audio-io.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869
  1. /******************************************************************************
  2. Copyright (C) 2013 by Hugh Bailey <[email protected]>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. ******************************************************************************/
  14. #include <math.h>
  15. #include <inttypes.h>
  16. #include "../util/threading.h"
  17. #include "../util/darray.h"
  18. #include "../util/circlebuf.h"
  19. #include "../util/platform.h"
  20. #include "audio-io.h"
  21. #include "audio-resampler.h"
  22. /* #define DEBUG_AUDIO */
  23. #define nop() do {int invalid = 0;} while(0)
  24. struct audio_input {
  25. struct audio_convert_info conversion;
  26. audio_resampler_t resampler;
  27. void (*callback)(void *param, const struct audio_data *data);
  28. void *param;
  29. };
  30. static inline void audio_input_free(struct audio_input *input)
  31. {
  32. audio_resampler_destroy(input->resampler);
  33. }
  34. struct audio_line {
  35. char *name;
  36. struct audio_output *audio;
  37. struct circlebuf buffers[MAX_AV_PLANES];
  38. pthread_mutex_t mutex;
  39. DARRAY(uint8_t) volume_buffers[MAX_AV_PLANES];
  40. uint64_t base_timestamp;
  41. uint64_t last_timestamp;
  42. /* states whether this line is still being used. if not, then when the
  43. * buffer is depleted, it's destroyed */
  44. bool alive;
  45. struct audio_line **prev_next;
  46. struct audio_line *next;
  47. };
  48. static inline void audio_line_destroy_data(struct audio_line *line)
  49. {
  50. for (size_t i = 0; i < MAX_AV_PLANES; i++) {
  51. circlebuf_free(&line->buffers[i]);
  52. da_free(line->volume_buffers[i]);
  53. }
  54. pthread_mutex_destroy(&line->mutex);
  55. bfree(line->name);
  56. bfree(line);
  57. }
  58. struct audio_output {
  59. struct audio_output_info info;
  60. size_t block_size;
  61. size_t channels;
  62. size_t planes;
  63. pthread_t thread;
  64. event_t stop_event;
  65. DARRAY(uint8_t) mix_buffers[MAX_AV_PLANES];
  66. bool initialized;
  67. pthread_mutex_t line_mutex;
  68. struct audio_line *first_line;
  69. pthread_mutex_t input_mutex;
  70. DARRAY(struct audio_input) inputs;
  71. };
  72. static inline void audio_output_removeline(struct audio_output *audio,
  73. struct audio_line *line)
  74. {
  75. pthread_mutex_lock(&audio->line_mutex);
  76. *line->prev_next = line->next;
  77. if (line->next)
  78. line->next->prev_next = line->prev_next;
  79. pthread_mutex_unlock(&audio->line_mutex);
  80. audio_line_destroy_data(line);
  81. }
  82. /* ------------------------------------------------------------------------- */
  83. /* the following functions are used to calculate frame offsets based upon
  84. * timestamps. this will actually work accurately as long as you handle the
  85. * values correctly */
  86. static inline double ts_to_frames(audio_t audio, uint64_t ts)
  87. {
  88. double audio_offset_d = (double)ts;
  89. audio_offset_d /= 1000000000.0;
  90. audio_offset_d *= (double)audio->info.samples_per_sec;
  91. return audio_offset_d;
  92. }
  93. static inline double positive_round(double val)
  94. {
  95. return floor(val+0.5);
  96. }
  97. static size_t ts_diff_frames(audio_t audio, uint64_t ts1, uint64_t ts2)
  98. {
  99. double diff = ts_to_frames(audio, ts1) - ts_to_frames(audio, ts2);
  100. return (size_t)positive_round(diff);
  101. }
  102. static size_t ts_diff_bytes(audio_t audio, uint64_t ts1, uint64_t ts2)
  103. {
  104. return ts_diff_frames(audio, ts1, ts2) * audio->block_size;
  105. }
  106. /* unless the value is 3+ hours worth of frames, this won't overflow */
  107. static inline uint64_t conv_frames_to_time(audio_t audio, uint32_t frames)
  108. {
  109. return (uint64_t)frames * 1000000000ULL /
  110. (uint64_t)audio->info.samples_per_sec;
  111. }
  112. /* ------------------------------------------------------------------------- */
  113. /* this only really happens with the very initial data insertion. can be
  114. * ignored safely. */
  115. static inline void clear_excess_audio_data(struct audio_line *line,
  116. uint64_t prev_time)
  117. {
  118. size_t size = ts_diff_bytes(line->audio, prev_time,
  119. line->base_timestamp);
  120. /*blog(LOG_DEBUG, "Excess audio data for audio line '%s', somehow "
  121. "audio data went back in time by %"PRIu32" bytes. "
  122. "prev_time: %"PRIu64", line->base_timestamp: %"PRIu64,
  123. line->name, (uint32_t)size,
  124. prev_time, line->base_timestamp);*/
  125. for (size_t i = 0; i < line->audio->planes; i++) {
  126. size_t clear_size = (size < line->buffers[i].size) ?
