audio-io.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /******************************************************************************
  2. Copyright (C) 2013 by Hugh Bailey <[email protected]>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. ******************************************************************************/
  14. #include <math.h>
  15. #include <inttypes.h>
  16. #include "../util/threading.h"
  17. #include "../util/darray.h"
  18. #include "../util/circlebuf.h"
  19. #include "../util/platform.h"
  20. #include "../util/profiler.h"
  21. #include "audio-io.h"
  22. #include "audio-resampler.h"
  23. extern profiler_name_store_t *obs_get_profiler_name_store(void);
  24. /* #define DEBUG_AUDIO */
  25. #define nop() do {int invalid = 0;} while(0)
  26. struct audio_input {
  27. struct audio_convert_info conversion;
  28. audio_resampler_t *resampler;
  29. audio_output_callback_t callback;
  30. void *param;
  31. };
  32. static inline void audio_input_free(struct audio_input *input)
  33. {
  34. audio_resampler_destroy(input->resampler);
  35. }
  36. struct audio_mix {
  37. DARRAY(struct audio_input) inputs;
  38. float buffer[MAX_AUDIO_CHANNELS][AUDIO_OUTPUT_FRAMES];
  39. };
  40. struct audio_output {
  41. struct audio_output_info info;
  42. size_t block_size;
  43. size_t channels;
  44. size_t planes;
  45. pthread_t thread;
  46. os_event_t *stop_event;
  47. bool initialized;
  48. audio_input_callback_t input_cb;
  49. void *input_param;
  50. pthread_mutex_t input_mutex;
  51. struct audio_mix mixes[MAX_AUDIO_MIXES];
  52. };
  53. /* ------------------------------------------------------------------------- */
  54. /* the following functions are used to calculate frame offsets based upon
  55. * timestamps. this will actually work accurately as long as you handle the
  56. * values correctly */
  57. static inline double ts_to_frames(const audio_t *audio, uint64_t ts)
  58. {
  59. double audio_offset_d = (double)ts;
  60. audio_offset_d /= 1000000000.0;
  61. audio_offset_d *= (double)audio->info.samples_per_sec;
  62. return audio_offset_d;
  63. }
  64. static inline double positive_round(double val)
  65. {
  66. return floor(val+0.5);
  67. }
  68. static int64_t ts_diff_frames(const audio_t *audio, uint64_t ts1, uint64_t ts2)
  69. {
  70. double diff = ts_to_frames(audio, ts1) - ts_to_frames(audio, ts2);
  71. return (int64_t)positive_round(diff);
  72. }
  73. static int64_t ts_diff_bytes(const audio_t *audio, uint64_t ts1, uint64_t ts2)
  74. {
  75. return ts_diff_frames(audio, ts1, ts2) * (int64_t)audio->block_size;
  76. }
  77. /* ------------------------------------------------------------------------- */
  78. static inline uint64_t min_uint64(uint64_t a, uint64_t b)
  79. {
  80. return a < b ? a : b;
  81. }
  82. static inline size_t min_size(size_t a, size_t b)
  83. {
  84. return a < b ? a : b;
  85. }
  86. #ifndef CLAMP
  87. #define CLAMP(val, minval, maxval) \
  88. ((val > maxval) ? maxval : ((val < minval) ? minval : val))
  89. #endif
  90. static bool resample_audio_output(struct audio_input *input,
  91. struct audio_data *data)
  92. {
  93. bool success = true;
  94. if (input->resampler) {
  95. uint8_t *output[MAX_AV_PLANES];
  96. uint32_t frames;
  97. uint64_t offset;
  98. memset(output, 0, sizeof(output));
  99. success = audio_resampler_resample(input->resampler,
  100. output, &frames, &offset,
  101. (const uint8_t *const *)data->data,
  102. data->frames);
  103. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  104. data->data[i] = output[i];
