srli_epi16(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 31) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u16(vshrq_n_u16( \
- vreinterpretq_u16_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
- // while shifting in zeros.
- // https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx FORCE_INLINE
- // __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srli_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 31) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u32(vshrq_n_u32( \
- vreinterpretq_u32_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
- // store the results in dst.
- #define _mm_srli_epi64(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 63) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_u64(vshrq_n_u64( \
- vreinterpretq_u64_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 4 signed 32 - bit integers in a right by count bits while shifting
- // in the sign bit.
- // https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
- #define _mm_srai_epi32(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 31) { \
- ret = vreinterpretq_m128i_s32( \
- vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \
- ret = vreinterpretq_m128i_s32(vshrq_n_s32( \
- vreinterpretq_s32_m128i(ret), 16)); \
- } else { \
- ret = vreinterpretq_m128i_s32(vshrq_n_s32( \
- vreinterpretq_s32_m128i(a), (imm))); \
- } \
- ret; \
- })
- // Shifts the 128 - bit value in a right by imm bytes while shifting in
- // zeros.imm must be an immediate.
- //
- // r := srl(a, imm*8)
- //
- // https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
- // FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
- #define _mm_srli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 15) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8( \
- vextq_s8(vreinterpretq_s8_m128i(a), \
- vdupq_n_s8(0), (imm))); \
- } \
- ret; \
- })
- // Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
- // must be an immediate.
- //
- // r := a << (imm * 8)
- //
- // https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
- // FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
- #define _mm_slli_si128(a, imm) \
- __extension__({ \
- __m128i ret; \
- if ((imm) <= 0) { \
- ret = a; \
- } else if ((imm) > 15) { \
- ret = _mm_setzero_si128(); \
- } else { \
- ret = vreinterpretq_m128i_s8(vextq_s8( \
- vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \
- 16 - (imm))); \
- } \
- ret; \
- })
- // Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // ...
- // r7 := a7 << count
- //
- // https://msdn.microsoft.com/en-us/library/c79w388h(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 15)
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16((int16_t)c);
- return vreinterpretq_m128i_s16(
- vshlq_s16(vreinterpretq_s16_m128i(a), vc));
- }
- // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- // r2 := a2 << count
- // r3 := a3 << count
- //
- // https://msdn.microsoft.com/en-us/library/6fe5a6s9(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 31)
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32((int32_t)c);
- return vreinterpretq_m128i_s32(
- vshlq_s32(vreinterpretq_s32_m128i(a), vc));
- }
- // Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while
- // shifting in zeros.
- //
- // r0 := a0 << count
- // r1 := a1 << count
- //
- // https://msdn.microsoft.com/en-us/library/6ta9dffd(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 63)
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64((int64_t)c);
- return vreinterpretq_m128i_s64(
- vshlq_s64(vreinterpretq_s64_m128i(a), vc));
- }
- // Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- // ...
- // r7 := srl(a7, count)
- //
- // https://msdn.microsoft.com/en-us/library/wd5ax830(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 15)
- return _mm_setzero_si128();
- int16x8_t vc = vdupq_n_s16(-(int16_t)c);
- return vreinterpretq_m128i_u16(
- vshlq_u16(vreinterpretq_u16_m128i(a), vc));
- }
- // Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- // r2 := srl(a2, count)
- // r3 := srl(a3, count)
- //
- // https://msdn.microsoft.com/en-us/library/a9cbttf4(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 31)
- return _mm_setzero_si128();
- int32x4_t vc = vdupq_n_s32(-(int32_t)c);
- return vreinterpretq_m128i_u32(
- vshlq_u32(vreinterpretq_u32_m128i(a), vc));
- }
- // Shifts the 2 signed or unsigned 64-bit integers in a right by count bits
- // while shifting in zeros.
- //
- // r0 := srl(a0, count)
- // r1 := srl(a1, count)
- //
- // https://msdn.microsoft.com/en-us/library/yf6cf9k8(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
- {
- uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
- if (c > 63)
- return _mm_setzero_si128();
- int64x2_t vc = vdupq_n_s64(-(int64_t)c);
- return vreinterpretq_m128i_u64(
- vshlq_u64(vreinterpretq_u64_m128i(a), vc));
- }
- // NEON does not provide a version of this function.
- // Creates a 16-bit mask from the most significant bits of the 16 signed or
- // unsigned 8-bit integers in a and zero extends the upper bits.
- // https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_epi8(__m128i a)
- {
- #if defined(__aarch64__)
- uint8x16_t input = vreinterpretq_u8_m128i(a);
- const int8_t ALIGN_STRUCT(16) xr[16] = {-7, -6, -5, -4, -3, -2, -1, 0,
- -7, -6, -5, -4, -3, -2, -1, 0};
- const uint8x16_t mask_and = vdupq_n_u8(0x80);
- const int8x16_t mask_shift = vld1q_s8(xr);
- const uint8x16_t mask_result =
- vshlq_u8(vandq_u8(input, mask_and), mask_shift);
- uint8x8_t lo = vget_low_u8(mask_result);
- uint8x8_t hi = vget_high_u8(mask_result);
- return vaddv_u8(lo) + (vaddv_u8(hi) << 8);
- #else
- // Use increasingly wide shifts+adds to collect the sign bits
- // together.
- // Since the widening shifts would be rather confusing to follow in little
- // endian, everything will be illustrated in big endian order instead. This
- // has a different result - the bits would actually be reversed on a big
- // endian machine.
- // Starting input (only half the elements are shown):
- // 89 ff 1d c0 00 10 99 33
- uint8x16_t input = vreinterpretq_u8_m128i(a);
- // Shift out everything but the sign bits with an unsigned shift right.
- //
- // Bytes of the vector::
- // 89 ff 1d c0 00 10 99 33
- // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
- // | | | | | | | |
- // 01 01 00 01 00 00 01 00
- //
- // Bits of first important lane(s):
- // 10001001 (89)
- // \______
- // |
- // 00000001 (01)
- uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
- // Merge the even lanes together with a 16-bit unsigned shift right + add.
- // 'xx' represents garbage data which will be ignored in the final result.
- // In the important bytes, the add functions like a binary OR.
- //
- // 01 01 00 01 00 00 01 00
- // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
- // \| \| \| \|
- // xx 03 xx 01 xx 00 xx 02
- //
- // 00000001 00000001 (01 01)
- // \_______ |
- // \|
- // xxxxxxxx xxxxxx11 (xx 03)
- uint32x4_t paired16 =
- vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
- // Repeat with a wider 32-bit shift + add.