  127. size : line->buffers[i].size;
  128. circlebuf_pop_front(&line->buffers[i], NULL, clear_size);
  129. }
  130. }
  131. static inline uint64_t min_uint64(uint64_t a, uint64_t b)
  132. {
  133. return a < b ? a : b;
  134. }
  135. static inline size_t min_size(size_t a, size_t b)
  136. {
  137. return a < b ? a : b;
  138. }
  139. #ifndef CLAMP
  140. #define CLAMP(val, minval, maxval) \
  141. ((val > maxval) ? maxval : ((val < minval) ? minval : val))
  142. #endif
  143. #define MIN_S8 -128
  144. #define MAX_S8 127
  145. #define MIN_S16 -32767
  146. #define MAX_S16 32767
  147. #define MIN_S32 -2147483647
  148. #define MAX_S32 2147483647
  149. #define MIX_BUFFER_SIZE 256
  150. /* TODO: optimize mixing */
  151. static void mix_u8(uint8_t *mix, struct circlebuf *buf, size_t size)
  152. {
  153. uint8_t vals[MIX_BUFFER_SIZE];
  154. register int16_t mix_val;
  155. while (size) {
  156. size_t pop_count = min_size(size, sizeof(vals));
  157. size -= pop_count;
  158. circlebuf_pop_front(buf, vals, pop_count);
  159. for (size_t i = 0; i < pop_count; i++) {
  160. mix_val = (int16_t)*mix - 128;
  161. mix_val += (int16_t)vals[i] - 128;
  162. mix_val = CLAMP(mix_val, MIN_S8, MAX_S8) + 128;
  163. *(mix++) = (uint8_t)mix_val;
  164. }
  165. }
  166. }
  167. static void mix_s16(uint8_t *mix_in, struct circlebuf *buf, size_t size)
  168. {
  169. int16_t *mix = (int16_t*)mix_in;
  170. int16_t vals[MIX_BUFFER_SIZE];
  171. register int32_t mix_val;
  172. while (size) {
  173. size_t pop_count = min_size(size, sizeof(vals));
  174. size -= pop_count;
  175. circlebuf_pop_front(buf, vals, pop_count);
  176. pop_count /= sizeof(int16_t);
  177. for (size_t i = 0; i < pop_count; i++) {
  178. mix_val = (int32_t)*mix;
  179. mix_val += (int32_t)vals[i];
  180. *(mix++) = (int16_t)CLAMP(mix_val, MIN_S16, MAX_S16);
  181. }
  182. }
  183. }
  184. static void mix_s32(uint8_t *mix_in, struct circlebuf *buf, size_t size)
  185. {
  186. int32_t *mix = (int32_t*)mix_in;
  187. int32_t vals[MIX_BUFFER_SIZE];
  188. register int64_t mix_val;
  189. while (size) {
  190. size_t pop_count = min_size(size, sizeof(vals));
  191. size -= pop_count;
  192. circlebuf_pop_front(buf, vals, pop_count);
  193. pop_count /= sizeof(int32_t);
  194. for (size_t i = 0; i < pop_count; i++) {
  195. mix_val = (int64_t)*mix;
  196. mix_val += (int64_t)vals[i];
  197. *(mix++) = (int32_t)CLAMP(mix_val, MIN_S32, MAX_S32);
  198. }
  199. }
  200. }
  201. static void mix_float(uint8_t *mix_in, struct circlebuf *buf, size_t size)
  202. {
  203. float *mix = (float*)mix_in;
  204. float vals[MIX_BUFFER_SIZE];
  205. register float mix_val;
  206. while (size) {
  207. size_t pop_count = min_size(size, sizeof(vals));
  208. size -= pop_count;
  209. circlebuf_pop_front(buf, vals, pop_count);
  210. pop_count /= sizeof(float);
  211. for (size_t i = 0; i < pop_count; i++) {
  212. mix_val = *mix + vals[i];
  213. *(mix++) = CLAMP(mix_val, -1.0f, 1.0f);
  214. }
  215. }
  216. }
  217. static inline void mix_audio(enum audio_format format,
  218. uint8_t *mix, struct circlebuf *buf, size_t size)
  219. {
  220. switch (format) {
  221. case AUDIO_FORMAT_UNKNOWN:
  222. break;
  223. case AUDIO_FORMAT_U8BIT:
  224. case AUDIO_FORMAT_U8BIT_PLANAR:
  225. mix_u8(mix, buf, size); break;
  226. case AUDIO_FORMAT_16BIT:
  227. case AUDIO_FORMAT_16BIT_PLANAR:
  228. mix_s16(mix, buf, size); break;
  229. case AUDIO_FORMAT_32BIT:
  230. case AUDIO_FORMAT_32BIT_PLANAR:
  231. mix_s32(mix, buf, size); break;
  232. case AUDIO_FORMAT_FLOAT:
  233. case AUDIO_FORMAT_FLOAT_PLANAR:
  234. mix_float(mix, buf, size); break;
  235. }
  236. }
  237. static inline bool mix_audio_line(struct audio_output *audio,
  238. struct audio_line *line, size_t size, uint64_t timestamp)
  239. {
  240. size_t time_offset = ts_diff_bytes(audio,
  241. line->base_timestamp, timestamp);
  242. if (time_offset > size)
  243. return false;
  244. size -= time_offset;
  245. #ifdef DEBUG_AUDIO
  246. blog(LOG_DEBUG, "shaved off %lu bytes", size);
  247. #endif
  248. for (size_t i = 0; i < audio->planes; i++) {
  249. size_t pop_size = min_size(size, line->buffers[i].size);
  250. mix_audio(audio->info.format,
  251. audio->mix_buffers[i].array + time_offset,
  252. &line->buffers[i], pop_size);
  253. }
  254. return true;
  255. }
  256. static bool resample_audio_output(struct audio_input *input,
  257. struct audio_data *data)
  258. {
  259. bool success = true;
  260. if (input->resampler) {
  261. uint8_t *output[MAX_AV_PLANES];
  262. uint32_t frames;
  263. uint64_t offset;
  264. memset(output, 0, sizeof(output));
  265. success = audio_resampler_resample(input->resampler,
  266. output, &frames, &offset,
  267. data->data, data->frames);
  268. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  269. data->data[i] = output[i];
  270. data->frames = frames;
  271. data->timestamp -= offset;
  272. }
  273. return success;
  274. }
  275. static inline void do_audio_output(struct audio_output *audio,
  276. uint64_t timestamp, uint32_t frames)
  277. {
  278. struct audio_data data;
  279. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  280. data.data[i] = audio->mix_buffers[i].array;
  281. data.frames = frames;
  282. data.timestamp = timestamp;
  283. data.volume = 1.0f;
  284. pthread_mutex_lock(&audio->input_mutex);
  285. for (size_t i = 0; i < audio->inputs.num; i++) {
  286. struct audio_input *input = audio->inputs.array+i;
  287. if (resample_audio_output(input, &data))
  288. input->callback(input->param, &data);
  289. }
  290. pthread_mutex_unlock(&audio->input_mutex);
  291. }
  292. static uint64_t mix_and_output(struct audio_output *audio, uint64_t audio_time,
  293. uint64_t prev_time)
  294. {
  295. struct audio_line *line = audio->first_line;
  296. uint32_t frames = (uint32_t)ts_diff_frames(audio, audio_time,
  297. prev_time);
  298. size_t bytes = frames * audio->block_size;
  299. #ifdef DEBUG_AUDIO
  300. blog(LOG_DEBUG, "audio_time: %llu, prev_time: %llu, bytes: %lu",
  301. audio_time, prev_time, bytes);
  302. #endif
  303. /* return an adjusted audio_time according to the amount
  304. * of data that was sampled to ensure seamless transmission */
  305. audio_time = prev_time + conv_frames_to_time(audio, frames);
  306. /* resize and clear mix buffers */
  307. for (size_t i = 0; i < audio->planes; i++) {
  308. da_resize(audio->mix_buffers[i], bytes);
  309. memset(audio->mix_buffers[i].array, 0, bytes);
  310. }
  311. /* mix audio lines */
  312. while (line) {
  313. struct audio_line *next = line->next;
  314. /* if line marked for removal, destroy and move to the next */
  315. if (!line->buffers[0].size) {
  316. if (!line->alive) {
  317. audio_output_removeline(audio, line);
  318. line = next;