  105. data->frames = frames;
  106. data->timestamp -= offset;
  107. }
  108. return success;
  109. }
  110. static inline void do_audio_output(struct audio_output *audio,
  111. size_t mix_idx, uint64_t timestamp, uint32_t frames)
  112. {
  113. struct audio_mix *mix = &audio->mixes[mix_idx];
  114. struct audio_data data;
  115. for (size_t i = 0; i < audio->planes; i++)
  116. data.data[i] = (uint8_t*)mix->buffer[i];
  117. data.frames = frames;
  118. data.timestamp = timestamp;
  119. data.volume = 1.0f;
  120. pthread_mutex_lock(&audio->input_mutex);
  121. for (size_t i = mix->inputs.num; i > 0; i--) {
  122. struct audio_input *input = mix->inputs.array+(i-1);
  123. if (resample_audio_output(input, &data))
  124. input->callback(input->param, mix_idx, &data);
  125. }
  126. pthread_mutex_unlock(&audio->input_mutex);
  127. }
  128. static inline void clamp_audio_output(struct audio_output *audio, size_t bytes)
  129. {
  130. size_t float_size = bytes / sizeof(float);
  131. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  132. struct audio_mix *mix = &audio->mixes[mix_idx];
  133. /* do not process mixing if a specific mix is inactive */
  134. if (!mix->inputs.num)
  135. continue;
  136. for (size_t plane = 0; plane < audio->planes; plane++) {
  137. float *mix_data = mix->buffer[plane];
  138. float *mix_end = &mix_data[float_size];
  139. while (mix_data < mix_end) {
  140. float val = *mix_data;
  141. val = (val > 1.0f) ? 1.0f : val;
  142. val = (val < -1.0f) ? -1.0f : val;
  143. *(mix_data++) = val;
  144. }
  145. }
  146. }
  147. }
  148. static void input_and_output(struct audio_output *audio,
  149. uint64_t audio_time, uint64_t prev_time)
  150. {
  151. size_t bytes = AUDIO_OUTPUT_FRAMES * audio->block_size;
  152. struct audio_output_data data[MAX_AUDIO_MIXES];
  153. uint32_t active_mixes = 0;
  154. uint64_t new_ts = 0;
  155. bool success;
  156. memset(data, 0, sizeof(data));
  157. #ifdef DEBUG_AUDIO
  158. blog(LOG_DEBUG, "audio_time: %llu, prev_time: %llu, bytes: %lu",
  159. audio_time, prev_time, bytes);
  160. #endif
  161. /* get mixers */
  162. pthread_mutex_lock(&audio->input_mutex);
  163. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++) {
  164. if (audio->mixes[i].inputs.num)
  165. active_mixes |= (1 << i);
  166. }
  167. pthread_mutex_unlock(&audio->input_mutex);
  168. /* clear mix buffers */
  169. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  170. struct audio_mix *mix = &audio->mixes[mix_idx];
  171. memset(mix->buffer[0], 0, AUDIO_OUTPUT_FRAMES *
  172. MAX_AUDIO_CHANNELS * sizeof(float));
  173. for (size_t i = 0; i < audio->planes; i++)
  174. data[mix_idx].data[i] = mix->buffer[i];
  175. }
  176. /* get new audio data */
  177. success = audio->input_cb(audio->input_param, prev_time, audio_time,
  178. &new_ts, active_mixes, data);
  179. if (!success)
  180. return;
  181. /* clamps audio data to -1.0..1.0 */
  182. clamp_audio_output(audio, bytes);
  183. /* output */
  184. for (size_t i = 0; i < MAX_AUDIO_MIXES; i++)
  185. do_audio_output(audio, i, new_ts, AUDIO_OUTPUT_FRAMES);
  186. }
  187. static void *audio_thread(void *param)
  188. {
  189. struct audio_output *audio = param;
  190. size_t rate = audio->info.samples_per_sec;
  191. uint64_t samples = 0;
  192. uint64_t start_time = os_gettime_ns();
  193. uint64_t prev_time = start_time;
  194. uint64_t audio_time = prev_time;
  195. uint32_t audio_wait_time =
  196. (uint32_t)(audio_frames_to_ns(rate, AUDIO_OUTPUT_FRAMES) /
  197. 1000000);
  198. os_set_thread_name("audio-io: audio thread");