- // xx 03 xx 01 xx 00 xx 02
- // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
- // 14))
- // \| \|
- // xx xx xx 0d xx xx xx 02
- //
- // 00000011 00000001 (03 01)
- // \\_____ ||
- // '----.\||
- // xxxxxxxx xxxx1101 (xx 0d)
- uint64x2_t paired32 =
- vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
- // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
- // lanes. xx xx xx 0d xx xx xx 02
- // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
- // 28))
- // \|
- // xx xx xx xx xx xx xx d2
- //
- // 00001101 00000010 (0d 02)
- // \ \___ | |
- // '---. \| |
- // xxxxxxxx 11010010 (xx d2)
- uint8x16_t paired64 =
- vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
- // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
- // xx xx xx xx xx xx xx d2
- // || return paired64[0]
- // d2
- // Note: Little endian would return the correct value 4b (01001011) instead.
- return vgetq_lane_u8(paired64, 0) |
- ((int)vgetq_lane_u8(paired64, 8) << 8);
- #endif
- }
- // NEON does not provide this method
- // Creates a 4-bit mask from the most significant bits of the four
- // single-precision, floating-point values.
- // https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
- FORCE_INLINE int _mm_movemask_ps(__m128 a)
- {
- uint32x4_t input = vreinterpretq_u32_m128(a);
- #if defined(__aarch64__)
- static const int32x4_t shift = {-31, -30, -29, -28};
- static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
- 0x80000000};
- return vaddvq_u32(vshlq_u32(vandq_u32(input, highbit), shift));
- #else
- // Uses the exact same method as _mm_movemask_epi8, see that for details.
- // Shift out everything but the sign bits with a 32-bit unsigned shift
- // right.
- uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
- // Merge the two pairs together with a 64-bit unsigned shift right + add.
- uint8x16_t paired =
- vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
- // Extract the result.
- return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
- #endif
- }
- // Compute the bitwise AND of 128 bits (representing integer data) in a and
- // mask, and return 1 if the result is zero, otherwise return 0.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros&expand=5871
- FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
- {
- int64x2_t a_and_mask = vandq_s64(vreinterpretq_s64_m128i(a),
- vreinterpretq_s64_m128i(mask));
- return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1))
- ? 0
- : 1;
- }
- /* Math operations */
- // Subtracts the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(vsubq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
- // and store the results in dst.
- // r0 := a0 - b0
- // r1 := a1 - b1
- FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(vsubq_s64(vreinterpretq_s64_m128i(a),
- vreinterpretq_s64_m128i(b)));
- }
- // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
- // unsigned 32-bit integers of a.
- //
- // r0 := a0 - b0
- // r1 := a1 - b1
- // r2 := a2 - b2
- // r3 := a3 - b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vsubq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vsubq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
- // integers of a and saturates..
- // https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(vqsubq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b)));
- }
- // Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
- // integers of a and saturates.
- //
- // r0 := UnsignedSaturate(a0 - b0)
- // r1 := UnsignedSaturate(a1 - b1)
- // ...
- // r15 := UnsignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(vqsubq_u8(vreinterpretq_u8_m128i(a),
- vreinterpretq_u8_m128i(b)));
- }
- // Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r15 := SignedSaturate(a15 - b15)
- //
- // https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(vqsubq_s8(vreinterpretq_s8_m128i(a),
- vreinterpretq_s8_m128i(b)));
- }
- // Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
- // of a and saturates.
- //
- // r0 := SignedSaturate(a0 - b0)
- // r1 := SignedSaturate(a1 - b1)
- // ...
- // r7 := SignedSaturate(a7 - b7)
- //
- // https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90)
- FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vqsubq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(vqaddq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b)));
- }
- // Negate packed 8-bit integers in a when the corresponding signed
- // 8-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..15
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
- {
- int8x16_t a = vreinterpretq_s8_m128i(_a);
- int8x16_t b = vreinterpretq_s8_m128i(_b);
- int8x16_t zero = vdupq_n_s8(0);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFF : 0
- uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
- // (b == 0) ? 0xFF : 0
- int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, zero));
- // -a
- int8x16_t neg = vnegq_s8(a);
- // bitwise select either a or neg based on ltMask
- int8x16_t masked = vbslq_s8(ltMask, a, neg);
- // res = masked & (~zeroMask)
- int8x16_t res = vbicq_s8(masked, zeroMask);
- return vreinterpretq_m128i_s8(res);
- }
- // Negate packed 16-bit integers in a when the corresponding signed
- // 16-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..7
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- int16x8_t zero = vdupq_n_s16(0);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFF : 0
- uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
- // (b == 0) ? 0xFFFF : 0
- int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, zero));
- // -a
- int16x8_t neg = vnegq_s16(a);
- // bitwise select either a or neg based on ltMask
- int16x8_t masked = vbslq_s16(ltMask, a, neg);
- // res = masked & (~zeroMask)
- int16x8_t res = vbicq_s16(masked, zeroMask);
- return vreinterpretq_m128i_s16(res);
- }
- // Negate packed 32-bit integers in a when the corresponding signed
- // 32-bit integer in b is negative, and store the results in dst.
- // Element in dst are zeroed out when the corresponding element
- // in b is zero.
- //
- // for i in 0..3
- // if b[i] < 0
- // r[i] := -a[i]
- // else if b[i] == 0
- // r[i] := 0
- // else
- // r[i] := a[i]
- // fi
- // done
- FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- int32x4_t zero = vdupq_n_s32(0);
- // signed shift right: faster than vclt
- // (b < 0) ? 0xFFFFFFFF : 0
- uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
- // (b == 0) ? 0xFFFFFFFF : 0
- int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, zero));
- // neg = -a
- int32x4_t neg = vnegq_s32(a);
- // bitwise select either a or neg based on ltMask
- int32x4_t masked = vbslq_s32(ltMask, a, neg);
- // res = masked & (~zeroMask)
- int32x4_t res = vbicq_s32(masked, zeroMask);
- return vreinterpretq_m128i_s32(res);
- }
- // Computes the average of the 16 unsigned 8-bit integers in a and the 16
- // unsigned 8-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r15 := (a15 + b15) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(vrhaddq_u8(vreinterpretq_u8_m128i(a),
- vreinterpretq_u8_m128i(b)));
- }
- // Computes the average of the 8 unsigned 16-bit integers in a and the 8
- // unsigned 16-bit integers in b and rounds.
- //
- // r0 := (a0 + b0) / 2
- // r1 := (a1 + b1) / 2
- // ...
- // r7 := (a7 + b7) / 2
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
- {
- return (__m128i)vrhaddq_u16(vreinterpretq_u16_m128i(a),
- vreinterpretq_u16_m128i(b));
- }
- // Adds the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(vaddq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // adds the scalar single-precision floating point values of a and b.