  319. continue;
  320. }
  321. }
  322. pthread_mutex_lock(&line->mutex);
  323. if (line->buffers[0].size && line->base_timestamp < prev_time) {
  324. clear_excess_audio_data(line, prev_time);
  325. line->base_timestamp = prev_time;
  326. }
  327. if (mix_audio_line(audio, line, bytes, prev_time))
  328. line->base_timestamp = audio_time;
  329. pthread_mutex_unlock(&line->mutex);
  330. line = next;
  331. }
  332. /* output */
  333. do_audio_output(audio, prev_time, frames);
  334. return audio_time;
  335. }
  336. /* sample audio 40 times a second */
  337. #define AUDIO_WAIT_TIME (1000/40)
  338. static void *audio_thread(void *param)
  339. {
  340. struct audio_output *audio = param;
  341. uint64_t buffer_time = audio->info.buffer_ms * 1000000;
  342. uint64_t prev_time = os_gettime_ns() - buffer_time;
  343. uint64_t audio_time;
  344. while (event_try(audio->stop_event) == EAGAIN) {
  345. os_sleep_ms(AUDIO_WAIT_TIME);
  346. pthread_mutex_lock(&audio->line_mutex);
  347. audio_time = os_gettime_ns() - buffer_time;
  348. audio_time = mix_and_output(audio, audio_time, prev_time);
  349. prev_time = audio_time;
  350. pthread_mutex_unlock(&audio->line_mutex);
  351. }
  352. return NULL;
  353. }
  354. /* ------------------------------------------------------------------------- */
  355. static size_t audio_get_input_idx(audio_t video,
  356. void (*callback)(void *param, const struct audio_data *data),
  357. void *param)
  358. {
  359. for (size_t i = 0; i < video->inputs.num; i++) {
  360. struct audio_input *input = video->inputs.array+i;
  361. if (input->callback == callback && input->param == param)
  362. return i;
  363. }
  364. return DARRAY_INVALID;
  365. }
  366. static inline bool audio_input_init(struct audio_input *input,
  367. struct audio_output *audio)
  368. {
  369. if (input->conversion.format != audio->info.format ||
  370. input->conversion.samples_per_sec != audio->info.samples_per_sec ||
  371. input->conversion.speakers != audio->info.speakers) {
  372. struct resample_info from = {
  373. .format = audio->info.format,
  374. .samples_per_sec = audio->info.samples_per_sec,
  375. .speakers = audio->info.speakers
  376. };
  377. struct resample_info to = {
  378. .format = input->conversion.format,
  379. .samples_per_sec = input->conversion.samples_per_sec,
  380. .speakers = input->conversion.speakers
  381. };
  382. input->resampler = audio_resampler_create(&to, &from);
  383. if (!input->resampler) {
  384. blog(LOG_ERROR, "audio_input_init: Failed to "
  385. "create resampler");
  386. return false;
  387. }
  388. } else {
  389. input->resampler = NULL;
  390. }
  391. return true;
  392. }
  393. bool audio_output_connect(audio_t audio,
  394. const struct audio_convert_info *conversion,
  395. void (*callback)(void *param, const struct audio_data *data),
  396. void *param)
  397. {
  398. bool success = false;
  399. if (!audio) return false;
  400. pthread_mutex_lock(&audio->input_mutex);
  401. if (audio_get_input_idx(audio, callback, param) == DARRAY_INVALID) {
  402. struct audio_input input;
  403. input.callback = callback;
  404. input.param = param;
  405. if (conversion) {
  406. input.conversion = *conversion;
  407. } else {
  408. input.conversion.format = audio->info.format;
  409. input.conversion.speakers = audio->info.speakers;
  410. input.conversion.samples_per_sec =