  199. const char *audio_thread_name =
  200. profile_store_name(obs_get_profiler_name_store(),
  201. "audio_thread(%s)", audio->info.name);
  202. while (os_event_try(audio->stop_event) == EAGAIN) {
  203. uint64_t cur_time;
  204. os_sleep_ms(audio_wait_time);
  205. profile_start(audio_thread_name);
  206. cur_time = os_gettime_ns();
  207. while (audio_time <= cur_time) {
  208. samples += AUDIO_OUTPUT_FRAMES;
  209. audio_time = start_time +
  210. audio_frames_to_ns(rate, samples);
  211. input_and_output(audio, audio_time, prev_time);
  212. prev_time = audio_time;
  213. }
  214. profile_end(audio_thread_name);
  215. profile_reenable_thread();
  216. }
  217. return NULL;
  218. }
  219. /* ------------------------------------------------------------------------- */
  220. static size_t audio_get_input_idx(const audio_t *audio, size_t mix_idx,
  221. audio_output_callback_t callback, void *param)
  222. {
  223. const struct audio_mix *mix = &audio->mixes[mix_idx];
  224. for (size_t i = 0; i < mix->inputs.num; i++) {
  225. struct audio_input *input = mix->inputs.array+i;
  226. if (input->callback == callback && input->param == param)
  227. return i;
  228. }
  229. return DARRAY_INVALID;
  230. }
  231. static inline bool audio_input_init(struct audio_input *input,
  232. struct audio_output *audio)
  233. {
  234. if (input->conversion.format != audio->info.format ||
  235. input->conversion.samples_per_sec != audio->info.samples_per_sec ||
  236. input->conversion.speakers != audio->info.speakers) {
  237. struct resample_info from = {
  238. .format = audio->info.format,
  239. .samples_per_sec = audio->info.samples_per_sec,
  240. .speakers = audio->info.speakers
  241. };
  242. struct resample_info to = {
  243. .format = input->conversion.format,
  244. .samples_per_sec = input->conversion.samples_per_sec,
  245. .speakers = input->conversion.speakers
  246. };
  247. input->resampler = audio_resampler_create(&to, &from);
  248. if (!input->resampler) {
  249. blog(LOG_ERROR, "audio_input_init: Failed to "
  250. "create resampler");
  251. return false;
  252. }
  253. } else {
  254. input->resampler = NULL;
  255. }
  256. return true;
  257. }
  258. bool audio_output_connect(audio_t *audio, size_t mi,
  259. const struct audio_convert_info *conversion,
  260. audio_output_callback_t callback, void *param)
  261. {
  262. bool success = false;
  263. if (!audio || mi >= MAX_AUDIO_MIXES) return false;
  264. pthread_mutex_lock(&audio->input_mutex);
  265. if (audio_get_input_idx(audio, mi, callback, param) == DARRAY_INVALID) {
  266. struct audio_mix *mix = &audio->mixes[mi];
  267. struct audio_input input;
  268. input.callback = callback;
  269. input.param = param;
  270. if (conversion) {
  271. input.conversion = *conversion;
  272. } else {
  273. input.conversion.format = audio->info.format;
  274. input.conversion.speakers = audio->info.speakers;
  275. input.conversion.samples_per_sec =
  276. audio->info.samples_per_sec;
  277. }
  278. if (input.conversion.format == AUDIO_FORMAT_UNKNOWN)
  279. input.conversion.format = audio->info.format;
  280. if (input.conversion.speakers == SPEAKERS_UNKNOWN)
  281. input.conversion.speakers = audio->info.speakers;
  282. if (input.conversion.samples_per_sec == 0)
  283. input.conversion.samples_per_sec =
  284. audio->info.samples_per_sec;
  285. success = audio_input_init(&input, audio);
  286. if (success)
  287. da_push_back(mix->inputs, &input);
  288. }
  289. pthread_mutex_unlock(&audio->input_mutex);
  290. return success;
  291. }