- // https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
- {
- float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
- float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
- // the upper values in the result must be the remnants of <a>.
- return vreinterpretq_m128_f32(vaddq_f32(a, value));
- }
- // Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s64(vaddq_s64(vreinterpretq_s64_m128i(a),
- vreinterpretq_s64_m128i(b)));
- }
- // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
- // unsigned 32-bit integers in b.
- //
- // r0 := a0 + b0
- // r1 := a1 + b1
- // r2 := a2 + b2
- // r3 := a3 + b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vaddq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
- // unsigned 16-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vaddq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
- // unsigned 8-bit integers in b.
- // https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
- FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
- // and saturates.
- //
- // r0 := SignedSaturate(a0 + b0)
- // r1 := SignedSaturate(a1 + b1)
- // ...
- // r7 := SignedSaturate(a7 + b7)
- //
- // https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vqaddq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
- // b and saturates..
- // https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(vqaddq_u8(vreinterpretq_u8_m128i(a),
- vreinterpretq_u8_m128i(b)));
- }
- // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
- // unsigned 16-bit integers from b.
- //
- // r0 := (a0 * b0)[15:0]
- // r1 := (a1 * b1)[15:0]
- // ...
- // r7 := (a7 * b7)[15:0]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vmulq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
- // unsigned 32-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vmulq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Multiplies the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 * b0
- // r1 := a1 * b1
- // r2 := a2 * b2
- // r3 := a3 * b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Multiply the low unsigned 32-bit integers from each packed 64-bit element in
- // a and b, and store the unsigned 64-bit results in dst.
- //
- // r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF)
- // r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF)
- FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
- {
- // vmull_u32 upcasts instead of masking, so we downcast.
- uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
- uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
- return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
- }
- // Multiply the low signed 32-bit integers from each packed 64-bit element in
- // a and b, and store the signed 64-bit results in dst.
- //
- // r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0
- // r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2
- FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
- {
- // vmull_s32 upcasts instead of masking, so we downcast.
- int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
- int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0) + (a1 * b1)
- // r1 := (a2 * b2) + (a3 * b3)
- // r2 := (a4 * b4) + (a5 * b5)
- // r3 := (a6 * b6) + (a7 * b7)
- // https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
- {
- int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
- int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
- return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
- }
- // Multiply packed signed 16-bit integers in a and b, producing intermediate
- // signed 32-bit integers. Shift right by 15 bits while rounding up, and store
- // the packed 16-bit integers in dst.
- //
- // r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15)
- // r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15)
- // r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15)
- // ...
- // r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15)
- FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
- {
- // Has issues due to saturation
- // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
- // Multiply
- int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
- vget_low_s16(vreinterpretq_s16_m128i(b)));
- int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
- vget_high_s16(vreinterpretq_s16_m128i(b)));
- // Rounding narrowing shift right
- // narrow = (int16_t)((mul + 16384) >> 15);
- int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
- int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
- // Join together
- return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
- }
- // Vertically multiply each unsigned 8-bit integer from a with the corresponding
- // signed 8-bit integer from b, producing intermediate signed 16-bit integers.
- // Horizontally add adjacent pairs of intermediate signed 16-bit integers,
- // and pack the saturated results in dst.
- //
- // FOR j := 0 to 7
- // i := j*16
- // dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] +
- // a[i+7:i]*b[i+7:i] )
- // ENDFOR
- FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
- {
- // This would be much simpler if x86 would choose to zero extend OR sign
- // extend, not both. This could probably be optimized better.
- uint16x8_t a = vreinterpretq_u16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- // Zero extend a
- int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
- int16x8_t a_even =
- vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
- // Sign extend by shifting left then shifting right.
- int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
- int16x8_t b_odd = vshrq_n_s16(b, 8);
- // multiply
- int16x8_t prod1 = vmulq_s16(a_even, b_even);
- int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
- // saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
- }
- // Computes the absolute difference of the 16 unsigned 8-bit integers from a
- // and the 16 unsigned 8-bit integers from b.
- //
- // Return Value
- // Sums the upper 8 differences and lower 8 differences and packs the
- // resulting 2 unsigned 16-bit integers into the upper and lower 64-bit
- // elements.
- //
- // r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
- // r1 := 0x0
- // r2 := 0x0
- // r3 := 0x0
- // r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
- // r5 := 0x0
- // r6 := 0x0
- // r7 := 0x0
- FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
- {
- uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t)a, (uint8x16_t)b));
- uint16_t r0 = t[0] + t[1] + t[2] + t[3];
- uint16_t r4 = t[4] + t[5] + t[6] + t[7];
- uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
- return (__m128i)vsetq_lane_u16(r4, r, 4);
- }
- // Divides the four single-precision, floating-point values of a and b.
- //
- // r0 := a0 / b0
- // r1 := a1 / b1
- // r2 := a2 / b2
- // r3 := a3 / b3
- //
- // https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
- {
- float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b));
- float32x4_t recip1 = vmulq_f32(
- recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b)));
- return vreinterpretq_m128_f32(
- vmulq_f32(vreinterpretq_f32_m128(a), recip1));
- }
- // Divides the scalar single-precision floating point value of a by b.
- // https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Computes the approximations of reciprocals of the four single-precision,
- // floating-point values of a.
- // https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
- {
- float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
- recip = vmulq_f32(recip,
- vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
- return vreinterpretq_m128_f32(recip);
- }
- // Computes the approximations of square roots of the four single-precision,
- // floating-point values of a. First computes reciprocal square roots and then
- // reciprocals of the four values.
- //
- // r0 := sqrt(a0)
- // r1 := sqrt(a1)
- // r2 := sqrt(a2)
- // r3 := sqrt(a3)
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
- #else
- float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
- float32x4_t sq = vrecpeq_f32(recipsq);
- // ??? use step versions of both sqrt and recip for better accuracy?
- return vreinterpretq_m128_f32(sq);
- #endif
- }
- // Computes the approximation of the square root of the scalar single-precision
- // floating point value of in.
- // https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
- {
- float32_t value =
- vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
- }
- // Computes the approximations of the reciprocal square roots of the four
- // single-precision floating point values of in.
- // https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
- {
- return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in)));
- }
- // Compute the approximate reciprocal square root of the lower single-precision
- // (32-bit) floating-point element in a, store the result in the lower element
- // of dst, and copy the upper 3 packed elements from a to the upper elements of
- // dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss
- FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
- {
- return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
- }
- // Computes the maximums of the four single-precision, floating-point values of
- // a and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(vmaxq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Computes the minima of the four single-precision, floating-point values of a
- // and b.