  411. audio->info.samples_per_sec;
  412. }
  413. if (input.conversion.format == AUDIO_FORMAT_UNKNOWN)
  414. input.conversion.format = audio->info.format;
  415. if (input.conversion.speakers == SPEAKERS_UNKNOWN)
  416. input.conversion.speakers = audio->info.speakers;
  417. if (input.conversion.samples_per_sec == 0)
  418. input.conversion.samples_per_sec =
  419. audio->info.samples_per_sec;
  420. success = audio_input_init(&input, audio);
  421. if (success)
  422. da_push_back(audio->inputs, &input);
  423. }
  424. pthread_mutex_unlock(&audio->input_mutex);
  425. return success;
  426. }
  427. void audio_output_disconnect(audio_t audio,
  428. void (*callback)(void *param, const struct audio_data *data),
  429. void *param)
  430. {
  431. if (!audio) return;
  432. pthread_mutex_lock(&audio->input_mutex);
  433. size_t idx = audio_get_input_idx(audio, callback, param);
  434. if (idx != DARRAY_INVALID) {
  435. audio_input_free(audio->inputs.array+idx);
  436. da_erase(audio->inputs, idx);
  437. }
  438. pthread_mutex_unlock(&audio->input_mutex);
  439. }
  440. static inline bool valid_audio_params(struct audio_output_info *info)
  441. {
  442. return info->format && info->name && info->samples_per_sec > 0 &&
  443. info->speakers > 0;
  444. }
  445. int audio_output_open(audio_t *audio, struct audio_output_info *info)
  446. {
  447. struct audio_output *out;
  448. pthread_mutexattr_t attr;
  449. bool planar = is_audio_planar(info->format);
  450. if (!valid_audio_params(info))
  451. return AUDIO_OUTPUT_INVALIDPARAM;
  452. out = bzalloc(sizeof(struct audio_output));
  453. memcpy(&out->info, info, sizeof(struct audio_output_info));
  454. pthread_mutex_init_value(&out->line_mutex);
  455. out->channels = get_audio_channels(info->speakers);
  456. out->planes = planar ? out->channels : 1;
  457. out->block_size = (planar ? 1 : out->channels) *
  458. get_audio_bytes_per_channel(info->format);
  459. if (pthread_mutexattr_init(&attr) != 0)
  460. goto fail;
  461. if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) != 0)
  462. goto fail;
  463. if (pthread_mutex_init(&out->line_mutex, &attr) != 0)
  464. goto fail;
  465. if (pthread_mutex_init(&out->input_mutex, NULL) != 0)
  466. goto fail;
  467. if (event_init(&out->stop_event, EVENT_TYPE_MANUAL) != 0)
  468. goto fail;
  469. if (pthread_create(&out->thread, NULL, audio_thread, out) != 0)
  470. goto fail;
  471. out->initialized = true;
  472. *audio = out;
  473. return AUDIO_OUTPUT_SUCCESS;
  474. fail:
  475. audio_output_close(out);
  476. return AUDIO_OUTPUT_FAIL;
  477. }
  478. void audio_output_close(audio_t audio)
  479. {
  480. void *thread_ret;
  481. struct audio_line *line;
  482. if (!audio)
  483. return;
  484. if (audio->initialized) {
  485. event_signal(audio->stop_event);
  486. pthread_join(audio->thread, &thread_ret);
  487. }
  488. line = audio->first_line;
  489. while (line) {
  490. struct audio_line *next = line->next;
  491. audio_line_destroy_data(line);
  492. line = next;
  493. }
  494. for (size_t i = 0; i < audio->inputs.num; i++)
  495. audio_input_free(audio->inputs.array+i);
  496. for (size_t i = 0; i < MAX_AV_PLANES; i++)
  497. da_free(audio->mix_buffers[i]);
  498. da_free(audio->inputs);
  499. event_destroy(audio->stop_event);
  500. pthread_mutex_destroy(&audio->line_mutex);
  501. bfree(audio);
  502. }