  292. void audio_output_disconnect(audio_t *audio, size_t mix_idx,
  293. audio_output_callback_t callback, void *param)
  294. {
  295. if (!audio || mix_idx >= MAX_AUDIO_MIXES) return;
  296. pthread_mutex_lock(&audio->input_mutex);
  297. size_t idx = audio_get_input_idx(audio, mix_idx, callback, param);
  298. if (idx != DARRAY_INVALID) {
  299. struct audio_mix *mix = &audio->mixes[mix_idx];
  300. audio_input_free(mix->inputs.array+idx);
  301. da_erase(mix->inputs, idx);
  302. }
  303. pthread_mutex_unlock(&audio->input_mutex);
  304. }
  305. static inline bool valid_audio_params(const struct audio_output_info *info)
  306. {
  307. return info->format && info->name && info->samples_per_sec > 0 &&
  308. info->speakers > 0;
  309. }
  310. int audio_output_open(audio_t **audio, struct audio_output_info *info)
  311. {
  312. struct audio_output *out;
  313. pthread_mutexattr_t attr;
  314. bool planar = is_audio_planar(info->format);
  315. if (!valid_audio_params(info))
  316. return AUDIO_OUTPUT_INVALIDPARAM;
  317. out = bzalloc(sizeof(struct audio_output));
  318. if (!out)
  319. goto fail;
  320. memcpy(&out->info, info, sizeof(struct audio_output_info));
  321. out->channels = get_audio_channels(info->speakers);
  322. out->planes = planar ? out->channels : 1;
  323. out->input_cb = info->input_callback;
  324. out->input_param= info->input_param;
  325. out->block_size = (planar ? 1 : out->channels) *
  326. get_audio_bytes_per_channel(info->format);
  327. if (pthread_mutexattr_init(&attr) != 0)
  328. goto fail;
  329. if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) != 0)
  330. goto fail;
  331. if (pthread_mutex_init(&out->input_mutex, &attr) != 0)
  332. goto fail;
  333. if (os_event_init(&out->stop_event, OS_EVENT_TYPE_MANUAL) != 0)
  334. goto fail;
  335. if (pthread_create(&out->thread, NULL, audio_thread, out) != 0)
  336. goto fail;
  337. out->initialized = true;
  338. *audio = out;
  339. return AUDIO_OUTPUT_SUCCESS;
  340. fail:
  341. audio_output_close(out);
  342. return AUDIO_OUTPUT_FAIL;
  343. }
  344. void audio_output_close(audio_t *audio)
  345. {
  346. void *thread_ret;
  347. if (!audio)
  348. return;
  349. if (audio->initialized) {
  350. os_event_signal(audio->stop_event);
  351. pthread_join(audio->thread, &thread_ret);
  352. }
  353. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  354. struct audio_mix *mix = &audio->mixes[mix_idx];
  355. for (size_t i = 0; i < mix->inputs.num; i++)
  356. audio_input_free(mix->inputs.array+i);
  357. da_free(mix->inputs);
  358. }
  359. os_event_destroy(audio->stop_event);
  360. bfree(audio);
  361. }
  362. const struct audio_output_info *audio_output_get_info(const audio_t *audio)
  363. {
  364. return audio ? &audio->info : NULL;
  365. }
  366. bool audio_output_active(const audio_t *audio)
  367. {
  368. if (!audio) return false;
  369. for (size_t mix_idx = 0; mix_idx < MAX_AUDIO_MIXES; mix_idx++) {
  370. const struct audio_mix *mix = &audio->mixes[mix_idx];
  371. if (mix->inputs.num != 0)
  372. return true;
  373. }
  374. return false;
  375. }
  376. size_t audio_output_get_block_size(const audio_t *audio)
  377. {
  378. return audio ? audio->block_size : 0;
  379. }
  380. size_t audio_output_get_planes(const audio_t *audio)
  381. {
  382. return audio ? audio->planes : 0;
  383. }
  384. size_t audio_output_get_channels(const audio_t *audio)
  385. {
  386. return audio ? audio->channels : 0;
  387. }
  388. uint32_t audio_output_get_sample_rate(const audio_t *audio)
  389. {
  390. return audio ? audio->info.samples_per_sec : 0;
  391. }