- // https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_f32(vminq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Computes the maximum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(vmaxq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)),
- 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Computes the minimum of the two lower scalar single-precision floating point
- // values of a and b.
- // https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
- {
- float32_t value = vgetq_lane_f32(vminq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)),
- 0);
- return vreinterpretq_m128_f32(
- vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
- }
- // Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
- // 16 unsigned 8-bit integers from b.
- // https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
- FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
- }
- // Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vminq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
- // signed 16-bit integers from b.
- // https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(vmaxq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // epi versions of min/max
- // Computes the pariwise maximums of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 > b0) ? a0 : b0
- // r1 := (a1 > b1) ? a1 : b1
- // r2 := (a2 > b2) ? a2 : b2
- // r3 := (a3 > b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vmaxq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Computes the pariwise minima of the four signed 32-bit integer values of a
- // and b.
- //
- // A 128-bit parameter that can be defined with the following equations:
- // r0 := (a0 < b0) ? a0 : b0
- // r1 := (a1 < b1) ? a1 : b1
- // r2 := (a2 < b2) ? a2 : b2
- // r3 := (a3 < b3) ? a3 : b3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s32(vminq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
- // integers from b.
- //
- // r0 := (a0 * b0)[31:16]
- // r1 := (a1 * b1)[31:16]
- // ...
- // r7 := (a7 * b7)[31:16]
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
- {
- /* FIXME: issue with large values because of result saturation */
- // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
- // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
- // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
- int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
- int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
- uint16x8x2_t r = vuzpq_u16(vreinterpretq_u16_s32(ab3210),
- vreinterpretq_u16_s32(ab7654));
- return vreinterpretq_m128i_u16(r.val[1]);
- }
- // Computes pairwise add of each argument as single-precision, floating-point
- // values a and b.
- // https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
- FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vpaddq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_f32(
- vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
- #endif
- }
- // Computes pairwise add of each argument as a 16-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
- {
- int16x8_t a = vreinterpretq_s16_m128i(_a);
- int16x8_t b = vreinterpretq_s16_m128i(_b);
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
- #else
- return vreinterpretq_m128i_s16(
- vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
- vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
- #endif
- }
- // Computes pairwise difference of each argument as a 16-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Subtract
- return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357));
- }
- // Computes saturated pairwise sub of each argument as a 16-bit signed
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated add
- return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
- }
- // Computes saturated pairwise difference of each argument as a 16-bit signed
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|a4|a6|b0|b2|b4|b6]
- // [a1|a3|a5|a7|b1|b3|b5|b7]
- int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
- int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
- // Saturated subtract
- return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357));
- }
- // Computes pairwise add of each argument as a 32-bit signed or unsigned integer
- // values a and b.
- FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
- {
- int32x4_t a = vreinterpretq_s32_m128i(_a);
- int32x4_t b = vreinterpretq_s32_m128i(_b);
- return vreinterpretq_m128i_s32(
- vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
- vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
- }
- // Computes pairwise difference of each argument as a 32-bit signed or unsigned
- // integer values a and b.
- FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
- {
- int64x2_t a = vreinterpretq_s64_m128i(_a);
- int64x2_t b = vreinterpretq_s64_m128i(_b);
- // Interleave using vshrn/vmovn
- // [a0|a2|b0|b2]
- // [a1|a2|b1|b3]
- int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b));
- int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32));
- // Subtract
- return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13));
- }
- /* Compare operations */
- // Compares for less than
- // https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vcltq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than.
- //
- // r0 := (a0 > b0) ? 0xffffffff : 0x0
- // r1 := (a1 > b1) ? 0xffffffff : 0x0
- // r2 := (a2 > b2) ? 0xffffffff : 0x0
- // r3 := (a3 > b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Compares for greater than or equal.
- // https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Compares for less than or equal.
- //
- // r0 := (a0 <= b0) ? 0xffffffff : 0x0
- // r1 := (a1 <= b1) ? 0xffffffff : 0x0
- // r2 := (a2 <= b2) ? 0xffffffff : 0x0
- // r3 := (a3 <= b3) ? 0xffffffff : 0x0
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vcleq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Compares for equality.
- // https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
- {
- return vreinterpretq_m128_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- }
- // Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
- // unsigned 8-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
- // unsigned 16-bit integers in b for equality.
- // https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(vceqq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Compare packed 32-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(vceqq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Compare packed 64-bit integers in a and b for equality, and store the results
- // in dst
- FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(vceqq_u64(vreinterpretq_u64_m128i(a),
- vreinterpretq_u64_m128i(b)));
- #else
- // ARMv7 lacks vceqq_u64
- // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
- uint32x4_t cmp = vceqq_u32(vreinterpretq_u32_m128i(a),
- vreinterpretq_u32_m128i(b));
- uint32x4_t swapped = vrev64q_u32(cmp);
- return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
- #endif
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for lesser than.
- // https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xff : 0x0
- // r1 := (a1 > b1) ? 0xff : 0x0
- // ...
- // r15 := (a15 > b15) ? 0xff : 0x0
- //
- // https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for less than.
- //
- // r0 := (a0 < b0) ? 0xffff : 0x0
- // r1 := (a1 < b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 < b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(vcltq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
- // in b for greater than.
- //
- // r0 := (a0 > b0) ? 0xffff : 0x0
- // r1 := (a1 > b1) ? 0xffff : 0x0
- // ...
- // r7 := (a7 > b7) ? 0xffff : 0x0
- //
- // https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(vcgtq_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for less than.
- // https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(vcltq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
- // in b for greater than.
- // https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u32(vcgtq_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- }
- // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
- // in b for greater than.
- FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_u64(vcgtq_s64(vreinterpretq_s64_m128i(a),
- vreinterpretq_s64_m128i(b)));
- #else
- // ARMv7 lacks vcgtq_s64.
- // This is based off of Clang's SSE2 polyfill:
- // (a > b) -> ((a_hi > b_hi) || (a_lo > b_lo && a_hi == b_hi))
- // Mask the sign bit out since we need a signed AND an unsigned comparison
- // and it is ugly to try and split them.