  503. audio_line_t audio_output_createline(audio_t audio, const char *name)
  504. {
  505. if (!audio) return NULL;
  506. struct audio_line *line = bzalloc(sizeof(struct audio_line));
  507. line->alive = true;
  508. line->audio = audio;
  509. if (pthread_mutex_init(&line->mutex, NULL) != 0) {
  510. blog(LOG_ERROR, "audio_output_createline: Failed to create "
  511. "mutex");
  512. bfree(line);
  513. return NULL;
  514. }
  515. pthread_mutex_lock(&audio->line_mutex);
  516. if (audio->first_line) {
  517. audio->first_line->prev_next = &line->next;
  518. line->next = audio->first_line;
  519. }
  520. line->prev_next = &audio->first_line;
  521. audio->first_line = line;
  522. pthread_mutex_unlock(&audio->line_mutex);
  523. line->name = bstrdup(name ? name : "(unnamed audio line)");
  524. return line;
  525. }
  526. const struct audio_output_info *audio_output_getinfo(audio_t audio)
  527. {
  528. return audio ? &audio->info : NULL;
  529. }
  530. void audio_line_destroy(struct audio_line *line)
  531. {
  532. if (line) {
  533. if (!line->buffers[0].size)
  534. audio_output_removeline(line->audio, line);
  535. else
  536. line->alive = false;
  537. }
  538. }
  539. bool audio_output_active(audio_t audio)
  540. {
  541. if (!audio) return false;
  542. return audio->inputs.num != 0;
  543. }
  544. size_t audio_output_blocksize(audio_t audio)
  545. {
  546. return audio ? audio->block_size : 0;
  547. }
  548. size_t audio_output_planes(audio_t audio)
  549. {
  550. return audio ? audio->planes : 0;
  551. }
  552. size_t audio_output_channels(audio_t audio)
  553. {
  554. return audio ? audio->channels : 0;
  555. }
  556. /* TODO: Optimization of volume multiplication functions */
  557. static inline void mul_vol_u8bit(void *array, float volume, size_t total_num)
  558. {
  559. uint8_t *vals = array;
  560. int32_t vol = (int32_t)(volume * 127.0f);
  561. for (size_t i = 0; i < total_num; i++) {
  562. int32_t val = (int32_t)vals[i] - 128;
  563. int32_t output = val * vol / 127;
  564. vals[i] = (uint8_t)(CLAMP(output, MIN_S8, MAX_S8) + 128);
  565. }
  566. }
  567. static inline void mul_vol_16bit(void *array, float volume, size_t total_num)
  568. {
  569. uint16_t *vals = array;
  570. int64_t vol = (int64_t)(volume * 32767.0f);
  571. for (size_t i = 0; i < total_num; i++) {
  572. int64_t output = (int64_t)vals[i] * vol / 32767;
  573. vals[i] = (int32_t)CLAMP(output, MIN_S16, MAX_S16);
  574. }
  575. }
  576. static inline float conv_24bit_to_float(uint8_t *vals)
  577. {
  578. int32_t val = ((int32_t)vals[0]) |
  579. ((int32_t)vals[1] << 8) |
  580. ((int32_t)vals[2] << 16);
  581. if ((val & 0x800000) != 0)
  582. val |= 0xFF000000;
  583. return (float)val / 8388607.0f;
  584. }
  585. static inline void conv_float_to_24bit(float fval, uint8_t *vals)
  586. {
  587. int32_t val = (int32_t)(fval * 8388607.0f);
  588. vals[0] = (val) & 0xFF;
  589. vals[1] = (val >> 8) & 0xFF;
  590. vals[2] = (val >> 16) & 0xFF;
  591. }
  592. static inline void mul_vol_24bit(void *array, float volume, size_t total_num)
  593. {
  594. uint8_t *vals = array;
  595. for (size_t i = 0; i < total_num; i++) {
  596. float val = conv_24bit_to_float(vals) * volume;
  597. conv_float_to_24bit(CLAMP(val, -1.0f, 1.0f), vals);
  598. vals += 3;
  599. }
  600. }
  601. static inline void mul_vol_32bit(void *array, float volume, size_t total_num)
  602. {