- int32x4_t mask = vreinterpretq_s32_s64(vdupq_n_s64(0x80000000ull));
- int32x4_t a_mask = veorq_s32(vreinterpretq_s32_m128i(a), mask);
- int32x4_t b_mask = veorq_s32(vreinterpretq_s32_m128i(b), mask);
- // Check if a > b
- int64x2_t greater = vreinterpretq_s64_u32(vcgtq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi > b_hi
- int64x2_t gt_hi = vshrq_n_s64(greater, 63);
- // Copy lower mask to upper mask
- // a_lo > b_lo
- int64x2_t gt_lo = vsliq_n_s64(greater, greater, 32);
- // Compare for equality
- int64x2_t equal = vreinterpretq_s64_u32(vceqq_s32(a_mask, b_mask));
- // Copy upper mask to lower mask
- // a_hi == b_hi
- int64x2_t eq_hi = vshrq_n_s64(equal, 63);
- // a_hi > b_hi || (a_lo > b_lo && a_hi == b_hi)
- int64x2_t ret = vorrq_s64(gt_hi, vandq_s64(gt_lo, eq_hi));
- return vreinterpretq_m128i_s64(ret);
- #endif
- }
- // Compares the four 32-bit floats in a and b to check if any values are NaN.
- // Ordered compare between each value returns true for "orderable" and false for
- // "not orderable" (NaN).
- // https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
- // also:
- // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
- // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
- FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
- {
- // Note: NEON does not have ordered compare builtin
- // Need to compare a eq a and b eq b to check for NaN
- // Do AND of results to get final
- uint32x4_t ceqaa =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t ceqbb =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than operation. :
- // https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
- // note!! The documentation on MSDN is incorrect! If either of the values is a
- // NAN the docs say you will get a one, but in fact, it will return a zero!!
- FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
- {
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_lt_b =
- vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1
- : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than operation. :
- // https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
- FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_gt_b =
- vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1
- : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a less than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
- FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_le_b =
- vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1
- : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using a greater than or equal operation. :
- // https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
- FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_ge_b =
- vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1
- : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an equality operation. :
- // https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
- FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
- {
- // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
- uint32x4_t a_eq_b =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
- return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1
- : 0;
- }
- // Compares the lower single-precision floating point scalar values of a and b
- // using an inequality operation. :
- // https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
- FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
- {
- // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- // vreinterpretq_f32_m128(b)), 0);
- uint32x4_t a_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
- uint32x4_t b_not_nan =
- vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
- uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
- uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
- }
- // according to the documentation, these intrinsics behave the same as the
- // non-'u' versions. We'll just alias them here.
- #define _mm_ucomilt_ss _mm_comilt_ss
- #define _mm_ucomile_ss _mm_comile_ss
- #define _mm_ucomigt_ss _mm_comigt_ss
- #define _mm_ucomige_ss _mm_comige_ss
- #define _mm_ucomieq_ss _mm_comieq_ss
- #define _mm_ucomineq_ss _mm_comineq_ss
- /* Conversions */
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values using truncate.
- // https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
- {
- return vreinterpretq_m128i_s32(
- vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
- }
- // Converts the four signed 32-bit integer values of a to single-precision,
- // floating-point values
- // https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
- FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
- {
- return vreinterpretq_m128_f32(
- vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
- }
- // Converts the four unsigned 8-bit integers in the lower 16 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 =
- vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_u16(u16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
- FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
- uint16x8_t u16x8 =
- vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- uint32x4_t u32x4 =
- vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_u32(u32x4);
- }
- // Converts the two unsigned 8-bit integers in the lower 16 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
- {
- uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
- uint16x8_t u16x8 =
- vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- uint32x4_t u32x4 =
- vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 =
- vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Converts the four unsigned 8-bit integers in the lower 16 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 =
- vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- return vreinterpretq_m128i_s16(s16x8);
- }
- // Converts the four unsigned 8-bit integers in the lower 32 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
- int16x8_t s16x8 =
- vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
- int32x4_t s32x4 =
- vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
- return vreinterpretq_m128i_s32(s32x4);
- }
- // Converts the two signed 8-bit integers in the lower 32 bits to four
- // signed 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
- {
- int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
- int16x8_t s16x8 =
- vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
- int32x4_t s32x4 =
- vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 =
- vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the four signed 16-bit integers in the lower 64 bits to four signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_s32(
- vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
- }
- // Converts the two signed 16-bit integers in the lower 32 bits two signed
- // 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
- {
- int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- int32x4_t s32x4 =
- vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
- int64x2_t s64x2 =
- vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_s64(s64x2);
- }
- // Converts the four unsigned 16-bit integers in the lower 64 bits to four
- // unsigned 32-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
- {
- return vreinterpretq_m128i_u32(
- vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
- }
- // Converts the two unsigned 16-bit integers in the lower 32 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
- {
- uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
- uint32x4_t u32x4 =
- vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
- uint64x2_t u64x2 =
- vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
- return vreinterpretq_m128i_u64(u64x2);
- }
- // Converts the two unsigned 32-bit integers in the lower 64 bits to two
- // unsigned 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_u64(
- vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
- }
- // Converts the two signed 32-bit integers in the lower 64 bits to two signed
- // 64-bit integers.
- FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
- {
- return vreinterpretq_m128i_s64(
- vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
- }
- // Converts the four single-precision, floating-point values of a to signed
- // 32-bit integer values.
- //
- // r0 := (int) a0
- // r1 := (int) a1
- // r2 := (int) a2
- // r3 := (int) a3
- //
- // https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
- // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
- // does not support! It is supported on ARMv8-A however.
- FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
- #else
- uint32x4_t signmask = vdupq_n_u32(0x80000000);
- float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
- vdupq_n_f32(0.5f)); /* +/- 0.5 */
- int32x4_t r_normal =
- vcvtq_s32_f32(vaddq_f32(vreinterpretq_f32_m128(a),
- half)); /* round to integer: [a + 0.5]*/
- int32x4_t r_trunc = vcvtq_s32_f32(
- vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
- int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
- vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
- int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
- vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
- float32x4_t delta = vsubq_f32(
- vreinterpretq_f32_m128(a),
- vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
- uint32x4_t is_delta_half =
- vceqq_f32(delta, half); /* delta == +/- 0.5 */
- return vreinterpretq_m128i_s32(
- vbslq_s32(is_delta_half, r_even, r_normal));
- #endif
- }
- // Moves the least significant 32 bits of a to a 32-bit integer.
- // https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx
- FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
- {
- return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
- }
- // Extracts the low order 64-bit integer from the parameter.
- // https://msdn.microsoft.com/en-us/library/bb531384(v=vs.120).aspx
- FORCE_INLINE uint64_t _mm_cvtsi128_si64(__m128i a)
- {
- return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
- }
- // Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- // r2 := 0x0
- // r3 := 0x0
- //
- // https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
- {
- return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
- }
- // Moves 64-bit integer a to the least significant 64 bits of an __m128 object,
- // zero extending the upper bits.
- //
- // r0 := a
- // r1 := 0x0
- FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
- {
- return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
- }
- // Applies a type cast to reinterpret four 32-bit floating point values passed
- // in as a 128-bit parameter as packed 32-bit integers.
- // https://msdn.microsoft.com/en-us/library/bb514099.aspx
- FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
- {
- return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
- }
- // Applies a type cast to reinterpret four 32-bit integers passed in as a
- // 128-bit parameter as packed 32-bit floating point values.
- // https://msdn.microsoft.com/en-us/library/bb514029.aspx
- FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
- {
- return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
- }
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
- FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *)p));
- }
- // Loads 128-bit value. :
- // https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
- FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
- {
- return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *)p));
- }
- // _mm_lddqu_si128 functions the same as _mm_loadu_si128.
- #define _mm_lddqu_si128 _mm_loadu_si128
- /* Miscellaneous Operations */
- // Shifts the 8 signed 16-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // ...
- // r7 := a7 >> count
- //
- // https://msdn.microsoft.com/en-us/library/3c9997dk(v%3dvs.90).aspx
- FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
- {
- int64_t c = (int64_t)vget_low_s64((int64x2_t)count);
- if (c > 15)
- return _mm_cmplt_epi16(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s16(
- vshlq_s16((int16x8_t)a, vdupq_n_s16(-c)));
- }
- // Shifts the 4 signed 32-bit integers in a right by count bits while shifting
- // in the sign bit.
- //
- // r0 := a0 >> count
- // r1 := a1 >> count
- // r2 := a2 >> count
- // r3 := a3 >> count
- //
- // https://msdn.microsoft.com/en-us/library/ce40009e(v%3dvs.100).aspx
- FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
- {
- int64_t c = (int64_t)vget_low_s64((int64x2_t)count);
- if (c > 31)
- return _mm_cmplt_epi32(a, _mm_setzero_si128());
- return vreinterpretq_m128i_s32(
- vshlq_s32((int32x4_t)a, vdupq_n_s32(-c)));
- }
- // Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
- // saturates.
- // https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s8(
- vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
- vqmovn_s16(vreinterpretq_s16_m128i(b))));
- }
- // Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // ...
- // r7 := UnsignedSaturate(a7)
- // r8 := UnsignedSaturate(b0)
- // r9 := UnsignedSaturate(b1)
- // ...
- // r15 := UnsignedSaturate(b7)
- //
- // https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
- vqmovun_s16(vreinterpretq_s16_m128i(b))));
- }
- // Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
- // and saturates.
- //
- // r0 := SignedSaturate(a0)
- // r1 := SignedSaturate(a1)
- // r2 := SignedSaturate(a2)
- // r3 := SignedSaturate(a3)
- // r4 := SignedSaturate(b0)
- // r5 := SignedSaturate(b1)
- // r6 := SignedSaturate(b2)
- // r7 := SignedSaturate(b3)
- //
- // https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_s16(
- vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
- vqmovn_s32(vreinterpretq_s32_m128i(b))));
- }
- // Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit
- // integers and saturates.
- //
- // r0 := UnsignedSaturate(a0)
- // r1 := UnsignedSaturate(a1)
- // r2 := UnsignedSaturate(a2)
- // r3 := UnsignedSaturate(a3)
- // r4 := UnsignedSaturate(b0)
- // r5 := UnsignedSaturate(b1)
- // r6 := UnsignedSaturate(b2)
- // r7 := UnsignedSaturate(b3)
- FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u16(
- vcombine_u16(vqmovn_u32(vreinterpretq_u32_m128i(a)),
- vqmovn_u32(vreinterpretq_u32_m128i(b))));
- }
- // Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // ...
- // r14 := a7
- // r15 := b7
- //
- // https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vzip1q_s8(vreinterpretq_s8_m128i(a),
- vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 =
- vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 =
- vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(
- vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
- // lower 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- // r4 := a2
- // r5 := b2
- // r6 := a3
- // r7 := b3
- //
- // https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vzip1q_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(
- vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
- // lower 2 signed or unsigned 32 - bit integers in b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(vzip1q_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(
- vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
- }
- // Selects and interleaves the lower two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a0
- // r1 := b0
- // r2 := a1
- // r3 := b1
- //
- // https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vzip1q_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(
- vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Selects and interleaves the upper two single-precision, floating-point values
- // from a and b.
- //
- // r0 := a2
- // r1 := b2
- // r2 := a3
- // r3 := b3
- //
- // https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
- FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128_f32(vzip2q_f32(vreinterpretq_f32_m128(a),
- vreinterpretq_f32_m128(b)));
- #else
- float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
- float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
- float32x2x2_t result = vzip_f32(a1, b1);
- return vreinterpretq_m128_f32(
- vcombine_f32(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
- // 8 signed or unsigned 8-bit integers in b.
- //
- // r0 := a8
- // r1 := b8
- // r2 := a9
- // r3 := b9
- // ...
- // r14 := a15
- // r15 := b15
- //
- // https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s8(vzip2q_s8(vreinterpretq_s8_m128i(a),
- vreinterpretq_s8_m128i(b)));
- #else
- int8x8_t a1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
- int8x8_t b1 =
- vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
- int8x8x2_t result = vzip_s8(a1, b1);
- return vreinterpretq_m128i_s8(
- vcombine_s8(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
- // upper 4 signed or unsigned 16-bit integers in b.
- //
- // r0 := a4
- // r1 := b4
- // r2 := a5
- // r3 := b5
- // r4 := a6
- // r5 := b6
- // r6 := a7
- // r7 := b7
- //
- // https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s16(vzip2q_s16(vreinterpretq_s16_m128i(a),
- vreinterpretq_s16_m128i(b)));
- #else
- int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
- int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
- int16x4x2_t result = vzip_s16(a1, b1);
- return vreinterpretq_m128i_s16(
- vcombine_s16(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
- // upper 2 signed or unsigned 32-bit integers in b.
- // https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
- FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
- {
- #if defined(__aarch64__)
- return vreinterpretq_m128i_s32(vzip2q_s32(vreinterpretq_s32_m128i(a),
- vreinterpretq_s32_m128i(b)));
- #else
- int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
- int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
- int32x2x2_t result = vzip_s32(a1, b1);
- return vreinterpretq_m128i_s32(
- vcombine_s32(result.val[0], result.val[1]));
- #endif
- }
- // Interleaves the upper signed or unsigned 64-bit integer in a with the
- // upper signed or unsigned 64-bit integer in b.
- //
- // r0 := a1
- // r1 := b1
- FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
- {
- int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
- int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
- return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
- }
- // Horizontally compute the minimum amongst the packed unsigned 16-bit integers
- // in a, store the minimum and index in dst, and zero the remaining bits in dst.