  603. int32_t *vals = array;
  604. double dvol = (double)volume;
  605. for (size_t i = 0; i < total_num; i++) {
  606. double val = (double)vals[i] / 2147483647.0;
  607. double output = val * dvol;
  608. vals[i] = (int32_t)(CLAMP(output, -1.0, 1.0) * 2147483647.0);
  609. }
  610. }
  611. static inline void mul_vol_float(void *array, float volume, size_t total_num)
  612. {
  613. float *vals = array;
  614. for (size_t i = 0; i < total_num; i++)
  615. vals[i] *= volume;
  616. }
  617. static void audio_line_place_data_pos(struct audio_line *line,
  618. const struct audio_data *data, size_t position)
  619. {
  620. bool planar = line->audio->planes > 1;
  621. size_t total_num = data->frames * (planar ? 1 : line->audio->channels);
  622. size_t total_size = data->frames * line->audio->block_size;
  623. for (size_t i = 0; i < line->audio->planes; i++) {
  624. da_copy_array(line->volume_buffers[i], data->data[i],
  625. total_size);
  626. uint8_t *array = line->volume_buffers[i].array;
  627. switch (line->audio->info.format) {
  628. case AUDIO_FORMAT_U8BIT:
  629. case AUDIO_FORMAT_U8BIT_PLANAR:
  630. mul_vol_u8bit(array, data->volume, total_num);
  631. break;
  632. case AUDIO_FORMAT_16BIT:
  633. case AUDIO_FORMAT_16BIT_PLANAR:
  634. mul_vol_16bit(array, data->volume, total_num);
  635. break;
  636. case AUDIO_FORMAT_32BIT:
  637. case AUDIO_FORMAT_32BIT_PLANAR:
  638. mul_vol_32bit(array, data->volume, total_num);
  639. break;
  640. case AUDIO_FORMAT_FLOAT:
  641. case AUDIO_FORMAT_FLOAT_PLANAR:
  642. mul_vol_float(array, data->volume, total_num);
  643. break;
  644. case AUDIO_FORMAT_UNKNOWN:
  645. blog(LOG_ERROR, "audio_line_place_data_pos: "
  646. "Unknown format");
  647. break;
  648. }
  649. circlebuf_place(&line->buffers[i], position,
  650. line->volume_buffers[i].array, total_size);
  651. }
  652. }
  653. static void audio_line_place_data(struct audio_line *line,
  654. const struct audio_data *data)
  655. {
  656. size_t pos = ts_diff_bytes(line->audio, data->timestamp,
  657. line->base_timestamp);
  658. #ifdef DEBUG_AUDIO
  659. blog(LOG_DEBUG, "data->timestamp: %llu, line->base_timestamp: %llu, "
  660. "pos: %lu, bytes: %lu, buf size: %lu",
  661. data->timestamp, line->base_timestamp, pos,
  662. data->frames * line->audio->block_size,
  663. line->buffers[0].size);
  664. #endif
  665. audio_line_place_data_pos(line, data, pos);
  666. }
  667. void audio_line_output(audio_line_t line, const struct audio_data *data)
  668. {
  669. /* TODO: prevent insertation of data too far away from expected
  670. * audio timing */
  671. if (!line || !data) return;
  672. pthread_mutex_lock(&line->mutex);
  673. if (!line->buffers[0].size) {
  674. /* XXX: not entirely sure if this is the wisest course of
  675. * action in all circumstances */
  676. line->base_timestamp = data->timestamp -
  677. line->audio->info.buffer_ms * 1000000;
  678. audio_line_place_data(line, data);
  679. } else if (line->base_timestamp <= data->timestamp) {
  680. audio_line_place_data(line, data);
  681. } else {
  682. blog(LOG_DEBUG, "Bad timestamp for audio line '%s', "
  683. "data->timestamp: %"PRIu64", "
  684. "line->base_timestamp: %"PRIu64". This can "
  685. "sometimes happen when there's a pause in "
  686. "the threads.", line->name, data->timestamp,
  687. line->base_timestamp);
  688. }
  689. pthread_mutex_unlock(&line->mutex);
  690. }