- //
- // index[2:0] := 0
- // min[15:0] := a[15:0]
- // FOR j := 0 to 7
- // i := j*16
- // IF a[i+15:i] < min[15:0]
- // index[2:0] := j
- // min[15:0] := a[i+15:i]
- // FI
- // ENDFOR
- // dst[15:0] := min[15:0]
- // dst[18:16] := index[2:0]
- // dst[127:19] := 0
- //
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16&expand=3789
- FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
- {
- __m128i dst;
- uint16_t min, idx = 0;
- // Find the minimum value
- #if defined(__aarch64__)
- min = vminvq_u16(vreinterpretq_u16_m128i(a));
- #else
- __m64i tmp;
- tmp = vreinterpret_m64i_u16(
- vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
- vget_high_u16(vreinterpretq_u16_m128i(a))));
- tmp = vreinterpret_m64i_u16(vpmin_u16(vreinterpret_u16_m64i(tmp),
- vreinterpret_u16_m64i(tmp)));
- tmp = vreinterpret_m64i_u16(vpmin_u16(vreinterpret_u16_m64i(tmp),
- vreinterpret_u16_m64i(tmp)));
- min = vget_lane_u16(vreinterpret_u16_m64i(tmp), 0);
- #endif
- // Get the index of the minimum value
- int i;
- for (i = 0; i < 8; i++) {
- if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
- idx = (uint16_t)i;
- break;
- }
- a = _mm_srli_si128(a, 2);
- }
- // Generate result
- dst = _mm_setzero_si128();
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
- dst = vreinterpretq_m128i_u16(
- vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
- return dst;
- }
- // shift to right
- // https://msdn.microsoft.com/en-us/library/bb514041(v=vs.120).aspx
- // http://blog.csdn.net/hemmingway/article/details/44828303
- // Clang requires a macro here, as it is extremely picky about c being a
- // literal.
- #define _mm_alignr_epi8(a, b, c) \
- ((__m128i)vextq_s8((int8x16_t)(b), (int8x16_t)(a), (c)))
- // Extracts the selected signed or unsigned 8-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm)
- #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
- // Inserts the least significant 8 bits of b into the selected 8-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
- // __constrange(0,16) int imm)
- #define _mm_insert_epi8(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s8( \
- vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 16-bit integer from a and zero
- // extends.
- // https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
- // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
- #define _mm_extract_epi16(a, imm) \
- vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
- // Inserts the least significant 16 bits of b into the selected 16-bit integer
- // of a.
- // https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
- // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
- // __constrange(0,8) int imm)
- #define _mm_insert_epi16(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s16(vsetq_lane_s16( \
- (b), vreinterpretq_s16_m128i(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 32-bit integer from a and zero
- // extends.
- // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
- #define _mm_extract_epi32(a, imm) \
- vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
- // Extracts the selected single-precision (32-bit) floating-point from a.
- // FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
- #define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
- // Inserts the least significant 32 bits of b into the selected 32-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
- // __constrange(0,4) int imm)
- #define _mm_insert_epi32(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s32(vsetq_lane_s32( \
- (b), vreinterpretq_s32_m128i(a), (imm))); \
- })
- // Extracts the selected signed or unsigned 64-bit integer from a and zero
- // extends.
- // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
- #define _mm_extract_epi64(a, imm) \
- vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
- // Inserts the least significant 64 bits of b into the selected 64-bit integer
- // of a.
- // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
- // __constrange(0,2) int imm)
- #define _mm_insert_epi64(a, b, imm) \
- __extension__({ \
- vreinterpretq_m128i_s64(vsetq_lane_s64( \
- (b), vreinterpretq_s64_m128i(a), (imm))); \
- })
- // Count the number of bits set to 1 in unsigned 32-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32
- FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcount)
- return __builtin_popcount(a);
- #else
- return (int)vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t)a)));
- #endif
- #else
- uint32_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- input_val = vld1_u8((uint8_t *)&a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- vst1_u32(&count, count32x2_val);
- return count;
- #endif
- }
- // Count the number of bits set to 1 in unsigned 64-bit integer a, and
- // return that count in dst.
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64
- FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
- {
- #if defined(__aarch64__)
- #if __has_builtin(__builtin_popcountll)
- return __builtin_popcountll(a);
- #else
- return (int64_t)vaddlv_u8(vcnt_u8(vcreate_u8(a)));
- #endif
- #else
- uint64_t count = 0;
- uint8x8_t input_val, count8x8_val;
- uint16x4_t count16x4_val;
- uint32x2_t count32x2_val;
- uint64x1_t count64x1_val;
- input_val = vld1_u8((uint8_t *)&a);
- count8x8_val = vcnt_u8(input_val);
- count16x4_val = vpaddl_u8(count8x8_val);
- count32x2_val = vpaddl_u16(count16x4_val);
- count64x1_val = vpaddl_u32(count32x2_val);
- vst1_u64(&count, count64x1_val);
- return count;
- #endif
- }
- // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
- // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
- // transposed matrix in these vectors (row0 now contains column 0, etc.).
- // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS&expand=5949
- #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
- do { \
- __m128 tmp0, tmp1, tmp2, tmp3; \
- tmp0 = _mm_unpacklo_ps(row0, row1); \
- tmp2 = _mm_unpacklo_ps(row2, row3); \
- tmp1 = _mm_unpackhi_ps(row0, row1); \
- tmp3 = _mm_unpackhi_ps(row2, row3); \
- row0 = _mm_movelh_ps(tmp0, tmp2); \
- row1 = _mm_movehl_ps(tmp2, tmp0); \
- row2 = _mm_movelh_ps(tmp1, tmp3); \
- row3 = _mm_movehl_ps(tmp3, tmp1); \
- } while (0)
- /* Crypto Extensions */
- #if defined(__ARM_FEATURE_CRYPTO)
- // Wraps vmull_p64
- FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
- poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
- return vreinterpretq_u64_p128(vmull_p64(a, b));
- }
- #else // ARMv7 polyfill
- // ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
- //
- // vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
- // 64-bit->128-bit polynomial multiply.
- //
- // It needs some work and is somewhat slow, but it is still faster than all
- // known scalar methods.
- //
- // Algorithm adapted to C from
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
- // from "Fast Software Polynomial Multiplication on ARM Processors Using the
- // NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
- // (https://hal.inria.fr/hal-01506572)
- static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
- {
- poly8x8_t a = vreinterpret_p8_u64(_a);
- poly8x8_t b = vreinterpret_p8_u64(_b);
- // Masks
- uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
- vcreate_u8(0x00000000ffffffff));
- uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
- vcreate_u8(0x0000000000000000));
- // Do the multiplies, rotating with vext to get all combinations
- uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
- uint8x16_t e = vreinterpretq_u8_p16(
- vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
- uint8x16_t f = vreinterpretq_u8_p16(
- vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
- uint8x16_t g = vreinterpretq_u8_p16(
- vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
- uint8x16_t h = vreinterpretq_u8_p16(
- vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
- uint8x16_t i = vreinterpretq_u8_p16(
- vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
- uint8x16_t j = vreinterpretq_u8_p16(
- vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
- uint8x16_t k = vreinterpretq_u8_p16(
- vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
- // Add cross products
- uint8x16_t l = veorq_u8(e, f); // L = E + F
- uint8x16_t m = veorq_u8(g, h); // M = G + H
- uint8x16_t n = veorq_u8(i, j); // N = I + J
- // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
- // instructions.
- #if defined(__aarch64__)
- uint8x16_t lm_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t lm_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
- uint8x16_t nk_p0 = vreinterpretq_u8_u64(
- vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- uint8x16_t nk_p1 = vreinterpretq_u8_u64(
- vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
- #else
- uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
- uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
- uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
- uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
- #endif
- // t0 = (L) (P0 + P1) << 8
- // t1 = (M) (P2 + P3) << 16
- uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
- uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
- uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
- // t2 = (N) (P4 + P5) << 24
- // t3 = (K) (P6 + P7) << 32
- uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
- uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
- uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
- // De-interleave
- #if defined(__aarch64__)
- uint8x16_t t0 = vreinterpretq_u8_u64(vuzp1q_u64(
- vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t1 = vreinterpretq_u8_u64(vuzp2q_u64(
- vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
- uint8x16_t t2 = vreinterpretq_u8_u64(vuzp1q_u64(
- vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- uint8x16_t t3 = vreinterpretq_u8_u64(vuzp2q_u64(
- vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
- #else
- uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
- uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
- uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
- uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
- #endif
- // Shift the cross products
- uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
- uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
- uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
- uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
- // Accumulate the products
- uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
- uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
- uint8x16_t mix = veorq_u8(d, cross1);
- uint8x16_t r = veorq_u8(mix, cross2);
- return vreinterpretq_u64_u8(r);
- }
- #endif // ARMv7 polyfill
- FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
- {
- uint64x2_t a = vreinterpretq_u64_m128i(_a);
- uint64x2_t b = vreinterpretq_u64_m128i(_b);
- switch (imm & 0x11) {
- case 0x00:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
- case 0x01:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
- case 0x10:
- return vreinterpretq_m128i_u64(
- _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
- case 0x11:
- return vreinterpretq_m128i_u64(_sse2neon_vmull_p64(
- vget_high_u64(a), vget_high_u64(b)));
- default:
- abort();
- }
- }
- #if !defined(__ARM_FEATURE_CRYPTO) && defined(__aarch64__)
- // In the absence of crypto extensions, implement aesenc using regular neon
- // intrinsics instead. See:
- // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
- // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
- // https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
- // for more information Reproduced with permission of the author.
- FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
- {
- static const uint8_t crypto_aes_sbox[256] = {
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01,
- 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d,
- 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4,
- 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
- 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7,
- 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
- 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e,
- 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
- 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb,
- 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb,
- 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
- 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
- 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c,
- 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d,
- 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a,
- 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
- 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3,
- 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
- 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,
- 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
- 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e,
- 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
- 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9,
- 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99,
- 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
- static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
- 0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
- 0xc, 0x1, 0x6, 0xb};
- static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6,
- 0x7, 0x4, 0x9, 0xa, 0xb, 0x8,
- 0xd, 0xe, 0xf, 0xc};
- uint8x16_t v;
- uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
- // shift rows
- w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
- // sub bytes
- v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
- v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
- v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
- v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
- // mix columns
- w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b);
- w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v);
- w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
- // add round key
- return vreinterpretq_m128i_u8(w) ^ RoundKey;
- }
- #elif defined(__ARM_FEATURE_CRYPTO)
- // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
- // AESMC and then manually applying the real key as an xor operation This
- // unfortunately means an additional xor op; the compiler should be able to
- // optimise this away for repeated calls however See
- // https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
- // for more details.
- inline __m128i _mm_aesenc_si128(__m128i a, __m128i b)
- {
- return vreinterpretq_m128i_u8(
- vaesmcq_u8(
- vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))) ^
- vreinterpretq_u8_m128i(b));
- }
- #endif
- /* Streaming Extensions */
- // Guarantees that every preceding store is globally visible before any
- // subsequent store.
- // https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_sfence(void)
- {
- __sync_synchronize();
- }
- // Stores the data in a to the address p without polluting the caches. If the
- // cache line containing address p is already in the cache, the cache will be
- // updated.Address p must be 16 - byte aligned.
- // https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
- FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
- {
- #if __has_builtin(__builtin_nontemporal_store)
- __builtin_nontemporal_store(a, p);
- #else
- vst1q_s64((int64_t *)p, vreinterpretq_s64_m128i(a));
- #endif
- }
- // Cache line containing p is flushed and invalidated from all caches in the
- // coherency domain. :
- // https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
- FORCE_INLINE void _mm_clflush(void const *p)
- {
- (void)p;
- // no corollary for Neon?
- }
- // Allocate aligned blocks of memory.
- // https://software.intel.com/en-us/
- // cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks
- FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
- {
- void *ptr;
- if (align == 1)
- return malloc(size);
- if (align == 2 || (sizeof(void *) == 8 && align == 4))
- align = sizeof(void *);
- if (!posix_memalign(&ptr, align, size))
- return ptr;
- return NULL;
- }
- FORCE_INLINE void _mm_free(void *addr)
- {
- free(addr);
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 8-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc ^= v;
- for (int bit = 0; bit < 8; bit++) {
- if (crc & 1)
- crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
- else
- crc = (crc >> 1);
- }
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 16-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u8(crc, v & 0xff);
- crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 32-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100)
- FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u16(crc, v & 0xffff);
- crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
- #endif
- return crc;
- }
- // Starting with the initial value in crc, accumulates a CRC32 value for
- // unsigned 64-bit integer v.
- // https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100)
- FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
- {
- #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
- __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
- : [c] "+r"(crc)
- : [v] "r"(v));
- #else
- crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff);
- crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff);
- #endif
- return crc;
- }
- #if defined(__GNUC__) || defined(__clang__)
- #pragma pop_macro("ALIGN_STRUCT")
- #pragma pop_macro("FORCE_INLINE")
- #endif
- #endif
|